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Preface to the Second Edition 

Not quite six years have passed since the appearance of the first edition of this book. 
This is not a long period. Yet the rapid pace of scientific and technological development 
today is such that any book on experimental technique must be wary of becoming ob­
solete in some way or another even in such a short span of time. Thus, when the 
publisher Springer-Verlag informed me of the need for a new printing of this book, I 
decided it was an opportune moment to update some of the chapters as well as to include 
some new material. The result is this second edition. 

The most notable changes have been in Chapters 2 and 3. In the latter, which con­
cerns radiation protection, most of the sections have been rewritten to take into account 
the new recommendations from the International Commission on Radiation Protection, 
the most important of which are the new dose limits for exposure to ionizing radiation. 
In addition, emphasis has now been put on the use of SI units in dosimetry, i.e., the 
Gray and Sievert, which have now become standard. 

In Chapter 2, new material has been added in addition to updated information. In 
particular, Cherenkov radiation and electron-photon shower production are now treated 
more thoroughly. These are not phenomena normally encountered in a student laborato­
ry, but they are presented here so as to provide a foundation for understanding detectors 
based on these effects. Hopefully this will increase the usefulness of this book especially 
for those entering high-energy physics. The section on multiple scattering in the Gaussian 
approximation has also been updated with a new and more accurate empirical formula. 

Throughout these chapters and indeed the entire book, an updating of the references 
has also been made. During this period, of course, many new papers and books on 
various experimental techniques have appeared, most of a very specific nature. I have 
had to be selective therefore and have included only those which bear directly on the 
more general aspects of a technique or method, or provide new data. However, I can 
in no way claim to have included all possible new references and I apologize for those 
that I have missed. 

Finally, I have included a number of new examples in the text which I hope will 
enhance understanding of the material. Like the rest of the examples, these are all based 
on real problems which have been encountered either by myself or by students that I 
have taught. 

That I am writing this preface to the second edition at all is a pleasant surprise for 
me as it attests to the success of the first edition. For this I am infinitely grateful to the 
people who have helped with its realization, not the least of which are the readers who 
have written to me with their comments, suggestions and corrections to the first edition. 
Where possible, I have tried to incorporate these in one way or another in this edition. 
Hopefully, I have not disappointed them. Last but not least, my deepest gratitude is due 
to Prof. Catherine Leluc for her invaluable aid and advice once again, and to my wife 
and children for their infinite patience. 

La Tour de Peilz, November 1993 William R. Leo 



Preface to the First Edition 

This book is an outgrowth of an advanced laboratory course in experimental nuclear 
and particle physics the author gave to physics majors at the University of Geneva 
during the years 1978 - 1983. The course was offered to third and fourth year students, 
the latter of which had, at this point in their studies, chosen to specialize in experi­
mental nuclear or particle physics. This implied that they would go on to do a 
"diplom" thesis with one of the high- or intermediate-energy research groups in the 
physics department. 

The format of the course was such that the students were required to concentrate on 
only one experiment during the trimester, rather than perform a series of experiments 
as is more typical of a traditional course of this type. Their tasks thus included planning 
the experiment, learning the relevant techniques, setting up and troubleshooting the 
measuring apparatus, calibration, data-taking and analysis, as well as responsibility for 
maintaining their equipment, i.e., tasks resembling those in a real experiment. This 
more intensive involvement provided the students with a better understanding of the 
experimental problems encountered in a professional experiment and helped instill a 
certain independence and confidence which would prepare them for entry into a 
research group in the department. Teaching assistants were present to help the students 
during the trimester and a series of weekly lectures was also given on various topics in 
experimental nuclear and particle physics. This included general information on detec­
tors, nuclear electronics, statistics, the interaction of radiation in matter, etc., and a 
good deal of practical information for actually doing experiments. 

Many of the chapters in this book are essentially based on notes which were 
prepared for these lectures. The information contained in this book, therefore, will 
hopefully provide the reader with a practical "guide" to some of the techniques, the 
equipment, the technical jargon, etc., which make up the world of current experimental 
nuclear and particle physics but which never seem to appear in the literature. As those 
in the field already know, the art of experimental physics is learned through a type of 
"apprenticeship" with a more experienced physicist or physicists, not unlike medieval 
artisans. It is to these "apprentices" that I address these chapters. 

The book is laid out in three parts. The first four chapters treat some of the funda­
mental background knowledge required of experimental nuclear or particle physicists, 
such as the passage of radiation through matter, statistics, and radiation protection. 
Since detailed descriptions of the theory can be found elsewhere, these chapters only 
summarize the basic ideas and present only the more useful formulae. However, refer­
ences are provided for the reader desiring more information. In this form, then, these 
chapters may serve as a reference. A basic understanding of quantum mechanics and 
fundamental nuclear physics is assumed throughout. 

Chapters 5 -10 are primarily concerned with the functioning and operation of the 
principal types of detectors used in nuclear and particle physics experiments. In addi­
tion to the basic principles, sections dealing with modern detectors such as the time-



x Preface to the First Edition 

projection chamber or silicon microstrip detectors have also been included. It might be 
argued, of course, that some of these detectors are too specialized or still too novel to 
be included in a textbook of this level. However, for the student going on to more ad­
vanced work or the experienced researcher, it is these types of detectors he will most 
likely encounter. Moreover, it gives the student an idea of the state of the art and the in­
credible advances that have been made. Hopefully, it will provide food for thought on 
the advances that can still be made! 

The final chapters, 11 -18, are concerned with "nuclear electronics" and the logic 
which is used in setting up electronics systems for experiments. This has always been a 
difficult point for many students as most approaches have been from a circuit design 
point of view requiring analysis of analog circuits, which, of course, is a subject unto 
itself. With the establishment of standardized systems such as NIM and CAMAC and 
the availability of commercial modules, however, the experimental physicist can func­
tion very well with only a knowledge of electronic logic. These chapters thus treat the 
characteristics of the pulse signals from detectors and the various operations which can 
be performed on these signals by commercially available modules. Chapter 18 also 
presents an introduction to the CAMAC system, which, up to a few years ago, was 
used only in high-energy physics but which now, with the advent of microcomputers, 
may also be found on smaller experiments undertaken by students. 

Although this book is based on a specific laboratory course, the treatment of the 
topics outlined above is general and was made without specific reference to any par­
ticular experiment, except, perhaps, as an example. As such I hope the book will also 
be of use to researchers and students in other domains who are called upon to work 
with detectors and radiation. 

I would like to thank the many people who have at some point or another helped 
realize this book. In particular, my very special thanks are due to Dr. Rene Hausam­
mann, Dr. Catherine Lechanoine-Leluc, Dr. Jacques Ligou, and Dr. Trivan Pal for 
having read some of the chapters and for their helpful comments and suggestions. I am 
also grateful to J .-C. Bostedeche and J. Covillot who helped construct, establish and 
maintain the experiments in the laboratory, to C. Jacquat for the many hours spent on 
the drawings for this book and to the many authors who have kindly allowed me to use 
figures from their articles or books. Finally, I would like to thank Elisabeth, who, 
although not a physicist, was the first to have the idea for this book. 

Lausanne, March 1987 William R. Leo 
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1. Basic Nuclear Processes in Radioactive Sources 

Radioactive sources provide a convenient means of testing and calibrating detectors 
and are essential tools in both the nuclear and high energy physics laboratory. An 
understanding of the basic nuclear processes in radioactive sources is a necessity, there­
fore, before beginning to work in the laboratory. We shall begin this book then by 
briefly reviewing these processes and describing the characteristics of the resulting 
radiations. A more detailed discussion, of course, is better suited for a nuclear theory 
course and we refer the reader to any of the standard nuclear physics texts for more in­
formation. 

Nuclei can undergo a variety of processes resulting in the emission of radiation of 
some form. We can divide the processes into two categories: radioactivity and nuclear 
reactions. In a radioactive transformation, the nucleus spontaneously disintegrates to a 
different species of nuclei or to a lower energy state of the same nucleus with the emis­
sion of radiation of some sort. The majority of radiation sources found in the labora­
tory are of this type. In a nuclear reaction, the nucleus interacts with another particle or 
nucleus with the subsequent emission of radiation as one of its final products. In many 
cases, as well, some of the products are nuclei which further undergo radioactive dis­
integration. 

The radiation emitted in both of these processes may be electromagnetic or cor­
puscular. The electromagnetic radiations consist of x-rays and y-rays while the cor­
puscular emissions include a-particles, f3-electrons and positrons, internal conversion 
electrons, Auger electrons, neutrons, protons, and fission fragments, among others. 
While most of these radiations originate in the nucleus itself, some also arise from the 
electron cloud surrounding the nucleus. Indeed, the nucleus should not be considered 
as a system isolated from the rest of the atom. Excitations which arise therein may, in 
fact, make themselves directly felt in the electron cloud, as in the case of internal con­
version, and/or indirectly as in the emission of characteristic x-rays following electron 
capture. Except for their energy characteristics, these radiations are indistinguishable 
from those arising in the nucleus. 

Table 1.1 summarizes some of the more common types of radiation found in labo­
ratory sources. Each radiation type is characterized by an energy spectrum which is in­
dicative of the nuclear process underlying it. Note also that a radioactive source may 
emit several different types of radiation at the same time. This can arise from the fact 
that the nuclear isotope in question undergoes several different modes of decay. For 
example, a 137Cs nucleus can de-excite through either y-ray emission or internal conver­
sion. The output of a given 137CS sample, therefore, will consist of both photons and 
electrons in a proportion equal to the relative probabilities for the two decay modes. A 
more common occurrence, however, is that the daughter nucleus is also radioactive, so 
that its radiation is also added to the emitted output. This is the case with many 13-
sources, where the f3-disintegration results in an excited daughter nucleus which then 
immediately decays by y-emission. 
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Table 1.1. Characteristics of nuclear radiations 

Type Origin Process Charge Mass Spectrum 
[MeV] (energy) 

a-particles Nucleus Nuclear +2 3727.33 Discrete 
decay or [MeV] 
reaction 

/r -rays Nucleus Nuclear -I 0.511 Continuous 
decay [keV-MeV) 

p+ -rays Nuclear Nuclear +1 0.511 Continuous 
(positrons) decay [keV-MeV] 

y-rays Nucleus Nuclear 0 0 Discrete 
deexcitation [keV-MeV] 

x-rays Electron Atomic 0 0 Discrete 
cloud deexcitation [eV -keV] 

Internal Electron Nuclear -I 0.511 Discrete 
conversion cloud deexcitation [high keV] 
electrons 

Auger Electron Atomic -1 0.511 Discrete 
electrons cloud deexcitation [eV-keV] 

Neutrons Nucleus Nuclear 0 939.57 Continuous 
reaction or discrete 

[keV-MeV] 

Fission Nucleus Fission ==20 80-160 Continuous 
fragments 30-150MeV 

1.1 Nuclear Level Diagrams 

Throughout this text, we will be making use of nuclear energy level diagrams, which 
provide a compact and convenient way of representing the changes which occur in 
nuclear transformations. These are usually plotted in the following way. For a given 
nucleus with atomic number Z and mass A, the energy levels are plotted as horizontal 
lines on some arbitrary vertical scale. The spin and parity of each of these states may 
also be indicated. Keeping the same mass number A, the energy levels of neighboring 
nuclei (Z - 1, A), (Z + 1, A), '" are now also plotted on this energy scale with Z or­
dered in the horizontal direction, as illustrated in Fig. 1.1. This reflects the fact that 
nuclei with different Z but the same A may simply be treated as different states of a sys­
tem of A nucleons. The relation of the energy levels of a nucleus (Z, A) to other nuclei 
in the same A system is therefore made apparent. With the exception of a-decay, radio­
active decay may now be viewed as simply a transition from a higher energy state to a 
lower energy state within the same system of A nucleons. For example, consider the [J­
decay process, which will be discussed in the next section. This reaction involves the 
decay 

(Z, A) -+ (Z + 1, A) + e - + v, 

where the final state in the nucleus (Z + 1, A) may be the ground state or some excited 
state. This is shown in Fig. 1.1 by the arrow descending to the right. The atomic num­
ber Z increases by one, but A remains constant. The changes that occur can be immedi-
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Fig. 1.1. Nuclear level diagrams conveniently repre­
sent the transitions which can occur between nuclei. 
For a system of A nucleons, energy is represented on 
the vertical scale while atomic number is on the hori­
zontal scale 

ately seen: for example, the energy available for the reaction as given by the difference 
in height between the two levels, the spin and parity changes, etc. If it is possible for the 
same initial state to make transitions to several different final states, this can also be 
represented by several arrows emanating from the initial state to the various possible 
final states. The relative probability of each decay branch (i.e., the branching ratio) 
may also be indicated next to the corresponding arrow. 

In a similar way, transitions which follow the first may also be diagrammed. For 
example, suppose the final state of the above example is an excited state of the (Z + 1, 
A) nucleus, it may then make a gamma transition to the ground state or to another 
excited state. This type of transition is indicated by a vertical line since Z remains un­
changed (see Fig. 1.1). Other transitions, such as a further fJ-decay or some other pro­
cess, may be represented in a similar manner. In this way, the types of radiation emitted 
by a particular radioactive source and their origins may be easily displayed. 

Several tabulations of the radioactive isotopes and their level diagrams as deduced 
from experiment are available for reference purposes. The most complete of these is the 
Table of Isotopes edited by Lederer and Shirley [1.1] which is updated periodically. We 
urge the reader to become familiar with their interpretation. 

1.2 Alpha Decay 

Alpha particles are 4He nuclei, i.e., a bound system of two protons and two neutrons, 
and are generally emitted by very heavy nuclei containing too many nucleons to remain 
stable. The emission of such a nucleon cluster as a whole rather than the emission of 
single nucleons is energetically more advantageous because of the particularly high 
binding energy of the a-particle. The parent nucleus (Z, A) in the reaction is thus trans­
formed via 

(Z, A) -+ (Z - 2, A - 4) + a. (1.1) 

Theoretically, the process was first explained by Gamow and Condon and by Gurney as 
the tunneling of the a-particle through the potential barrier of the nucleus. Alpha 
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particles, therefore, show a monoenergetic energy spectrum. As well, since barrier 
transmission is dependent on energy, all a-sources are generally limited to the range 
::::4 - 6 MeV with the higher energy sources having the higher transmission probability 
and thus the shorter half-life. For this reason also, most a-decays are directly to the 
ground state of the daughter nucleus since this involves the highest energy change. 
Decays to excited states of the daughter nucleus are nevertheless possible, and in such 
nuclei, the energy spectrum shows several monoenergetic lines each corresponding to a 
decay to one of these states. Some of the more commonly used sources are listed below 
in Table 1.2. 

Table 1.2. Characteristics of some alpha emitters 

Isotope Half-life Energies [MeV] Branching 

241Am 433 yrs. 5.486 85070 
5.443 12.8% 

210pO 138 days 5.305 100% 
242Cm 163 days 6.113 74% 

6.070 26% 

Because of its double charge, + 2e, alpha particles have a very high rate of energy 
loss in matter. The range of a 5 MeV a-particle in air is only a few centimeters, for 
example. For this reason it is necessary to make a sources as thin as possible in order to 
minimize energy loss and particle absorption. Most a-sources are made, in fact, by de­
positing the isotope on the surface of a suitable backing material and protecting it with 
an extremely thin layer of metal foil. 

1.3 Beta Decay 

Beta particles are fast electrons or positrons which result from the weak-interaction 
decay of a neutron or proton in nuclei which contain an excess of the respective 
nucleon. In a neutron-rich nucleus, for example, a neutron can transform itself into a 
proton via the process 

(1.2) 

where an electron and anti neutrino are emitted. (The proton remains bound to the 
nucleus.) The daughter nucleus now contains one extra proton so that its atomic num­
ber is increased by 1. 

Similarly, in nuclei with too many protons, the decay 

(1.3) 

can occur, where a positron and a neutrino are now emitted and the atomic number is 
decreased by 1. Both are mediated by the same weak interaction. 

A basic characteristic of the [J-decay process is the continuous energy spectrum of 
the [J-particle. This is because the available energy for the decay (the Q-value) is shared 
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between the ,8-particle and the neutrino (or antineutrino) which usually goes undetect­
ed. A typical spectrum is shown in Fig. 1.2. If the small recoil energy of the daughter 
nucleus is ignored, the maximum energy of this spectrum should correspond to the Q­
value for the reaction. For most beta sources, this maximum value ranges from a few 
tens of keV to a few MeV. 

In very many ,8-sources, the daughter nucleus is left in an excited state which decays 
immediately with the emission of one or more y photons (see Sect. 1.5). This is il­
lustrated in the level diagram shown in Fig. 1.3. These sources, therefore, are also emit­
ters of y radiation. Most ,8-sources are of this type. Pure ,8-emitters exist but the list is 
astonishingly short as is seen in Table 1.3. 

Table 1.3. List of pure rr emitters 

Source 

3H 

14C 
32p 
33p 

35S 

36CI 
45Ca 

63Ni 
90Sr/90y 
99Tc 
147Pm 
204n 

Half-life 

12.26 yr 
5730 yr 
14.28 d 
24.4 d 
87.9 d 
3.08 X 105 yr 
165 d 
92yr 
27.7 yr/64 h 
2.12 X 105 yr 
2.62 yr 
3.81 yr 

Emax [MeV] 

0.0186 
0.156 
1.710 
0.248 
0.167 
0.714 
0.252 
0.067 
0.54612.27 
0.292 
0.224 
0.766 

Some,8 sources may also have more than one decay branch, i.e., they can decay to 
different excited states of the daughter nucleus. Each branch constitutes a separate ,8-
decay with an end-point energy corresponding to the energy difference between the 
initial and final states and is in competition with the other branches. The total ,8-spec­
trum from such a source is then a superposition of all the branches weighted by their 
respective decay probabilities. 

Since electrons lose their energy relatively easily in matter, it is important that ,8-
sources be thin in order to allow the ,8's to escape with a minimum of energy loss and 
absorption. This is particularly important for positron sources since the positron can 
annihilate with the electrons in the source material or surrounding container. A too 
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Fig. 1.3. Nuclear level diagrams of a few common gamma 
sources 
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thick p+ source will exhibit a distorted p+ spectrum and an enormous background of 
511 keV annihilation photons. 

1.4 Electron Capture (EC) 

As an alternative to p+ emission, proton-rich nuclei may also transform themselves via 
the capture of an electron from one of the atomic orbitals 

e-+p-+n+v. (1.4) 

This reaction is essentially the same as p+ -decay but with the p particle transposed to 
the left side. The nuclear level diagram for EC is therefore identical to that for p + emis­
sion. Since only the neutrino is emitted, electron capture would seem to be a reaction 
almost impossible to observe, given the well-known difficulty of detecting such a 
particle! The capture of the electron, however, leaves a hole in the atomic shell which is 
filled by another atomic electron, giving rise to the emission of a characteristic x-ray or 
Auger electrons (see Sect. 1.8). These radiations are, of course, much more amenable 
to detection and can be used to signal the capture reaction. In general, it is the K elec­
tron which is most likely captured, although, L-capture is also possible But with a much 
smaller probability. 

1.5 Gamma Emission 

Like the electron shell structure of the atom, the nucleus is also characterized by 
discrete energy levels. Transitions between these levels can be made by the emission (or 
absorption) of electromagnetic radiation of the correct energy, i.e., with an energy 
equal to the energy difference between the levels participating in the transition. The 
energies of these photons, from a few hundred keV to a few MeV, characterize the high 
binding energy of nuclei. These high-energy photons were historically named y-rays, 
and, like atoms, show spectral lines characteristic of the emitting nucleus. Level 
diagrams illustrating the specific energy structure of some typical y-ray sources are 
shown in Fig. 1.3. 

Most y-sources are "placed" in their excited states as the result of a p-disintegra­
tion, although excited nuclear states are often created in nuclear reactions also. Since 
electrons and positrons are more easily absorbed in matter, the p-particles in such 
sources can be "filtered" out by enveloping them with sufficient absorbing material, 
leaving only the more penetrating y-ray. 

1.5.1 Isomeric States 

Although most excited states in nuclei make almost immediate transitions to a lower 
state, some nuclear states may live very much longer. Their de-excitation is usually 
hindered by a large spin difference between levels (i.e., aforbidden transition) resulting 
in lifetimes ranging from seconds to years. A nuclide which is "trapped" in one of these 
metastable states will thus show radioactive properties different from those in more 
normal states. Such nuclei are called isomers and are denoted by an m next to the mass 
number in their formulae, e.g. 60mCo or 69mZn. 
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1.6 Annihilation Radiation 

Another source of high-energy photons is the annihilation of positrons. If a positron 
source such as 22Na is enclosed or allowed to irradiate an absorbing material, the posi­
trons will annihilate with the absorber electrons to produce two photons, each with an 
energy equal to the electron mass: 511 keV. In order to conserve momentum, these two 
photons are always emitted in opposite directions. The y spectrum from a thick posi­
tron source will thus show a peak at 511 keY (corresponding to the detection of one of 
the annihilation photons) in addition to the peaks characteristic of transitions in the 
daughter nucleus. Figure 1.4 shows the spectrum observed with a thick 22Na source. 

ANNIHILATION 

PEAK 

0.511 MeV 

Pulse height 

1.7 Internal Conversion 

1.27 MeV 

Fig. 1.4. Gamma-ray spectrum of a 22Na source 
as observed with a NaI detector. Because of 
positron annihilation in the detector and the 
source itself, a peak at 511 keY is observed corre­
sponding to the detection of one of the annihila­
tion photons 

While the emission of a y-ray is usually the most common mode of nuclear de-excita­
tion, transitions may also occur through internal conversion. In this process, the 
nuclear excitation energy is directly transferred to an atomic electron rather than emit­
ted as a photon. The electron is ejected with a kinetic energy equal to the excitation 
energy minus its atomic binding energy. Unlike {J-decay, therefore, internal conversion 
electrons are monoenergetic having approximately the same energy as the competing 
y's, i.e., a few hundred keY to a few MeV. 

While the K-shell electrons are the most likely electrons to be ejected, electrons in 
other orbitals may also receive the excitation energy. Thus, an internal conversion 
source will exhibit a group of internal conversion lines, their differences in energy being 
equal to the differences in the binding energies of their respective orbitals. 

Internal conversion sources are one of the few nuclear sources of monoenergetic 
electrons and are thus very useful for calibration purposes. Some internal conversion 
sources readily found in the laboratory are given in Table 1.4. 

Table 1.4. Some internal conversion sources 

Source 

207Bi 
137Cs 
113Sn 
133Ba 

Energies [keY) 

480,967, 1047 
624 
365 
266, 319 
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1.8 Auger Electrons 

As in internal conversion, an excitation which arises in the electron shell can also be 
transferred to an atomic electron rather than to a characteristic x-ray. Such a process 
can occur :}.fter a reaction such as electron-capture, for example. The electrons emitted 
are called Auger electrons and are monoenergetic. Like internal conversion lines they 
can occur in groups, however, their energies are more typical of atomic processes being 
not more than a few keV. They are thus very susceptible to self-absorption and are dif­
ficult to detect. 

1.9 Neutron Sources 

While it is possible to artificially produce isotopes which emit neutrons, natural 
neutron emitters which can be used practically in the lab do not exist. Laboratory 
neutron sources, instead, are based on either spontaneous fission or nuclear reactions. 

1.9.1 Spontaneous Fission 

Spontaneous fission can occur in many transuranium elements with the release of 
neutrons along with the fission fragments. These fragments, as well, can promptly 
decay emitting p and y radiation. If the fission source is enveloped in a sufficiently 
thick container, however, much of this latter radiation can be absorbed leaving only the 
more penetrating neutrons. 

The most common neutron source of this type is 252Cf which has a half-life of 
265 years. The energy spectrum of the neutrons is continuous up to about 10 MeV and 
exhibits a Maxwellian shape. Figure 1.5 shows this spectrum. The distribution is de­
scribed very precisely by the form [1.2] 

dN lID (-E) --= vE exp -- , 
dE T 

(1.5) 

where T = 1.3 MeV for 252 Cf. 

1.9.2 Nuclear Reactions 

A more convenient method of producing neutrons is with the nuclear reactions (a, n) or 
(y, n).l Reactions of this type occur with many nuclei, however, only those with the 
highest yield are used. Such sources are generally made by mixing the target material 
with a suitably strong a or y emitter. The most common target material is beryllium. 
Under bombardment by a's, beryllium undergoes a number of reactions which lead to 
the production of free neutrons: 

1 A common method for denoting nuclear reactions is A (x, y)B where x is the bombarding particle, A the 
target nucleus, B the resulting nucleus and y the the outgoing particle or particles. Note that the ingoing and 
outgoing particles are always on the inside of the parentheses. The abbreviated notation (x, y), therefore, in­
dicates any nuclear reaction in which x is the incident particle and y the resulting, outgoing particle. 
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(1.6) 

Here the excited compound nucleus 13C* is formed which then decays through a variety 
of modes depending on the excitation energy. In general, the dominant reaction is the 
decay to 12C or to the 4.44 MeV excited state of 12C. With 241 Am as an a-source, a 
neutron yield of about 70 neutrons per 106 a's [1.3] is generally obtained. With 242Cm, 
which emits a's at a higher energy, the yield is ::::: 106 neutrons/l 06_a [1.3]. Other (a, n) 
neutron sources include 238Pu/Be, 226Ra/Be and 227 Ac/Be. Targets such as B, F, and Li 
are also used although the neutron yields are somewhat lower. The half-life of these 
sources, of course, depends on the half-life of the a-emitter. 

For incident a's of a fixed energy, the energy spectrum of neutrons emitted in these 
sources should theoretically show monoenergetic lines corresponding to the different 
transitions which are made. In mixed sources, however, there is a smearing of the alpha­
particle spectrum due to energy loss, so that a large smearing in neutron energy results. 
There is also considerable Doppler broadening which can amount to as much as 2MeV. 
Figure 1.6 shows the energy spectrum of neutrons for several sources of this type. 

In the case of the photo-reaction (y, n), only two target materials are suitable: beryl­
lium and deuterium. The respective reactions are 

(1. 7) 

(1.8) 

These sources have the advantage of emitting neutrons which are more or less mon­
oenergetic since the y's are not slowed down as in the case of a's. The neutrons are, of 
course, not strictly monoenergetic if one works out the kinematics; however, the spread 
is generally small. The disadvantage of these sources is that the reaction yield per y is 
1- 2 orders of magnitude lower than that of the a-type sources. As well, the nonreact­
ing gammas are not absorbed as easily as a-particles, so that these sources are also ac­
companied by a large background of y radiation. 

A more detailed description of these and other neutron sources may be found in the 
article by Hanson [1.4]. 

1.10 Source Activity Units 

The activity or strength of a radioactive sample is defined as the mean number of decay 
processes it undergoes per unit time. This is an extrinsic quantity which depends on the 
amount of source material contained in the sample - the larger the sample the greater 
the total number of decays. Moreover, it should be noted that the activity of a source is 
not necessarily synonymous with the amount of radiation emitted per unit time by the 
source, although it is certainly related to it. For example, some nuclear transformations 
result in an unstable daughter nucleus which also disintegrates. Its radiations would 
then appear with the radiation from the original decay, but would not be included in 
the activity. Similarly, some nuclides decay through several competing processes, for 
example, p+ -emission or electron capture, where only a fraction of the decays appears 
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as a particular emitted radiation. The relation between radiation output and activity, in 
fact, depends on the specific nuclear decay scheme, and only in the case of a unique 
radiative transition is the activity identical to the radiation output. 

Activity has traditionally been measured in units of Curies (Ci). Originally defined 
as the activity of 1 g of pure radium-226, this unit is equivalent to 

1 Curie (Ci) = 3.7 X 1010 disintegrations/s (dps). (1.9) 

This is, in fact, a very large unit and one generally works in the laboratory with sources 
on the order of tens or hundreds of microCuries (!lCi). 

Because of its rather awkward definition in terms of dps, the Becquerel, defined as 

1 Becquerel (Bq) = 1 disintegration/s (1.10) 

is now recommended instead. 
For the beginning student, it is important to distinguish units of activity from those 

of dose such as the Gray or the Sievert. These latter units essentially measure the effects 
of radiation received by an object or person, whereas the Curie or Becquerel are con­
cerned with the disintegrations in the source itself. Units of dose will be treated in 
Chap. 3. 

1.11 The Radioactive Decay Law 

The radioactive decay law was first established experimentally near the beginning of the 
century by Rutherford and Soddy and states that the activity of a radioactive sample 
decays exponentially in time. In terms of modern quantum mechanics, this can easily 
be derived by considering the fact that a nuclear decay process is governed by a transi­
tion probability per unit time, A, characteristic of the nuclear species. If a nuclide has 
more than one mode of decay, then A is the sum of the separate constants for each 
mode 

(1.11) 

In a sample of N such nuclei, the mean number of nuclei decaying in a time dt would 
then be 

dN= -ANdt, (1.12) 

where N is the number of nuclei and A is the decay constant. We have assumed here that 
N is large so that it may be considered as continuous. Equation (1.12) may be consid­
ered as the differential form of the radioactive decay law. Integrating (1.12) then results 
in the exponential, 

N(t) = N(O) exp ( - A t) , (1.13) 

where N(O) is the number of the nuclei at t = O. The exponential decrease in activity of 
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a radioactive sample is thus governed by the constant A. In practice, it is more habitual 
to use the inverse of A, 

Tm = 1IA, (1.14) 

which is known as the mean lifetime. This is just the time it takes for the sample to 
decay to 11 e of its initial activity. Equally in use is the half-life, T1!2, which is defined 
as the time it takes for the sample to decay to one-half of its original activity. Thus, 

1- = exp ( - A T j n) , (1.15) 

which implies 

1 
T1I2 = -In 2 = Tmln 2. 

A 
(1.16) 

1.11.1 Fluctuations in Radioactive Decay 

Consider now the number of decays undergone by a radioactive source in a period of 
time L1 t which is short compared to the half-life of the source. The activity of the 
source may then be considered as constant. If repeated measurements of the number of 
decays, n, in the interval L1 t are now made, fluctuations will be observed from mea­
surement to measurement. This is due to the statistical nature of the decay process; in­
deed, from quantum mechanics we know that the exact number of decays at any given 
time can never be predicted, only the probability of such an event. From the radioactive 
decay law, it can be shown, in fact, (see Segre [1.5], for example) that the probability of 
observing n counts in a period L1 t is given by a Poisson distribution, 

mn 
P(n, L1t) = -exp( -m), 

n! 
(1.17) 

where m is the average number of counts in the period L1 t. The standard deviation of 
the distribution is then 

a=Vm (1.18) 

as is characteristic of Poisson statistics. 

Example 1.1 A source is observed for a period of 5 s during which 900 counts are ac­
cumulated by the detector. What is the count rate per second and error from this mea­
surement? 

Take the measurement as a single trial for the determination of the mean count rate 
in 5 s, i.e., m = 900 for L1 t = 5 s. The standard deviation is then 

a= V900 = 30. 

The count rate per second is then 

rate/s = (900 ± 30)/5 = (180 ± 6) cts/s . 
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Example 1.2 A weak radioactive source is found to have a mean count rate of 
1 counts/so What is the probability of observing no counts at all in a period of 4 s? One 
count in 4 s? 

For a period L1 t = 4 s, the mean count rate is obviously m = 4. Using the Poisson 
distribution, we find 

P = (4)oex p ( -4) = 0.0183. 
O! 

Similarly, the probability of observing 1 count in 4 s is 

P = 41 exp( - 4) = 0.0733. 
1! 

1.11.2 Radioactive Decay Chains 

A very often encountered situation is a radioactive decay chain in which a nuclide 
decays to a daughter nucleus which itself disintegrates to another unstable nucleus and 
so on. In the simple case of a three-nucleus chain, i.e., 

A-+B-+C, 

where C is stable, application of the radioactive decay law gives the equations 

dNa = -A N 
dt a a, 

(1.19) 

where Aa and Ab are the corresponding decay constants. For longer chains, the equa­
tions for the additional nuclides are derived in the same manner. If initially 
Nb (0) = Nc (0) = 0, solution of (1.19) results in 

Na (t) = Na (0) exp( - Aat) , 

A 
Nb(t) = Na (0) a [exp( - Aat) - exp( - Abt)] , 

Ab - Aa 

Nc(t) = Na (0) {1 + 1 [Aa exp( - Abt) - Ab exp( - Aat)]}. 
Ab - Aa 

(1.20) 

The behavior in time of the three nuclear species is graphed in Fig. 1.7. Note that the 
activity of B here is not given by dNb/dt but AbNb' This is because dNb/dt now also 
includes the rate of B created by A. We might note also that Nb goes through a 
maximum. By setting the derivative to zero, we find 
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Fig. 1.7. Radioactive decay of a three nucleus chain 

Fig. 1.8. Ratio of daughter to parent radionuclide activity. Curve (a) shows the condition known as transient 
equilibrium, while curve (b) illustrates secular equilibrium 

(1.21) 

At this point, the activity of B is a maximum equal to 

(1.22) 

as seen from from (1.20). This is known as ideal equilibrium. At any other time, the 
ratio of the activity of B to A (or the ratio of any daughter to its immediate parent in 
longer chains) is given by 

(1.23) 

Three cases may be distinguished: 

1) If A.a > A.b then the ratio increases with time. 
2) If A.b > A.a , then (1.23) becomes almost constant > 1 at large t. This is known as 

transient equilibrium. 
3) If A.b ~ A.a , then the ratio rapidly levels off to =:: 1 and reaches a state of secular 

equilibrium. 

These three cases are illustrated in Fig. 1.8. In secular equilibrium, note that the 
number of daughter nuclei B stays constant relative to A. This means that the rate of 
disintegration of B is the same as its rate of creation. An example is the p-decay of 9OSr: 

where the end-point energies for the two p's are 0.546 MeV and 2.27 MeV respectively. 
Since the number of 90y nuclei is kept constant by regeneration from 9OSr, we essential­
ly have a 90y source with a half-life of 28 yrs rather than 65 hours! 
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1.11.3 Radioisotope Production by Irradiation 

A useful application of our example above is in the production of radioactive isotopes 
by irradiation of a stable element. In such a case, we have the nuclear reaction 

A(x,y)B~C, 

where the isotope B is produced and decays to C with some constant Ab' If a(A ~ B) is 
the reaction cross section, F, the flux of irradiating particles x and N a , the number of 
nuclei A, then the radioactive decay equations result in 

(1.24) 

which is in strict analogy to our example above. The maximum yield of isotope B, 
therefore, is obtained at a time tmax given by (1.21). 

Example 1.3 Ordinary copper consists of ==69070 63CU and 31 % 65CU. When irradi­
ated by slow neutrons from a reactor, for example, radioactive 64Cu and 66CU are 
formed. The half-lives of these two isotopes are 12.7 hand 5.1 min respectively. What 
is the activity of each of these isotopes if 1 g of ordinary copper is irradiated in a 
thermal neutron flux of 109 neutrons/cm2-s for 15 min? 

From the isotope tables, we find the thermal capture cross sections 

a( 63Cu + n ~ 64CU) = 4.4 barns 

a(65Cu + n ~ 66Cu) = 2.2 barns. 

The rate at which 64CU and 66CU are formed is then 

and the rate at which they decay is 

{~= 0.054h-l 
1 12.7 

Ab=~= In2 -0136 . -1 
---. mm 

5.1 

The activity of each isotope after a time t is then AbNb(t) where Nb(t) is given by 
(1.20). Since Aa 41 Ab and Aat 411, we can approximate (1.20) to obtain 

AbNb(t) == Na(O) Aa[1- exp( - Abt)] . 

Since Na(O) = (6.02 X 1023/ A) x (abundance) x (1 g), we have 
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Ab N b(15 min) = [3.86 X 105 Bq = 10.43 J..lCi for 64CU 
5.62 x 106 Bq = 152 J..lCi for 66CU 

It is interesting also to calculate the optimum time (max' From (1.21) then 

_ {16.8 days for 64CU 
(max - 66 

3.4 h for Cu. 

The corresponding activities at this time are then 28.79 MBq (778 J..lCi) and 6.48 MBq 
(175 J..lCi) respectively. 



2. Passage of Radiation Through Matter 

This chapter concerns the basic reactions which occur when radiation encounters mat­
ter and the effects produced by these processes. For the experimental nuclear or particle 
physicist, knowledge of these interactions is of paramount importance. Indeed, as will 
be seen in the following chapters, these processes are the basis of all current particle 
detection devices and thus determine the sensitivity and efficiency of a detector. At the 
same time, these same reactions may also interfere with a measurement by disturbing 
the physical state of the radiation: for example, by causing energy information to be 
lost, or deflecting the particle from its original path, or absorbing the particle before it 
can be observed. A knowledge of these reactions and their magnitudes is thus necessary 
for experimental design and corrections to data. Finally, these are also the processes 
which occur when living matter is exposed to radiation. 

Penetrating radiation, of course, sees matter in terms of its basic constituents, i.e., 
as an aggregate of electrons and nuclei (and their constituents as well!). Depending on 
the type of radiation, its energy and the type of material, reactions with the atoms or 
nuclei as a whole, or with their individual constituents may occur through whatever 
channels are allowed. An alpha particle entering a gold foil, for example, may scatter 
elastically from a nucleus via the Coulomb force, or collide electromagnetically with an 
atomic electron, or be absorbed in a nuclear reaction to produce other types of radia­
tion, among other processes. These occur with a certain probability governed by the 
laws of quantum mechanics and the relative strengths of the basic interactions in­
volved. For charged particles and photons, the most common processes are by far the 
electromagnetic interactions, in particular, inelastic collisions with the atomic elec­
trons. This is not too surprising considering the strength and long range of the 
Coulomb force relative to the other interactions. For the the neutron, however, pro­
cesses involving the strong interaction will preferentially occur, although it is also sub­
ject to electromagnetic (through its magnetic moment!) and weak processes as well. 
The type of processes allowed to each type of radiation explain, among other things, 
their penetrability through matter, their difficulty or ease of detection, their danger to 
biologial organisms, etc. 

The theory behind the principal electromagnetic and neutron processes is well de­
veloped and is covered in many texts on experimental nuclear and particle physics. In this 
chapter, therefore, we will only briefly survey the relevant ideas and concentrate instead 
on those results useful for nuclear and particle physics. As well, we restrict ourselves only 
to the energy range of nuclear and particle physics, i.e., a few keY and higher. 

2.1 Preliminary Notions and Definitions 

To open our discussion of radiation in matter, we first review a few basic notions con­
cerning the interaction of particles. 
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2.1.1 The Cross Section 

The collision or interaction of two particles is generally described in terms of the cross 
section. This quantity essentially gives a measure of the probability for a reaction to oc­
cur and may be calculated if the form of the basic interaction between the particles is 
known. Formally, the cross-section is defined in the following manner. Consider a 
beam of particles 1 incident upon a target particle 2 as shown in Fig. 2.1. Assume that 
the beam is much broader than the target and that the particles in the beam are uni­
formly distributed in space and time. We can then speak of aflux of Fincident particles 
per unit area per unit time. Now look at the number of particles scattered 1 into the 
solid angle dQ per unit time. Because of the randomness of the impact parameters, this 
number will fluctuate over different finite periods of measuring time. However, if we 
average many finite measuring periods, this number will tend towards a fixed dNsl dQ, 
where Ns is the average number scattered per unit time. The differential cross section is 
then defined as the ratio 

da (E, Q) = ~ dNs , 
dQ F dQ 

(2.1) 

that is, dal dQ is the average fraction of the particles scattered into dQ per unit time per 
unit flux F. In terms of a single quantum mechanical particle, this may be reformulated 
as the scattered probability current in the angle dQ divided by the total incident 
probability passing through a unit area in front of the target. 

/ 

/ 

FLUX --
- - I' ---I~ - ) 
~-~-~-----
_- - ~ I TARGET 
~-~ - ---=:-- -,J UNIT AREA Fig. 2.1. Definition of the scattering cross section 

Note that because of the dimensions of F, da has dimensions of area, which leads to 
the heuristic interpretation of da as the geometric cross sectional area of the target in­
tercepting the beam. That fraction of the flux incident on this area will then obviously 
interact while all those missing da will not. This is only a visual aid, however, and 
should in no way be taken as a real measure of the physical dimensions of the target. 

In general, the value of dal dQ will vary with the energy of the reaction and the 
angle at which the particle is scattered. We can calculate a total cross section for any 
scattering whatsoever at an energy E defined as the integral of daldQ over all solid 
angles, 

J da 
a(E) = dQ-. 

dQ 
(2.2) 

1 By scattering here, we mean any reaction in which an outgoing particle is emitted into Q. The incident 
particle need not retain its identity. 
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While the above example is easily visualized, it is not a practical case. In real situa­
tions, of course, the target is usually a slab of material containing many scattering cen­
ters and it is desired to know how many interactions occur on the average. Assuming 
that the target centers are uniformly distributed and the slab is not too thick so that the 
likelihood of one center sitting in front of another is low, the number of centers per 
unit perpendicular area which will be seen by the beam is then N Jx where N is the 
density of centers and Jx is the thickness of the material along the direction of the 
beam. If the beam is broader than the target and A is the total perpendicular area of the 
target, the number of incident particles which are eligible for an interaction is then FA. 
The average number scattered into dQ per unit time is then 

da 
Ns(Q) =FANJx-. 

dQ 

The total number scattered into all angles is similarly 

N tot = FAN Jxa. 

(2.3) 

(2.4) 

If the beam is smaller than the target, then we need only set A equal to the area covered 
by the beam. Then F A ~ nino the total number of incident particles per unit time. In 
both cases, now, if we divide (2.4) by FA, we have the probability for the scattering of 
a single particle in a thickness Jx, 

Prob. of interaction in Jx = N a Jx . (2.5) 

This is an important quantity and we will come back to this probability later. 

2.1.2 Interaction Probability in a Distance x. Mean Free Path 

In the previous section, we discussed the probability for the interaction of a particle 
traveling through a thin slab of matter containing many interaction centers. Let us con­
sider the more general case of any thickness x. To do this, we ask the opposite question: 
what is the probability for a particle not to suffer an interaction in a distance x? This is 
known as the survival probability and may be calculated in the following way. Let 

P(x): probability of not having an interaction after a distance x, 
w dx: probability of having an interaction between x and x + dx. 

The probability of not having an interaction between x and x + dx is then 

P(x+ dx) = P(x)(1- w dx) , 

dP 
P(x)+-dx=P-Pwdx, 

dx 

dP= -wPdx, 

P= Cexp(-wx) , 

(2.6) 

where C is a constant. Requiring that P(O) = 1, we find C = 1. The probability of the 
particle surviving a distance x is thus exponential in distance. From this, of course, 
we see immediately that the probability of suffering an interaction anywhere in the 
distance x is just 
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Pint(x) = 1- exp( - wx) , (2.7) 

while the probability of the particle suffering a collision between x and x+ dx after 
surviving the distance x is 

F(x)dx = exp( - wx) w dx. (2.8) 

Now let us calculate the mean distance, A, traveled by the particle without suffering 
a collision. This is known as the mean free path. Thus, 

A = J xP(x) dx = _1 . 

J P(x)dx w 
(2.9) 

Intuitively, A must be related to the density of interaction centers and the cross-section, 
for as we have seen, this governs the probability of interaction. To find this relation, let 
us return to our slab of material. For a small thickness t5x, the interaction probability 
(2.7) can then be approximated as 

Pint = 1 - (1 _ t5x + ... ) ~ t5x , 
A . A 

(2.10) 

where we have expanded the exponential and kept only the first order term. Comparing 
with (2.5), we find, 

A=1INa, (2.11) 

so that our survival probability becomes 

P(x) = exp (.~x) = exp( -Nax) , (2.12) 

and the interaction probabilities 

Pint(x) = l-exp ( ~x) = l-exp( -Nax) , (2.13) 

F(X)dx=exp ( ~x) ~ =exp(-Nax)Nadx. (2.14) 

2.1.3 Surface Density Units 

A unit very often used for expressing thicknesses of absorbers is the surface density or 
mass thickness. This is given by the mass density of the material times its thickness in 
normal units of length, i.e., 

mass thickness ~ p . t (2.15) 

with p: mass density, t: thickness, which, of course, yields dimensions of mass per area, 
e.g. g/cm2 • 

For discussing the interaction of radiation in matter, mass thickness units are more 
convenient than normal length units because they are more closely related to the density 
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of interaction centers. They thus have the effect of normalizing materials of differing 
mass densities. As will be seen later, equal mass thicknesses of different materials will 
have roughly the same effect on the same radiation. 

2.2 Energy Loss of Heavy Charged Particles by Atomic Collisions 

In general, two principal features characterize the passage of charged particles through 
matter: (1) a loss of energy by the particle and (2) a deflection of the particle from its 
incident direction. These effects are primarily the result of two processes: 

1) inelastic collisions with the atomic electrons of the material 
2) elastic scattering from nuclei. 

These reactions occur many times per unit path length in matter and it is their cumula­
tive result which accounts for the two principal effects observed. These, however, are 
by no means the only reactions which can occur. Other processes include 

3) emission of Cherenkov radiation 
4) nuclear reactions 
5) bremsstrahlung. 

In comparison to the atomic collision processes, they are extremely rare, however, and 
with the exception of Cherenkov radiation, will be ignored in this treatment. 

For reasons which will become clearer in the following sections, it is necessary to 
separate charged particles into two classes: (1) electrons and positrons,and (2) heavy 
particles, i.e., particles heavier than the electron. This latter group includes the muons, 
pions, protons, a-particles and other light nuclei. Particles heavier than this, i.e., the 
heavy ions, although technically part of this latter group, are excluded in this discus­
sion because of additional effects which arise. 

Of the two electromagnetic processes, the inelastic collisions are almost solely 
responsible for the energy loss of heavy particles in matter. In these collisions 
(a::::: 10- 17 _10- 16 cm2 !), energy is transferred from the particle to the atom causing an 
ionization or excitation of the latter. The amount transferred in each collision is 
generally a very small fraction of the particle's total kinetic energy; however, in 
normally dense matter, the number of collisions per unit path length is so large, that a 
substantial cumulative energy loss is observed even in relatively thin layers of material. 
A 10 MeV proton, for example, already loses all of its energy in only 0.25 mm of 
copper! These atomic collisions are customarily divided into two groups: soft collisions 
in which only an excitation results, and hard collisions in which the energy transferred 
is sufficient to cause ionization. In some of the hard reactions, enough energy is, in 
fact, transferred such that the electron itself causes substantial secondary ionization. 
These high-energy recoil electrons are sometimes referred to as J-rays or knock-on 
electrons. 

Elastic scattering from nuclei also occurs frequently although not as often as elec­
tron collisions. In general very little energy is transferred in these collisions since the 
masses of the nuclei of most materials are usually large compared to the incident 
particle. In cases where this is not true, for example, an a-particle in hydrogen, some 
energy is also lost through this mechanism. Nevertheless, the major part of the energy 
loss is still due to atomic electron collisions. 
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The inelastic collisions are, of course, statistical in nature, occurring with a certain 
quantum mechanical probability. However, because their number per macroscopic 
pathlength is generally large, the fluctuations in the total energy loss are small and one 
can meaningfully work with the average energy loss per unit path length. This quantity, 
often called the stopping power or simply dEldx, was first calculated by Bohr using 
classical arguments and later by Bethe, Bloch and others using quantum mechanics. 
Bohr's calculation is, nevertheless, very instructive and we will briefly present a simpli­
fied version due to Jackson [2.1] here. 

2.2.1 Bohr's Calculation - The Classical Case 

Consider a heavy particle with a charge ze, mass M and velocity v passing through 
some material medium and suppose that there is an atomic electron at some distance b 
from the particle trajectory (see Fig. 2.2). We assume that the electron is free and 
initially at rest, and furthermore, that it only moves very slightly during the interaction 
with the heavy particle so that the electric field acting on the electron may be taken at 
its initial position. Moreover, after the collision, we assume the incident particle to be 
essentially undeviated from its original path because of its much larger mass (M~ me)' 
This is one reason for separating electrons from heavy particles! 

e 

I ~ ~I 
," -----Z----- ill -i'b 
I .. x 
\ M.ze \! Fig. 2.2. Collision of a heavy charged particle with an atomic 
1,- ___________ ~/ electron 

Let us now try to calculate the energy gained by the electron by finding the 
momentum impulse it receives from colliding with the heavy particle. Thus 

(2,.16) 

where only the component of the electric field E1. perpendicular to the particle trajec­
tory enters because of symmetry. To calculate the integral JE1. dx, we use Gauss' Law 
over an infinitely long cylinder centered on the particle trajectory and passing through 
the position of the electron. Then 

so that 

2ze 2 
1=--

bv 

and the energy gained by the electron is 

/2 2z2e4 
L1E(b) =--= 

2 me m ev 2 b 2 

(2.17) 

(2.18) 

(2.19) 
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If we let Ne be the density of electrons, then the energy lost to all the electrons 
located at a distance between band b + db in a thickness dx is 

(2.20) 

where the volume element dV = 2nb db dx. Continuing in a straight forward manner, 
one would at this point be tempted to integrate (2.20) from b = 0 to 00 to get the total 
energy loss; however, this is contrary to our original assumptions. For example, 
collisions at very large b would not take place over a short period of time, so that our 
impulse calculation would not be valid. As well, for b = 0, we see that (2.19) gives an 
infinite energy transfer, so that (2.19) is not valid at small b either. Our integration, 
therefore, must be made over some limits bmin and bmax between which (2.19) holds. 
Thus, 

dE 

dx 

2 4 b 4nz e N 1 max 
---"'2- e n--

mev bmin 

(2.21) 

To estimate values for bmin and bmax , we must make some physical arguments. 
Classically, the maximum energy transferable is in a head-on collision where the 
electron obtains an energy of -!-m e(2 V)2. If we take relativity into account, this becomes 
2 y2mev2, where y = (1- p2)-1I2 and p = vic. Using (2.19) then, we find 

(2.22) 

For bmax , we must recall now that the electrons are not free but bound to atoms with 
some orbital frequency v. In order for the electron to absorb energy, then, the pertur­
bation caused by the passing particle must take place in a time short compared to the 
period T = 1/ v of the bound electron, otherwise, the perturbation is adiabatic and no 
energy is transferred. This is the principle of adiabatic invariance. For our collisions the 
typical interaction time is t = blv, which relativistically becomes t ~ fly = bl(yv), so 
that 

b 1 
-~T=-. 
yv V 

(2.23) 

Since there are several bound electron states with different frequencies v, we have used 
here a mean frequency, v, averaged over all bound states. An upper limit for b, then, is 

yv 
bmax =-. 

V 

Substituting into (2.21), we find 

(2.24) 

(2.25) 

This is essentially Bohr's classical formula. It gives a reasonable description of the 
energy loss for very heavy particles such as the a-particle or heavier nuclei. However, 
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for lighter particles, e.g. the proton, the formula breaks down because of quantum 
effects. It nevertheless contains all the essential features of electronic collision loss by 
charged particles. 

2.2.2 The Bethe-Bloch Formula 

The correct quantum-mechanical calculation was first performed by Bethe, Bloch and 
other authors. In the calculation the energy transfer is parametrized in terms of 
momentum transfer rather than the impact parameter. This, of course, is more realistic 
since the momentum transfer is a measurable quantity whereas the impact parameter is 
not. The formula obtained is then 

(2.26) 

Equation (2.26) is commonly known as the Bethe-Bloch formula and is the basic ex­
pression used for energy loss calculations. In practice, however, two corrections are 
normally added: the density effect correction ~, and the shell correction C, so that 

- dE = 2nN r2 m c2 p ~£ [In (2m e y2 v2 Wmax ) _2132_ ~-2 EJ ' (2.27) 
dx a e e A 132 12 Z 

with 

r e: classical electron 
radius = 2.817 x 10 -13 cm 

me: electron mass 
Na: Avogadro's 

number = 6.022 x 1023 mol- 1 

1: mean excitation potential 
Z: atomic number of absorbing 

material 
A: atomic weight of absorbing material 

p: 
z: 

[3= 
y = 
~: 

C: 

density of absorbing material 
charge of incident particle in 
units of e 
vic of the incident particle 
lIV1 - 13 2 

density correction 
shell correction 

W max: maximum energy transfer in a 
single collision. 

The maximum energy transfer is that produced by a head-on or knock-on collision. For 
an incident particle of mass M, kinematics gives 

2mec2172 
(2.28) 

where s = melM and 17 = [3y. Moreover, if M~ me, then 

The Mean Excitation Potential. The mean excitation potential, 1, is the main parameter 
of the Bethe-Bloch formula and is essentially the average orbital frequency v from 
Bohr's formula times Planck's constant, h v. It is theoretically a logarithmic average of 
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v weighted by the so-called oscillator strengths of the atomic levels. In practice, this is a 
very difficult quantity to calculate since the oscillator strengths are unknown for most 
materials. Instead, values of I for several materials have been deduced from actual 
measurements of dE/dx and a semi-empirical formula for I vs Z fitted to the points. 
One such formula is 

I 7 
-= 12+-eV 
Z Z 

Z<13 

~= 9.76+58.8Z-1.1g eV Z;:::13. 
Z 

(2.29) 

It has been shown, however, that I actually varies with Z in a more complicated manner 
[2.2]. In particular, there are local irregularities or wiggles due to the closing of certain 
atomic shells. Improved values of I are given in Table 2.1 for several materials. A more 
extensive list may be found in the articles by Sternheimer et al. [2.2 - 3]. 

The Shell and Density Corrections. The quantities J and C are corrections to the Bethe­
Bloch formula which are important at high and low energies respectively. 

The density effect arises from the fact that the electric field of the particle also tends 
to polarize the atoms along its path. Because of this polarization, electrons far from the 
path of the particle will be shielded from the full electric field intensity. Collisions with 
these outer lying electrons will therefore contribute less to the total energy loss than 
predicted by the Bethe-Bloch formula. This effect becomes more important as the 
particle energy increases, as can be seen from the expression for bmax in (2.24). Clearly 
as the velocity increases, the radius of the cylinder over which our integration is per­
formed also increases, so that distant collisions contribute more and more to the total 
energy loss. Moreover, it is clear that this effect depends on the density of the material 
(hence the term "density" effect), since the induced polarization will be greater in con­
densed materials than in lighter substances such as gases. A comparison of the Bethe­
Bloch formula with and without corrections is shown in Fig. 2.3. 
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Fig. 2.3. Comparison of the Bethe-Bloch formu­
la with and without the shell and density correc­
tions. The calculation shown here is for copper 
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Values for c5 are given by a formula due to Sternheimer: 

{
o X<Xo 

c5= 4.6052X+Co+a(XI -X)m XO<X<XI 

4.6052X + Co x> Xl , 

(2.30) 

where X = 10glO (f3y). 
The quantities X o, Xl' Co, a and m depend on the absorbing material. The param­

eter Co is defined as 

Co= -(2In~+1) , (2.31) 
hvp 

where h vp is the so-called plasma frequency of the material, i.e., 

~e2 
vp = _e - = V80.617 X 106 cm3 Ne Hz , 

nme 
(2.32) 

where Ne (density of electrons) = Na pZ/ A. The remaining constants are determined by 
fitting (2.30) to experimental data. Values for several materials are presented in Table 
2.1. A more complete listing may be found in Sternheimer et al. [2.3]. 

The shell correction accounts for effects which arise when the velocity of the in­
cident particle is comparable or smaller than the orbital velocity of the bound electrons. 
At such energies, the assumption that the electron is stationary with ;espect to the 
incident particle is no longer valid and the Bethe-Bloch formula breaks down. The 
correction is generally small as can be seen in Fig. 2.3. We give here an empirical for­
mula [2.4] for this correction, valid for I] ~ 0.1: 

C([, 1]) = (0.422377 I] ~2 + 0.0304043 1]~4 - 0.000381061] ~6) X 10~6 [2 

+ (3.850190 I] ~2 - 0.16679891] ~4 + 0.00157955 1J ~6) X 10~9 [3, (2.33) 

where I] = fJ y and [ is the mean excitation potential in e V. 

Table 2.1. Constants for the density effect correction 

Material I reV] -Co a m Xl Xo 

Graphite 
density = 2 78 2.99 0.2024 3.00 2.486 -0.0351 
Mg 156 4.53 0.0816 3.62 3.07 0.1499 
Cu 322 4.42 0.1434 2.90 3.28 -0.0254 
Al 166 4.24 0.0802 3.63 3.01 0.1708 
Fe 286 4.29 0.1468 2.96 3.15 -0.0012 
Au 790 5.57 0.0976 3.11 3.70 0.2021 
Pb 823 6.20 0.0936 3.16 3.81 0.3776 
Si 173 4.44 0.1492 3.25 2.87 0.2014 
NaI 452 6.06 0.1252 3.04 3.59 0.1203 
N2 82 10.5 0.1534 3.21 4.13 1.738 
O2 95 10.7 0.1178 3.29 4.32 1.754 
H2O 75 3.50 0.0911 3.48 2.80 0.2400 
lucite 74 3.30 0.1143 3.38 2.67 0.1824 
Air 85.7 10.6 0.1091 3.40 4.28 1.742 
BGO 534 5.74 0.0957 3.08 3.78 0.0456 
Plastic 
Scint. 64.7 3.20 0.1610 3.24 2.49 0.1464 
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Other Corrections. In addition to the shell and density effects, the validity and ac­
curacy of the Bethe-Bloch formula may be extended by including a number of other 
corrections pertaining to radiation effects at ultrarelativistic velocities, kinematic ef­
fects due to the assumption of an infinite mass for the projectile, higher-order QED 
processes, higher-order terms in the scattering cross-section, corrections for the in­
ternal structure of the particle, spin effects and electron capture at very slow velocities. 
With the exception of electron-capture effects with heavy ions, these are usually 
negligible to within =:: 1 070. An outline of these additional factors may be found in the 
articles by Ahlen [2.5 - 6]. For "elementary" particles, the Bethe-Bloch formula with 
the shell and density corrections is more than sufficient however. 

2.2.3 Energy Dependence 

An example of the energy dependence of dE/dx is shown in Fig. 2.4 which plots the 
Bethe-Bloch formula as a function of kinetic energy for several different particles. At 
non-relativistic energies, dE/dx is dominated by the overall 11/32 factor and decreases 
with increasing velocity until about v =::O.96c, where a minimum is reached. Particles at 
this point are known as minimum ionizing. Note that the minimum value of dE/dx is 
almost the same for all particles of the same charge. As the energy increases beyond this 
point, the term 11/32 becomes almost constant and dE/dx rises again due to the 
logarithmic dependence of (2.27). This relativistic rise is cancelled, however, by the 
density correction as seen in Fig. 2.3. 

For energies below the minimum ionizing value, each particle exhibits a dE/dx 
curve which, in most cases, is distinct from the other particle types. This characteristic 
is often exploited in particle physics as a means for identifying particles in this energy 
range. 

Not shown in Fig. 2.4, is the very low energy region, where the Bethe-Bloch formula 
breaks down. At low velocities comparable to the velocity of the orbital electrons of the 
material, dE/dx, in fact, reaches a maximum and then drops sharply again. Here, a 
number of complicated effects come into play. The most important of these is the 
tendency of the particle to pick up electrons for part of the time. This lowers the effec­
tive charge of the particle and thus its stopping power. Calculating this effective charge 
can be a difficult problem especially for heavy ions. 
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Fig. 2.4. The stopping power dE/dx as 
function of energy for different particles 
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Penetration depth 
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Fig. 2.S. A typical Bragg curve showing the variation of dE/dx as 
a function of the penetration depth of the particle in matter. The 
particle is more ionizing towards the end of its path 

From Fig. 2.4, it is clear that as a heavy particle slows down in matter, its rate of 
energy loss will change as its kinetic energy changes. And indeed, more energy per unit 
length will be deposited towards the end of its path rather than at its beginning. This ef­
fect is seen in Fig. 2.5 which shows the amount of ionization created by a heavy particle 
as a function of its position along it slowing-down path. This is known as a Bragg 
curve, and, as can be seen, most of the energy is deposited near the end of the trajec­
tory. At the very end, however, it begins to pick up electrons and the dEldx drops. This 
behavior is particularly used in medical applications of radiation where it is desired to 
deliver a high dose of radiation to deeply embedded malignant growths with a 
minimum of destruction to the overlaying tissue. 

2.2.4 Scaling Laws for dEldx 

For particles in the same material medium, the Bethe-Bloch formula can be seen to be 
of the form 

(2.34) 

wheref(p) is a function of the particle velocity only. Thus, the energy loss in any given 
material is dependent only on the charge and velocity of the particle. Since the kinetic 
energy T = (y -1)Mc 2, the velocity is a function of TIM, so that P = g(TIM). We can 
therefore transform (2.34) to 

_ dE = Z 2 l' (~) . 
dx M 

(2.35) 

This immediately suggests a scaling law: if we know the dEl dx for a particle of mass 
M j and charge Zj , then the energy loss of a particle of mass M 2 , charge Z2 and energy T2 
in the same material may be found from the values of particle 1 by scaling the energy of 
particle 2 to T= T2(Mj IM1) and multiplying by the charge ratio (zl lzj)2, i.e., 

_ dE2 (T2) = _ Z~ dEj (T2 Mj) . 
dx Zj dx M2 

(2.36) 

2.2.5 Mass Stopping Power 

When dEl dx is expressed in units of mass thickness, it is found to vary little over a wide 
range of materials. Indeed, if we make the dependence on material type more evident in 
the Bethe-Bloch formula, we find 



2.2 Energy Loss of Heavy Charged Particles by Atomic Collisions 29 

(2.37) 

where de = pdx. For not too different Z, the ratio (Z/ A), in fact, varies little. This is 
also true of the dependence on I(Z) since it appears in a logarithm. dE/de, therefore, is 
almost independent of material type. A 10 MeV proton, for example, will lose about 
the same amount of energy in 1 g/cm2 of copper as it will in 1 g/cm2 of aluminium or 
iron, etc. As will also be seen, these units are also more convenient when dE/dx's are 
combined for mixed materials. 

2.2.6 dE/tix for Mixtures and Compounds 

The dE/dx formula which we have given so far applies to pure elements. What about 
dE/dx for compounds and mixtures? Here, if accurate values are desired, one must 
usually resort to direct measurements; however, a good approximate value can be 
found in most cases by averaging dE/dx over each element in the compound weighted 
by the fraction of electrons belonging to each element (Bragg's Rule). Thus 

~ dE =~(dE) +~(dE) + ... , 
p dx Pi dx i P2 dx 2 

(2.38) 

where Wi, W2, etc. are the fractions by weight of elements 1, 2, ... in the compound. 
More explicitly, if ai is the number of atoms of the ith element in the molecule M, then 

(2.39) 

where Ai is the atomic weight of ith element, Am = r aiAi' 
By expanding (2.38) explicitly and regrouping terms, we can define effective values 

for Z, A, I, etc. which may be used directly in (2.27), 

Zeff = r a; Z;, 

Aeff = r ai A ;, 

I I _ ~ a; Z; InI; 
neff-i... , 

Zeff 

s _ ~ aiZitJi 
Ueff - i... , 

Zeff 

C eff = r a;Ci • 

(2.40) 

(2.41) 

(2.42) 

(2.43) 

(2.44) 

Note here the convenience of working with the mass stopping power, 1/ p(dE/dx) , 
rather than the linear stopping power dE/dx. 

2.2.7 Limitations of the Bethe-Bloch Formula and Other Effects 

The Bethe-Bloch formula as given in (2.27) with the shell and density effect corrections 
is the usual expression employed in most dE/dx calculations. For elementary particles 
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Fig. 2.6. Schematic diagram of 
channeling in crystalline ma­
terials. The particle suffers a 
series of correlated scatterings 
which guides it down an open 
channel of the lattice 
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and nuclei up to the a-particle, this formula generally gives results accurate to within a 
few percent for velocities ranging from the relativistic region down to P == 0.1. This ac­
curacy may be increased and extended to higher-Z nuclei up to Z == 26 by including the 
charge-dependent corrections mentioned earlier [2.5 - 6]. 

For p:5 0.05, many of the assumptions inherent in the Bethe-Bloch formula are no 
longer valid even with the corrections. Between 0.01 < p < 0.05, in fact, there is still no 
satisfactory theory for protons. For heavier nuclei, this is even more the case because of 
electron capture effects. Some empirical formulae for this energy range may be found 
in [2.7]. Below p == 0.01, however, a successful explanation of energy loss is given by 
the theory of Lindhard [2.8]. 

2.2.8 Channeling 

An important exception to the applicability of the Bethe-Bloch formula is in the case of 
channeling in materials having a spatially symmetric atomic structure, i.e., crystals. 
This is an effect which occurs only when the particle is incident at angles less than some 
critical angle with respect to a symmetry axis of the crystal. As it passes through the 
crystal planes, the particle, in fact, suffers a series of correlated small-angle scatterings 
which guide it down an open crystal channel. Figure 2.6 illustrates this schematically. 
As can be seen, the correlated scatterings cause the particle to follow a slowly oscillat­
ing trajectory which keeps it within the open channel over relatively long distances. The 
wavelength of the trajectory is generally many lattice lengths long. The net effect of 
this, of course, is that the particle encounters less electrons than it normally would in an 
amorphous material (which is assumed by the Bethe-Bloch calculation). When the 
particle undergoes channeling, therefore, its rate of energy loss is greatly reduced. 
When working with crystalline materials, it is important therefore to be aware of the 
crystal orientation with respect to the incident particles so as to avoid (or achieve, if 
that is the case) channeling effects. 

In general, the critical angle necessary for channeling is small ( == 1 0 for p == 0.1) and 
decreases with energy. It can be estimated by the formula [2.5] 

lPc "'" V zZaoAd , 
1670PVY 

(2.45) 

where ao is the Bohr radius, and d the interatomic spacing. For lP > lPc, channeling does 
not occur and the material may be treated as amorphous. A more detailed discussion of 
channeling and the stopping power under such conditions can be found in the review by 
Gemmell [2.8]. 

2.2.9 Range 

Knowing that charged particles lose their energy in matter, a natural question to ask is: 
How far will the particles penetrate before they lose all of their energy? Moreover, if we 
assume that the energy loss is continuous, this distance must be a well defined number, 
the same for all identical particles with the same initial energy in the same type of 
material. This quantity is called the range of the particle, and depends on the type of 
material, the particle type and its energy. 

Experimentally, the range can be determined by passing a beam of particles at the 
desired energy through different thicknesses of the material in question and measuring 
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the ratio of transmitted to incident particles. A typical curve of this ratio versus ab­
sorber thickness, known as a range number-distance curve, is shown in Fig. 2.7. As can 
be seen, for small thicknesses, all (or practically all) the particles manage to pass 
through. As the range is approached this ratio drops. The surprising thing, however, is 
that the ratio does not drop immediately to the background level, as expected of a well 
defined quantity. Instead the curve slopes down over a certain spread of thicknesses. 
This result is due to the fact that the energy loss is not in fact continuous, but statistical 
in nature. Indeed, two identical particles with the same initial energy will not in general 
suffer the same number of collisions and hence the same energy loss. A measurement 
with an ensemble of identical particles, therefore, will show a statistical distribution of 
ranges centered about some mean value. This phenomenon is known as range 
straggling. In a first approximation, this distribution is Gaussian in form. The mean 
value of the distribution is known as the mean range and corresponds to the midpoint 
on the descending slope of Fig. 2.7. This is the thickness at which roughly half the 
particles are absorbed. More commonly, however, what is desired is the thickness at 
which all the particles are absorbed, in which case the point at which the curve drops to 
the background level should be taken. This point is usually found by taking the tangent 
to the curve at the midpoint and extrapolating to the zero-level. This value is known as 
the extrapolated or practical range (see Fig. 2.7). 

From a theoretical point of view, we might be tempted to calculate the mean range 
of a particle of a given energy, To, by integrating the dE/dx formula, 

To ( )-1 
SeTa) = 1 ~~ dE. (2.46) 

This yields the approximate pathlength travelled. Equation (2.46) ignores the effect of 
multiple Coulomb scattering, however, which causes the particle to follow a zigzag 
path through the absorber (see Fig. 2.14). Thus, the range, defined as the straight-line 
thickness, will generally be smaller than the total zigzag pathlength. 

As it turns out, however, the effect of mUltiple scattering is generally small for 
heavy charged particles, so that the total path length is, in fact, a relatively good ap­
proximation to the straight-line range. In practice, a semi-empirical formula must be 
used, 
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Fig. 2.8. Calculated range curves of different heavy 
particles in aluminium 

(2.47) 

where T min is the minimum energy at which the dE/dx formula is valid, and Ro(T min) is 
an empirically determined constant which accounts for the remaining low energy 
behavior of the energy loss. Results accurate to within a few percent can be obtained in 
this manner. 2 Figure 2.8 shows some typical range-energy curves for different particles 
calculated by a numerical integration of the Bethe-Bloch formula. From its almost 
linear form on the log-log scale, one might expect a relation of the type 

(2.48) 

This can also be seen from the stopping power formula, which at not too high energies, 
is dominated by the p-2 term, 

-dE/dx ex P-2 ex T- 1 , 

where T is the kinetic energy. Integrating, we thus find 

Rex T2, 

(2.49) 

(2.50) 

2 We might emphasize here that the range as calculated by (2.47) only takes into account energy losses due to 
atomic collisions and is valid only as long as atomic collisions remain the principal means of energy loss. At 
very high energies, where the range becomes larger than the mean free path for a nuclear interaction or for 
bremsstrahlung emission, this is no longer true and one must take into account these latter interactions as 
well. 
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which is consistent with our rough guess. A more accurate fit in this energy range, in 
fact, gives 

Roc T1.75 , (2.51) 

which is not too far from our simple calculation. This is only one of many theoretical 
and semi-empirical formulas which cover many energy ranges and materials. A discus­
sion of some of these relations is given in the article by Bethe and Ashkin [2.10]. 

Range-energy relations of this type are extremely useful as they provide an accurate 
means of measuring the energy of the particles. This was one of the earliest uses of 
range measurements. As we will see later, they are also necessary for deciding the sizes 
of detectors to be used in an experiment or in determining the thickness of radiation 
shielding, among other things. 

Because of the scaling of dEldx, a scaling law for ranges may also be derived. Using 
(2.36), it is easy then to see 

M2 ZT ( Ml) R 2(T2) = --2 Rl T2-
Ml Z2 M2 

(2.52) 

for different particles in the same medium. 
For the same particle in different materials, a rough relation known as the Bragg­

Kleeman rule also exists 

Rl _ P2 ~ 
~-p; VAz' (2.53) 

where P and A are the densities and atomic numbers of the materials. For compounds, 
a rough approximation for the range can also be found from the formula 

R = Acomp 
comp A' 
L~ 

Ri 

(2.54) 

where Acomp is the molecular weight of the compound, Ai and R; are the atomic weight 
and range of the ith constituent element, respectively, and ai is the number of atoms of 
the jth element in the compound molecule. 

Example 2.1 In an experiment involving cosmic ray muons, a 2 em thick plastic scin­
tillation counter is used to detect the passage of these particles. What is the mean 
energy deposited in the counter? 

Cosmic ray muons are generally high energy particles, so that we can assume that 
all are minimum ionizing. If we use our rule of thumb, muons become minimum ioniz­
ing at about Vmin.ion. Z 0.96c which corresponds to an energy of about 300 MeV. This 
can be confirmed by calculating the dEl dx for various energies in this energy region. 
For plastic scintillator, the minimum ionizing value of dEldx is Z 1.9 MeV Ig-cm2• 

Since the dEl dx is almost constant here, we can calculate the energy loss as 

XdE dE 
LIE = J-dX z -x = 1.9 x 1.03 x2 = 3.9 MeV 

o dx dx 
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where we have assumed that the density of plastic scintillator is about 1.03 g/cm 3 (see 
Table 7.1 for example). 

Thus one should expect to see a peak in the signal pulse height spectrum coming 
from the counter, since muons of energy greater than about 300 MeV will deposit about 
the same amount of energy in the counter. This implies also that cosmic ray muons 
might also be used for calibration purposes. 

Example 2.2 A beam of 600 MeV protons can be "lowered" in energy by passing it 
through a block of material such as copper and then "cleaned" using a series of analyz­
ing magnets. What thickness of copper would be required to lower the average energy 
of this beam to 400 MeV? 

To find the thickness for a given energy change, we must invert dEldx and integrate 
over energy. Thus, 

( )

-1 
500 dE 

L1x= - J - dE . 
600 dx 

In general, this must be integrated numerically. If we use a simple rectangular integra­
tion with energy intervals of 20 MeV and dEl dx evaluated in the middle of each inter­
val, we find a thickness of 

Range (MeV) 

600 - 580 
580- 560 
560- 540 
540- 520 
520- 500 
500-480 
480-460 
460-440 
440-420 
420-400 

1 dE 

p dx 

1.768 
1.791 
1.815 
1.841 
1.870 
1.901 
1.934 
1.971 
2.012 
2.056 

( )

-1 
1 dE 

L1x = L1E -­
p dx 

11.31 
11.17 
11.02 
10.86 
10.69 
10.52 
10.34 
10.15 
9.94 
9.73 

L1Xtotal = 105.73 g/cm 2 = 11.88 cm 

Had we made an even simpler one step calculation taking the dEldx at 500 MeV and 
solving for L1x, we would have found L1x = 106.1 g/cm 2 = 11.92 cm, which, in fact, is 
not very different! 

Note that we are dealing with mean energy losses here. The energy of the protons 
leaving the other side of the copper degrader will, in fact, be distributed in energy as 
a Gaussian with 400 MeV as the mean (see Sect. 2.6). To produce a monoenergetic beam 
of 400 MeV protons now would require selecting out the 400 MeV protons in the peak 
of the distribution. This can be done using a magnetic field to "bend" the outgoing par­
ticles and keeping only those deflected at the correct angle. 
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2.3 Cherenkov Radiation 

Cherenkov radiation arises when a charged particle in a material medium moves faster 
than the speed of light in that same medium. This speed is given by 

[Jc = v = c/n (2.55) 

where n is the index of refraction and c is the speed of light in a vacuum. A particle 
emitting Cherenkov radiation must therefore have a velocity 

Vparticle> c/ n . (2.56) 

In such cases, an electromagnetic shock wave is created, just as a faster-than-sound air­
craft creates a sonic shock wave. This is illustrated in Fig. 2.9. The coherent wavefront 
formed is conical in shape and is emitted at a well-defined angle 

1 
cosec =--­

[In(w) 
(2.57) 

with respect to the trajectory of the particle. Note that this angle is dependent on the 
speed of the particle and the frequency of the emitted radiation. 

The simple description above, however, is valid for a particle traveling in an infinite 
radiating medium. A more realistic situation, of course, is when the particle traverses 
a finite thickness of material. To calculate the frequency and angular distribution of 
Cherenkov radiation in this case is somewhat more difficult, but only requires classical 
electrodynamics (see, for example, [2.1], Chap. 14). For a particle of charge ze moving 
uniformly in a straight line through a slab of material with thickness L, the energy 
radiated per unit frequency interval per solid angle is found to be 

d 2E 2 an [J2 . 2el wL sin¢(e)1 2 
--- = z - n sm ----"-:"""":'" 
dwdQ c 2n[Jc ¢(e) 

(2.58) 

where a, is the fine structure constant, n, the refractive index of the medium and 

wL 
¢(e)=-(1-[Jncose) . 

2[Jc 
(2.59) 

The term (sin ¢/02 may be recognized here as that describing Fraunhofer diffrac­
tion. 3 Cherenkov radiation is thus emitted in a pattern similar to diffraction, that is 
with a large peak centered at cos e = (fJ n) - 1 followed by smaller maxima. 4 

For L large compared to the wavelength of the emitted radiation, the sin ¢/ ¢ term, 
in fact, approaches the delta function J (1 - [J n cos e) which requires that the radiation 

3 For simplicity, we have limited ourselves to a calculation in two dimensions. In three dimensions, a Bessel 
function appears in the place of the sine term. 
4 If the radiation is being observed outside of the medium, one should not forget the effect of refraction. 
Radiation emitted at angle e in the medium will be observed at an angle ¢ outside the medium where 
sin ¢ = n sin e. We have assumed that the "outside" here is a vacuum and that the boundary between the 
two media is a plane perpendicular to the line of motion. Obviously, for n '" 1, there is not much difference. 

Fig. 2.9. Cherenkov radiation: an 
electromagnetic shock wave is 
formed when the particle travels 
faster than the speed of light in 
the same medium 
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be emitted at the Cherenkov angle as given in (2.57). The threshold condition (2.56) 
then follows since fJ must be greater than 1 In in order for Be to be physically mean­
ingful. We thus recover the simple Cherenkov case outlined above. As L decreases, 
however, the sharp central band begins to widen, so that the radiation is spread out 
over a range of angles symmetrically centered around Be. Note also that, in general, 
n is a function of w so that the angle of emission is different for different frequencies. 
This also contributes to broadening if frequency is not considered. 

To find the energy emitted per unit path length, we integrate over the solid angle 
to obtain 

dE 2 an . 2 - - = z - wL sm Be 
dw c 

(2.60) 

Dividing by L and integrating over frequencies for which the condition fJ> 1In (w) is 
satisfied then yields 

(2.61) 

where we have assumed L large compared to the wavelength of the radiation emitted. 
The energy loss thus increases with fJ. However, even at relativistic energies, this loss 
is small compared to collision loss. Indeed, for condensed materials, the energy 
radiated is only on the order of ::::; 10- 3 MeV cm2 g - 1, which is negligible with respect 
to the collisional loss. For gases such as H2 or He, this is somewhat higher ranging 
from = 0.01- 0.2 MeV cm2 g-l, but is still quite small. We remark also that the 
Cherenkov energy loss comes out naturally when a correct calculation of the dEl dx 
formula is made, so that, in fact, it is already included in the Bethe-Bloch formula 
(2.27). 

The threshold requirement for the emission of Cherenkov radiation and the depen­
dence of the emission angle on particle velocity are properties which are particularly 
exploited by particle physicists in the form of Cherenkov counters. Such devices pro­
vide the most accurate measurement of particle velocities and are widely used in high­
energy physics experiments. General reviews of such counters, their design and con­
struction are given in [2.11]. 

Of interest for the design of these detectors is the number of photons emitted as 
a particle passes through the radiating medium. This can be found by dividing (2.60) 
by n wand L. The number of photons emitted per unit frequency per unit length of 
radiator is then, 

d 2N z 2a. 2 Z2 a ( 1) 
dwdx =~sm Be=~ 1- fJ 2n 2(w) , (2.62) 

or, in terms of the wavelength 

(2.63) 

In most Cherenkov detectors, the Cherenkov radiation is generally detected by 
photomultipliers which convert the photons into an electrical current pulse (see 
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Chap. 8). A typical range of sensitivity for these devices (see Fig. 8.2, for example) is 
between 350 nm and 550 nm. Integrating (2.63) over A and evaluating at these limits 
then yields 

(2.64) 

which is not an enormous amount as one can see. 

2.4 Energy Loss of Electrons and Positrons 

Like heavy charged particles, electrons and positrons also suffer a collisional energy 
loss when passing through matter. However, because of their small mass an additional 
energy loss mechanism comes into play: the emission of electromagnetic radiation aris­
ing from scattering in the electric field of a nucleus (bremsstrahlung). Classically, this 
may be understood as radiation arising from the acceleration of the electron (or 
positron) as it is deviated from its straight-line course by the electrical attraction of the 
nucleus. At energies of a few MeV or less, this process is still a relatively small factor. 
However, as the energy is increased, the probability of bremsstrahlung quickly shoots 
up so that at a few lO's of MeV, loss of energy by radiation is comparable to or greater 
than the collision-ionization loss. At energies above this critical energy, bremsstrahlung 
dominates completely. 

The total energy loss of electrons and positrons, therefore, is composed of two 
parts: 

(2.65) 

2.4.1 Collision Loss 

While the basic mechanism of collision loss outlined for heavy charged particles is also 
valid for electrons and positrons, the Bethe-Bloch formula must be modified somewhat 
for two reasons. One, as we have already mentioned, is their small mass. The assump­
tion that the incident particle remains undeflected during the collision process is there­
fore invalid. The second is that for electrons the collisions are between identical 
particles, so that the calculation must take into account their indistinguishability. These 
considerations change a number of terms in the formula, in particular, the maximum 
allowable energy transfer becomes W max = 'Fe /2 where 'Fe is the kinetic energy of the 
incident electron or positron. If one redoes the calculation, the Bethe-Bloch formula 
then becomes 

dE 2 2 Z 1 [ r2(r+2) c] ---=2nNaremec p- -2 In 22 +F(r)-J-2- , 
dx A f3 2(I1mec) Z 

(2.66) 

where r is the kinetic energy of particle in units of me c2, 
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r2 
-- (2r+ 1) In2 

F( r) = 1 _ {32 + _8 ___ -,-----_ 
(r+ 1)2 

fore-

F(r) = 21n2-- 23+--+ + fore+ {32 ( 14 10 4) 
12 r+2 (r+2)2 (r+2)3 

The remaining quantities are as described previously in (2.27 - 33). 

2.4.2 Energy Loss by Radiation: Bremsstrahlung 

At energies below a few hundred GeV, electrons and positrons are the only particles 
in which radiation contributes substantially to the energy loss of the particle. This can 
easily be seen from the bremsstrahlung cross-sections which we will present in the 
following section. The emission probability, in fact, varies as the inverse square of the 
particle mass, i.e., oocr~ = (e 2Imc 2)2. Radiation loss by muons (m = 106 MeV), the 
next lightest particle, for example, is thus some 40000 times smaller than that for elec­
trons! 

Since bremsstrahlung emission depends on the strength of the electric field felt by 
the electron, the amount of screening from the atomic electrons surrounding the 
nucleus plays an important role. The cross section is thus dependent not only on the in­
cident electron energy but also on its impact parameter and the atomic number, Z, of 
the material. 

The effect of screening can be parametrized by the quantity 

~ = 100 mec2 h v 
Eo EZ 113 

(2.67) 

with Eo: initial total energy of electron (or positron); E: final total energy of electron; 
hv: energy of photon emitted, (Eo-E). This parameter is related to the radius of the 
Thomas-Fermi atom and is small, ~ =::: 0, for complete screening and large, ~ ~ 1, for no 
screening. 

For relativistic energies greater than a few MeV, the bremsstrahlung cross section is 
given [2.12] by the formula 

do = 4 Z2r~a d: {(1 + e2 ) [ ¢l~~) - +In Z - feZ)] 

- ~ e [ ¢2~~) -+In Z - f(Z)]} ' (2.68) 

with e: EIEo, a: 1/137,f(Z): Coulomb correction, ¢l (~), ¢2(~) are screening functions 
depending on ~. This expression is the result of a Born approximation calculation and 
is not valid at low energies. 

For heavy elements (Z ;::: 5), the screening functions ¢l and ¢2 are usually calculated 
using a Thomas-Fermi model of the atom and the values given numerically. A useful 
approximation accurate to =::: 0.50/0 is given [2.13] by the empirical formulae 
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<1>1 (~) = 20.863 - 21n [1 + (0.55846 ~)2]_ 4 [1 - 0.6 exp ( - 0.9~) - 0.4 exp( -1.5 ~)] 
(2.69) 

where 

<1>1 (0) = <1>2(0) + t = 41n 183 as ~ ---+ 0 

<1>1 (00) = <1>2 ( 00) .... d9.19 - 41n ~ as ~ ---+ 00 . 

The functionf(Z) is a small correction to the Born approximation which takes into 
account the Coulomb interaction of the emitting electron in the electric field of the 
nucleus. Davies et al. [2.14] give the formula 

f(Z) =:: a2 [(1 + a2) -1 + 0.20206 - 0.0369a2 + 0.0083 a4 - 0.002a6 ] , (2.70) 

where a = Z/137. 
In the limiting cases of no screening and complete screening, (2.68) can be expressed 

in simpler analytic forms. For ~ ~ 1 (no screening), (2.68) becomes 

(2.71) 

For ~ =:: 0, (complete screening), 

da = 4 Z2r~ a d: {(1 + e2_ 23e ) [In(183Z- 1I3 ) - f(Z)] + ; } . (2.72) 

The energy loss due to radiation can now be calculated by integrating the cross-sec­
tion times the photon energy over the allowable energy range, i.e., 

- - =N J hv-(Eo, v)dv ( dE) Vo da 

dx rad 0 dv 
(2.73) 

withN: number of atoms/cm3, N = pNa/A; Vo = Eo/h. 
We can rewrite this as 

- (dE) = NEo C/Jrad, where 
dx rad (2.74) 

1 J da C/Jrad =- hv_(Eo, v)dv. 
Eo dv 

The motivation behind this is that da/ dv is approximately proportional to v- 1; the 
integral C/Jrad is therefore practically independent of v and is a function of the material 
only. 

For mec24,Eo4, 137 mec2 Z -1/3, ~~ 1, we have no screening, so that integration 
yields 

C/Jrad = 4Z2r~ a (In 2E02 - ~ - f(Z») . (2.75) 
meC 3 
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Fig. 2.10. Radiation loss vs. collision loss 
for electrons in copper. For comparison, 
the dEldx for protons is also shown 

(2.76) 

At intermediate values of ~, (2.73) must be integrated numerically. 
It is interesting to compare (2.74) to the ionization loss formula in (2.66) (see Fig. 

2.10). Whereas the ionization loss varies logarithmically with energy and linearly with 
Z, the radiation loss increases almost linearly with E and quadratically with Z. This 
dependence explains the rapid rise of radiation loss. 

Another difference is that unlike the ionization loss which is quasicontinuous along 
the path of the electron or positron, almost all the radiation energy can be emitted in 
one or two photons. There are thus large fluctuations observed for a beam of mono­
energetic electrons or positrons. 

2.4.3 Electron-Electron Bremsstrahlung 

The above formulae represent the mean energy loss from radiation in the field of the 
nucleus. There is, however, also a contribution from bremsstrahlung which arises in the 
field of the atomic electrons. Formulas for electron-electron bremsstrahlung have been 
worked out by several authors and it can be shown that the cross sections are essentially 
given by those above except that Z2 is replaced by Z. This contribution can thus be ap­
proximately taken into account by simply replacing Z2 by Z(Z + 1) in all of the above 
cross-section formulae. 

2.4.4 Critical Energy 

As we have seen the energy loss by radiation depends strongly on the absorbing ma­
terial. For each material, we can define a critical energy, E e , at which the radiation loss 
equals the collision loss. Thus, 

(:~}ad = (:)eoll for E=Ee· (2.77) 
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Table 2.2. Critical energies of some materials 

Material Critical energy 
[MeV] 

Pb 9.51 
Al 51.0 
Fe 27.4 
Cu 24.8 
Air (STP) 102 
Lucite 100 
Polystyrene 109 
NaI 17.4 
Anthracene 105 
H2O 92 

Above this energy, radiation loss will dominate over collision-ionization losses and 
vice-versa below Ec. An approximate formula for Ec given in [2.15] is, 

E == 800 MeV 
c , 

Z+ 1.2 
(2.78) 

Table 2.2 gives a short list of critical energies for various materials so as to give some 
feeling for the order of magnitudes. 

2.4.5 Radiation Length 

A similar quantity known as the radiation length of the material is even more frequent­
ly used. This parameter is defined as the distance over which the electron energy is 
reduced by a factor 1/e due to radiation loss only. Indeed, if we rearrange (2.74), we 
get the differential equation 

-dElE = Nct>raddx. (2.79) 

Considering the high energy limit where collision loss can be ignored relative to radia­
tion loss, ct>rad in (2.76) is independent of E, so that 

E = Eoexp ( -x). (2.80) 
L rad 

where x is the distance travelled and L rad = 1/ N ct>rad is the radiation length. Using 
(2.76), we thus find the formula 

_1_== [4Z(Z+1) PNa ] r~a[ln(183Z-1I3)-f(Z)], (2.81) 
L rad A 

where we have included the contribution from electron-electron bremsstrahlung and 
ignored the small constant term. Some values of L rad are given in Table 2.3 for several 
materials. 
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Table 2.3. Radiation lengths for various absorbers 

Material [gm/cm2] [cm] 

Air 36.20 30050 
H2O 36.08 36.1 
NaI 9.49 2.59 
Polystyrene 43.80 42.9 
Pb 6.37 0.56 
eu 12.86 1.43 
Al 24.01 8.9 
Fe 13.84 1.76 
BOO 7.98 1.12 
BaF2 9.91 2.05 
Scint. 43.8 42.4 

A useful approximation [2.15], convenient for quick calculations, is given by 

716.4 g/cm 2 A 

L rad = Z(Z + 1) In (287/Vz) , 
(2.82) 

where Z and A are the atomic number and weight of the material respectively. The 
values obtained are accurate to within 2.5070 except for helium where the result is about 
5% too low. 

The usefulness of the radiation length becomes evident when material thicknesses 
are measured in these units. Clearly, if x is expressed in units of L rad , then (2.74) 
becomes 

- (dE/dt) = Eo, (2.83) 

where t is the distance in radiation lengths. Thus, the radiation energy loss when expres­
sed in terms of radiation length is roughly independent of the material type. 

For compounds and mixtures, the radiation lengths may be computed by applying 
Bragg's rule. Expressing L rad in mass thickness units, we then have 

1 (1) (1) --= WI -- +W2 -- + ... , 
L rad L rad I L rad 2 

(2.84) 

where WI, W2, .•. are the fractions by weight of each element in the mixture as defined 
in (2.39). 

2.4.6 Range of Electrons 

Because of the electron's greater susceptibility to multiple scattering by nuclei, the 
range of electrons is generally very different from the calculated path length obtained 
from an integration of the dEl dx formula. Differences ranging from 20 - 400% 
depending on the energy and material are often found. In addition, the energy loss by 
electrons fluctuates much more than for heavy particles. This is due to the much greater 
energy transfer per collision allowed for electrons and to the emission of bremsstrah­
lung. In both cases, it is possible for a few single collisions (or photons) to absorb the 
major part of the electron's energy. This, of course, results in greater range straggling 
as illustrated by Fig. 2.11 which shows some measured range curves. 
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calculated in the continuous slowing down approximation 
(data from [2.17]) 

Fig. 2.13. Absorption curves for beta decay electrons from 
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As for heavy particles, a number of empirical range-energy relations have been 
formulated. Figure 2.12 presents some typical range-energy curves for electrons in vari­
ous materials as calculated assuming a continuous slowing-down process. A tabulation 
of ranges for different materials is also given by Pages et al. [2.17]. 

! 2.4.7 The Absorption of p Electrons 

Because of their continuous spectrum of energies, the absorption of p-decay electrons 
exhibits a behavior which is very well approximated by an exponential form. This is il­
lustrated in Fig. 2.13 which shows the number-distance curves for different absorbers 
plotted on a semi-logarithmic scale. As can be seen, the curves are almost linear and are 
easily fit by 

1 = 10 exp ( - /1x) . (2.85) 
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The constant 11 is known as the fJ-absorption coefficient and is found to be directly 
related to the endpoint energy of the fJ-decay. One of the earliest uses of this behavior 
was, in fact, to measure fJ endpoint energies and the thicknesses of thin foils. It is im­
portant to note, however, that exponential absorption is not a general characteristic of 
fJ-decay. Indeed, this behavior only holds in the case of simple allowed decays. In more 
complicated forbidden decays where the shape of the fJ-spectrum is different, devia­
tions become apparent. 

2.5 Multiple Coulomb Scattering 

In addition to inelastic collisions with the atomic electrons, charged particles passing 
through matter also suffer repeated elastic Coulomb scatterings from nuclei although 
with a somewhat smaller probability. Ignoring spin effects and screening, these colli­
sions are individually governed by the well-known Rutherford formula 

(2.86) 

Because of its 1!sin4 (8/2) dependence, the vast majority of these collisions result, 
therefore, in a small angular deflection of the particle. We assume here that the nuclei 
are much more massive than the incident particles so that the small energy transfer to 
the nucleus is negligible. The particle thus follows a random zigzag path as it traverses 
the material. The cumulative effect of these small angle scatterings is, however, a net 
deflection from the original particle direction, as shown in Fig. 2.14. 

In general, the treatment of Coulomb scattering in matter is divided into three 
regions: 

1) Single Scattering. If the absorber is very thin such that the probability of more than 
one Coulomb scattering is small, then the angular distribution will be given by the 
simple Rutherford formula in (2.86). 

2) Plural Scattering. If the average number of scatterings N < 20, then we have plural 
scattering. This is the most difficult case to treat as neither the simple Rutherford 
formula nor statistical methods can be simply applied. Some work in this region has 
been done by Keil et al. [2.19] and the reader is referred there for further informa­
tion. 

3) Multiple Scattering. If the average number of independent scatterings is N> 20, and 
energy loss is small or negligible, the problem can be treated statistically to obtain a 
probability distribution for the net angle of deflection as a function of the thickness 

--

Fig. 2.14. Multiple scattering of a charged parti­
cle. The scale and angles are greatly exaggerated 
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of material traversed. This is the most common case encountered and we devote the 
remainder of this section to this topic. 

In general, rigorous calculations of multiple scattering are extremely complicated 
and several formulations and formulae with different levels of sophistication exist. 
These are reviewed by Scott [2.20] and by Hemmer and Farquahr [2.21]. Among the 
most used are the small-angle approximations by Moliere and by Snyder and Scott. 
Their formulations are essentially equivalent and have been demonstrated to be 
generally valid for all particles up to angles of 8=:: 30° with the exception of slow elec­
trons (/3<0.05) and electrons in very heavy elements. 

Moliere expresses the polar angle distribution as a series 

P(8)dQ= 17 d 17 (2eXP (-17 2)+ Fl~17) + F~;) + .. .), 

where 17 = 8/(81 VB) and 81 = 0.3965 (zQ/pfJ) V(p~x/A) . 
The parameter B is defined by the equation: 

g(B) = InB-B+ln y-O.154 = 0, where 

and L1 = 1.13+3.76. (~)2 
137/3 

(2.87) 

For a given y, B may be found numerically by using, for example, Newton's 
Method for finding the zeros of g(B). The functions F k (17) are defined by the integral 

where 10 = Bessel function. For convenience, some values of F j and F2 for various 
values of 17 are tabulated in Table 2.4. 

Table 2.4. Values of F j and F2 for the Moliere distribution (from [2.21]) 

11 Ft (l1) F2 (11) 11 Ft (11) F2 (11) 

0.0 0.8456 2.49 2.2 0.106 0.02 
0.2 0.700 2.07 2.4 0.101 -0.046 
0.4 0.343 1.05 2.6 0.082 - 0.064 
0.6 -0.073 -0.003 2.8 0.062 -0.055 
0.8 -0.396 -0.606 3.0 0.045 -0.036 
1.0 -0.528 -0.636 3.2 0.033 -0.019 
1.2 - 0.477 -0.305 3.5 0.0206 0.0052 
1.4 - 0.318 0.052 4.0 0.0105 0.0011 
1.6 -0.147 0.243 5.0 0.00382 0.000836 
1.8 0.000 0.238 6.0 0.00174 0.000345 
2.0 0.080 0.131 7.0 0.00091 0.000157 

The remaining variables are: 
Z: atomic number of material 
A: atomic weight of material 
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Fig. 2.15. Angular distribution of 15.7MeV electrons 
scattered from a thin Au foil (from Hanson et al. 
[2.23]). The experimental values are compared with 
the Gaussian approximation to multiple scattering 
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For most calculations, it is usually not necessary to go beyond the first three terms. 
Figure 2.15 shows an example of this distribution for 15 MeV electrons passing 

through a thin gold foil. At small angles, this space angle distribution (with respect to 
solid angle!) is close to that of a Gaussian, but as angle increases, corrective terms come 
into play to form a long broad tail. The deflections at larger angles are generally due to 
one single, large angle Coulomb scattering in the material rather than to the cumulative 
effect of many small angle scatterings. The broad tail, therefore, should roughly follow 
that of the Rutherford I/sin\812) form for single scattering rather than that of a Gaus­
sian. The transition between the small and larger angle regions is governed by plural 
scattering. This is given by Moliere as a correction to the small angle distribution. 

2.5.1 Multiple Scattering in the Gaussian Approximation 

If we ignore the small probability of large-angle single scattering, a good idea of the 
effect of multiple scattering in a given material can be obtained by considering the dis­
tribution resulting from the small angle ( < 10°) single scatterings only. In such a case, 
as we have seen, the probability distribution is approximately Gaussian in form, 

28 (- 82
) P(8),,=,-exp - d8 

(8 2) (8 2) 
(2.88) 
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where we have used the small-angle approximation dQ:::: 27C 8d8. The parameter (82) 
represents the mean squared scattering angle, as can be shown by integrating f 82 P(8)dQ 

from 8 = 0 to 00. The square root V (82) is known as the rms scattering angle and 
should be equal to the rms scattering angle of the full multiple scattering angle distribu­
tion. By comparing (2.88) to the first term of Moliere's expansion in (2.87), this angle 

should be approximately given by V(82):::: 81 VB. However, because of the Moliere 
distribution's long tail, the actual value, when including all terms, becomes infinite. 

A better estimate may be obtained by using an empirical formula proposed by 
Lynch and Dahl [2.24], 

(82)=2 X~ 2 [1+V ln (1+V)-1] rad2 
1 +F v 

where 

Q 
v=0.5-­

(1-F) 

2 = 0157 (Z(Z+ 1)) _x_ Xc . Z 2 2 
A p fJ 

X; = 2.007 x 10- 5 Z2/3 [1 + 3.34(Zza/ fJ)2]1p2 

(2.89) 

The variable p is the momentum in MeV /c, x, the path length in g/cm2, Z, the charge 
of the particle, Z and A, the atomic number and weight of the material, respectively 
and a, the fine structure constant. The parameter F represents the fraction of the 
Moliere distribution to be taken into consideration. A value less than 1 is necessary here 
since, as we have noted, taking the entire distribution into account results in an infinite 
value for (82). Similarly, the parameter Q may be interpreted as the mean number of 
scatters. For F anywhere in the range of 90% to 99.50/0 and 10<Q< 108 , the above 
formula yields results to better than 2 %. 

As an illustration let us calculate the standard deviations, (J, of the two Gaussian 
distributions shown in Fig. 2.15 using (2.89). Thus for 15.7 MeV electrons, we find 

(82) = [0.0023 rad2 x = 18.66 mg/cm2 . 
0.0051 rad2 x = 37.28 mg/cm2 

By comparing (2.88) and the Gaussian form in (4.19), we see that (J = V(82)/2, so 
that (J = 1.94 0 and 2.89° respectively. Comparing these values to the fits in Fig. 2.15, 
we can see a good correspondance. 

A sometimes useful quantity is the angular deflection projected onto a perpen­
dicular plane containing the incident trajectory (see Fig. 2.14). Here the distribution is 
also approximately Gaussian 

P(8x )d8x = (27C<8~»)-112 exp (- 8I) d8x (2.90) 
2<8x) 
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where the mean squared projected scattering angle (8;) is related to the space scatter­
ing angle by (8;) = (8 2)/2. 

From Fig. 2.14, there is also a lateral displacement of the particle. This is usually 
very small, however, and if one calculates this distribution, one finds 

(2.91) 

with r: displacement; t = xlLrad: thickness in radiation lengths. By comparison, the 
mean squared displacement is then 

(2.92) 

Note also that the appearance of the radiation length is fortuitous here; it, of course, 
has nothing to do with multiple scattering and is only used as a simplification. 

2.5.2 Backscattering of Low-Energy Electrons 

Because of its small mass, electrons are particularly susceptible to large angle deflec­
tions by scattering from nuclei. This probability is so high, in fact, that multiply scat­
tered electrons may be turned around in direction altogether, so that they are backscat­
tered out of the absorber. This is illustrated schematically in Fig. 2.16. The effect is 
particularly strong for low energy electrons, and increases with the atomic number Z of 
the material. Backscattering also depends on the angle of incidence. Obviously 
electrons entering at obliques angles to the surface of the absorber have a greater 
probability of being scattered out than those incident along the perpendicular. 

The ratio of the number of back scattered electrons to incident electrons is known as 
the backscattering coefficient or albedo. Figure 2.17 shows some measured coefficients 
for various materials and electron energies. Backscattering is an important considera­
tion for electron detectors where depending on the geometry and energy, a large 
fraction of electrons may be scattered out before being able to produce a usable signal. 
For non-collimated electrons on a high-Z material such as NaI, for example, as much 
as 800/0 may be reflected back. 
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Fig. 2.17. Some measured electron back scattering coefficients for various materials. The electrons are per­
pendicularly incident on the surface of the sample (from Tabata et al. [2.24)) 
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2.6 Energy Straggling: The Energy Loss Distribution 

Our discussion of energy loss up until now has been concerned mainly with the mean 
energy loss suffered by charged particles when passing through a thickness of matter. 
For any given particle, however, the amount of energy lost will not, in general, be equal 
to this mean value because of the statistical fluctuations which occur in the number of 
collisions suffered and in the the energy transferred in each collision. An initially 
monoenergetic beam, after passing through a fixed thickness of material, will therefore 
show a distribution in energy rather than a delta-function peak shifted down by the 
mean energy loss as given by the dE/dx formula. We have already seen these fluctua­
tions in the form of range straggling. This, in fact, is the same problem viewed from a 
different angle: instead of observing the fluctuations in energy loss for a fixed thickness 
of absorber, we observe the fluctuations in thickness of pathlength for a fixed loss in 
energy. 

From a theoretical point of view, calculating the distribution of energy losses for 
a given thickness of absorber is a difficult mathematical problem and is generally divid­
ed into two cases: thick absorbers and thin absorbers. 

2.6.1 Thick Absorbers: The Gaussian Limit 

For relatively thick absorbers such that the number of collisions is large, the energy loss 
distribution can easily be shown to be Gaussian in form. This follows directly from the 
Central Limit Theorem in statistics which states that the sum of N random variables, all 
following the same statistical distribution, approaches that of a Gaussian-distributed 
variable in the limit N--+ 00. If we take our random variable to be JE, the energy lost in 
a single atomic collision, and assume that the energy lost in each collision is such that 
the velocity of the particle is negligibly altered (so that the velocity-dependent collision 
cross-section stays constant), then the total energy lost is the sum of many independent 
JE, all commonly distributed. Assuming there are a sufficient number of collisions N, 
then the total will approach the Gaussian form, 

f(x, L1) ex exp ( - (~~2j")2) (2.93) 

with x: thickness of absorber; L1: energy loss in absorber; j": mean energy loss; a: stan­
dard deviation. 

For nonrelativistic heavy particles the spread ao of this Gaussian was calculated by 
Bohr to be 

2 2 22 Z Z 2 ao=4nNare(mec) p-x=O.1569p-x[MeV], 
A A 

(2.94) 

where Na is Avogadro's number, re and me the classical electron radius and mass, and 
p, Z, A are the density, atomic number and atomic weight of the material respectively. 
This formula can easily be extended to relativistic particles 

a2 = (1-tfJ 2) a 2 
1- fJ2 0 

(2.95) 
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2.6.2 Very Thick Absorbers 

A critical assumption in the above analysis was that the energy loss was small compared 
to the initial energy so that the velocity change of the particle could be ignored. For 
very thick absorbers where a substantial amount of energy is lost, this assumption, of 
course, breaks down. This case has been treated in depth by Tschalar[2.26, 27] and the 
reader is referred to his articles and to the resume by Bichsel [2.28] for details of this 
distribution. 

2.6.3 Thin Absorbers: The Landau and Vavilov Theories 

In contrast to the thick absorber case, the distribution for thin absorbers or gases where 
the number of collisions N is too small for the Central Limit Theorem to hold is ex­
tremely complicated to calculate. This is because of the possibility of large energy 
transfers in a single collision. For heavy particles, this W max is kinematically limited to 
the expression given in (2.28), while for electrons, as much as one-half the initial energy 
can be transferred. In this latter case, there is also the additional possibility of a large 
"one-shot" energy loss from bremsstrahlung as well. While these events are rare, their 
possibility adds a long tail to the high energy side of the energy-loss probability distri­
bution thus giving it a skewed, asymmetric form. Figure 2.18 illustrates this general 
shape. Note that the mean energy loss no longer corresponds to the peak but is dis­
placed because of the high energy tail. In contrast, the position of the peak now defines 
the most probable energy loss. These two quantities may be used to parametrize the 
distribution. 

£ 
:0 
d 

.Q 
o 
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Most Energy loss L1 
probable Mean 
energy energy 
loss loss 

Fig. 2.18. Typical distribution of energy loss in a 
thin absorber. Note that it is asymmetric with a long 
high energy tail 

Basic theoretical calculations of this distribution have been carried out by Landau, 
Symon and Vavilov; each of these, however, has a somewhat different region of ap­
plicability. The distinguishing parameter in all these theories is the ratio 

(2.96) 

that is the the ratio between the mean energy loss and the maximum energy transfer al­
lowable in a single collision. The mean energy loss may be calculated from the Bethe­
Bloch formula, however, for most purposes it is usually approximated by taking the 
first multiplicative term only and ignoring the logarithmic term, i.e., 
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Fig. 2.19. Vavilov distributions for various K. For comparison, Landau's distribution (denoted by the L) for 
K = 0 is also shown (from Seltzer and Berger [2.30]) 

(2.97) 

Following the literature, we denote this quantity by ~. The thin absorber region is 
generally taken to be K < 10, although for K> 1, the distribution already begins to ap­
proach the the Gaussian limit (see Fig. 2.19). By K>10, there, of course, is only a very 
negligible difference. 

Landau's Theory: K:50.01. Landau [2.29] was the first to calculate the energy loss 
distribution for the case of very thin absorbers, that is, K :50.01. In this theory, Landau 
makes the assumptions that: 

1) the maximum energy transfer permitted it infinite, W max --> 00, in essence taking 
K --> 0, 

2) the individual energy transfers are sufficiently large such that the electrons may be 
treated as free. Small energy transfers from so-called distant collisions are ignored, 

3) the decrease in velocity of the particle is negligible, i.e., the particle maintains a con­
stant velocity. 

The distribution is then expressed as 

f(x, L1) = </J(J...)/~, where 
1 00 

</J (J...) = - J exp ( - u In u - u J...) sin n u du 
n 0 

1 
J... = - [L1- ~(ln ~ -In e + 1 - C)] 

~ 

C = Euler's Const = 0.577 ... and 

(2.98) 
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The quantity f. essentially represents the minimum energy transfer allowed by assump­
tion 2. The function </J(Je) is a universal function depending only on the parameter Je 
and must be evaluated numerically. A tabulation for various Je may be found in Seltzer 
and Berger [2.30] or Borsh-Supan [2.31], for example. A computer program for the 
calculation of the Landau distribution has also been developed by Schorr [2.32]. 

From an evaluation of </J(Je), the most probable energy loss is found to be 

LImp = ~[ln(~/f.)+0.198-c5], (2.99) 

where we have also added on the density effect for completeness. 

Symon's Theory and Vavilov's Theory: Intermediate K. The region between small K 

covered by Landau and the Gaussian limit is treated by Symon and by Vavilov. Using 
the limiting distribution derived by Landau, Symon was able to make a number of 
ingenious approximations in deriving the energy-loss distributions. His results, un­
fortunately, are expressed in graphic form, which in today's world of computers, make 
them inconvenient to use. These graphs and the procedure for employing them may be 
found in the book by Rossi [2.33]. 

Vavilov's theory, in contrast, is along the line of Landau's formulation and in fact, 
generalizes the latter's calculation by taking into account the correct expressions for 
maximum allowable energy transfer. The latter two assumptions made by Landau are 
kept however. His results are somewhat more complicated, but reduce to the Landau 
distribution in the limit K -> 0 and to a Gaussian form in the limit K -> 00. Rather than 
give these formulas here, the reader is referred to Seltzer and Berger [2.30] or to Vavi­
lov's original paper [2.34]. A computer program for its evaluation is also given by 
Schorr [2.32]. 
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Fig. 2.20. Comparison of Vavilov's and Symon's theories with experiment (from Seltzer and Berger [2.30]) 
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To give an idea of Vavilov's results, we show Vavilov's distributions for various 
values of K in Fig. 2.19. These should be compared to the Landau distribution (denoted 
by L) at K = 0, also shown in Fig. 2.19. Note also how the distribution already 
resembles a Gaussian form for K = 1. In the Gaussian limit, Vavilov gives the variance 
as 

2 e 1- fJ2 
a = ----, (2.100) 

K 2 
which agrees with Bohr's formula for heavy particles in (2.95). 

To see how theory compares with experiment, some measured results are also 
shown in Fig. 2.20. 

Corrections to the Landau and Vavilov Distributions. Supplementing the calculations 
by Landau and Vavilov, are also a number of limited modifications made by various 
authors. Blunck and Leisegang [2.35], in particular, have modified Landau's theory to 
include binding effects of the atomic electrons (assumption 2). Needless to say, the re­
sult is complicated, however, a suitable form for calculation may be found in Matthews 
et al. [2.36]. For the Vavilov distribution, a similar modification has been made by 
Shulek et al. [2.37]. Details may be found in their original article. 

2.7 The Interaction of Photons 

The behavior of photons in matter (in our case, x-rays and y-rays) is dramatically dif­
ferent from that of charged particles. In particular, the photon'S lack of an electric 
charge makes impossible the many inelastic collisions with atomic electrons so charac­
teristic of charged particles. Instead, the main interactions of x-rays and y-rays in 
matter are: 

1) Photoelectric Effect 
2) Compton Scattering (including Thomson and Rayleigh Scattering) 
3) Pair Production. 

Also possible, but much less common, are nuclear dissociation reactions, for example, 
(y, n), which we will neglect in our discussion. 

These reactions explain the two principal qualitative features of x-rays and y-rays: 
(1) x-rays and y-rays are many times more penetrating in matter than charged particles, 
and (2) a beam of photons is not degraded in energy as it passes through a thickness of 
matter, only attenuated in intensity. The first feature is, of course, due to the much 
smaller cross section of the three processes relative to the inelastic electron collision 
cross section. The second characteristic, however, is due to the fact the three processes 
above remove the photon from the beam entirely, either by absorption or scattering. 
The photons which pass straight through, therefore, are those which have not suffered 
any interactions at all. They therefore retain their original energy. The total number of 
photons is, however, reduced by the number which have interacted. The attenuation 
suffered by a photon beam can be shown, in fact, to be exponential with respect to the 
thickness, i.e., 

I(x) = 10 exp( - /1x) (2.101) 

with 10: incident beam intensity; x: thickness of absorber; /1: absorption coefficient. 
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The absorption coefficient is a quantity which is characteristic of the absorbing 
material and is directly related to the total interaction cross-section. This is a quantity 
often referred to when discussing y-ray detectors. However, let us first discuss the three 
processes individually before turning to the calculation of the absorption coefficient. 

2.7.1 Photoelectric Effect 

The photoelectric effect involves the absorption of a photon by an atomic electron with 
the subsequent ejection of the electron from the atom. The energy of the outgoing elec­
tron is then 

E = hv-B.E., (2.102) 

where B. E. is the binding energy of the electron. 
Since a free electron cannot absorb a photon and also conserve momentum, the 

photoelectric effect always occurs on bound electrons with the nucleus absorbing the 
recoil momentum. Figure 2.21 shows a typical photoelectric cross section as a function 
of incident photon energy. As can be seen, at energies above the highest electron bind­
ing energy of the atom (the K shell), the cross section is relatively small but increases 
rapidly as the K-shell energy is approached. Just after this point, the cross section drops 
drastically since the K-electrons are no longer available for the photoelectric effect. 
This drop is known as the K absorption edge. Below this energy, the cross section rises 
once again and dips as the L, M, levels, etc. are passed. These are known respectively as 
the L-absorption edges, M-absorption edge, etc. 

Theoretically, the photoelectric effect is difficult to treat rigorously because of the 
complexity of the Dirac wavefunctions for the atomic electrons. For photon energies 
above the K-shell, however, it is almost always the K electrons which are involved. If 
this is assumed and the energy is nonrelativistic, i.e., hv~mec2, the cross-section can 
then be calculated using a Born approximation. In such a case, one obtains 

K-EDGE 

1O-2'--c:"~~"'--~~,",,--::-~-'-U.ll.CL~..L.L.L.!..WJ 
10-2 10° 102 

Fig. 2.21. Calculated photoelectric cross section for lead 
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(2.103) 

with (/)0 = 8 nr~13 = 6.651 X 10- 25 cm2; a = 11137 . 

For energies closer to the K-edge,(2.103)must be multiplied by a correction factor to 
give 

m 27n(137)3 [Vk]4 exp(-4~cot-I~) 
'Pphoto = (/)0 2 - per atom, 

Z v 1 - exp ( - 2 n ~) 
(2.104) 

wherehvk=(Z-0.03)2mec2a2/2 and ~=Vvkl(v-vk)' For v very close to vb 

C l iP1, so that (2.104) can be simplified to 

_ 6.3xlO- 18 (Vk)8/3 
cf>photo - Z2 --;- (2.105) 

Formulas for the Land M shells have also been calculated, but these are even more 
complicated than those above. The reader is referred to Davisson [2.38] for these 
results. 

It is interesting to note the dependence of the cross section on the atomic number Z. 
This varies somewhat depending on the energy of the photon, however, at MeV ener­
gies, this dependence goes as Z to the 4th or 5th power. Clearly, then, the higher Z 
materials are the most favored for photoelectric absorption, and, as will be seen in later 
chapters, are an important consideration when choosing y-ray detectors. 

2.7.2 Compton Scattering 

Compton scattering is probably one of the best understood processes in photon interac­
tions. As will be recalled, this is the scattering of photons on free electrons. In matter, 
of course, the electrons are bound; however, if the photon energy is high with respect to 
the binding energy, this latter energy can be ignored and the electrons can be considered 
as essentially free. 

Figure 2.22 illustrates this scattering process. Applying energy and momentum con­
servation, the following relations can be obtained. 

hv 
hv'=------

1 + y(l - cos 0) 

T=hv-hv'=hv y(1-cosO) 
1 + y(l-cos 0) 

2 
cosO = 1 - , 

(1 + y)2 tan21fJ+ 1 

o 
cot IfJ = (1 + y) tan - , 

2 

(2.106) 

where y = h vi me c2 . Other relations between the various variables may be found by 
substitution in the above formulae. 

hv 

Fig. 2.22. Kinematics of Comp­
ton scattering 
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The cross section for Compton scattering was one of the first to be calculated using 
quantum electrodynamics and is known as the Klein-Nishina formula: 

da r~ 1 (1 2 () y2(1 - cos ()2 ) 

dQ = 2 [1 + y(l - cos ()]2 + cos + 1 + y(l - cos () , 
(2.107) 

where re is the classical electron radius. Integration of this formula over dQ, then, gives 
the total probability per electron for a Compton scattering to occur. 

ae = 2nr~ {1 +/ [2(1 + y) 
y _ 1+2y 

1 ] 1 1+3 Y } -In(l +2y) +-In(1 +2y)- 2' 
Y 2y (1 +2y) 

Figure 2.23 plots this total cross section as a function of energy. 
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Fig. 2.23. Total Compton scattering cross sections 
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Two useful quantities which can be calculated from the Klein-Nishina formula are 
the Compton scattered and Compton absorption cross sections. The Compton scatter­
ed cross section, as. is defined as the average fraction of the total energy contained in 
the scattered photon, while the absorption cross section, aa, is the average energy 
transferred to the recoil electron. Since the electron is stopped by the material, this is 
the average energy-fraction absorbed by the material in Compton scattering. Obvious­
ly, the sum must be equal to ae 

(2.109) 

To calculate as. we form 

da s h Vi da 
--=----, 
dQ hv dQ 

(2.110) 

which after integration yields 

s 2[ 1 1 (1 2) 2(1+y)(2y2-2y-l) 8 y2 ] a = nre - n + y + +. 
y3 y2(l+2y)2 3(l+2y)3 

(2.111) 
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The absorption cross section can then be simply calculated by 

(2.112) 

Another formula which we will make use of very often when discussing detectors is 
the energy distribution of the Compton recoil electrons. By substituting into the Klein­
Nishina formula, one obtains 

do 

dT 
(2.113) 

where s = T Ih v. Figure 2.24 shows this distribution for several incident photon 
energies. The maximum recoil energy allowed by kinematics is given by 

Tmax=hV(~) 
1 +2y 

(2.114) 

[see (2.106)] and is known as the Compton edge. 

Thomson and Rayleigh Scattering. Related to Compton scattering are the classical pro­
cesses of Thomson and Rayleigh scattering. Thomson scattering is the scattering of 
photons by free electrons in the classical limit. At low energies with respect to the elec­
tron mass, the Klein-Nishina formula, in fact, reduces to the Thomson cross-section, 

8n 2 a=--re 
3 

(2.115) 

Rayleigh scattering, on the other hand, is the scattering of photons by atoms as a 
whole. In this process, all the electrons in the atom participate in a coherent manner. 
For this reason it is also called coherent scattering. 

In both processes, the scattering is characterized by the fact that no energy is trans­
ferred to the medium. The atoms are neither excited nor ionized and only the direction 
of the photon is changed. At the relatively high energies of x-rays and y-rays, Thomson 
and Rayleigh scattering are very small and for most purposes can be neglected. 

2.7.3 Pair Production 

The process of pair production involves the transformation of a photon into an elec­
tron-positron pair. In order to conserve momentum, this can only occur in the presence 
of a third body, usually a nucleus. Moreover, to create the pair, the photon must have 
at least an energy of 1.022 MeV. 

Theoretically, pair production is related to bremsstrahlung by a simple substitution 
rule, so that once the calculations for one process are made, results for the other imme­
diately follow. As for bremsstrahlung, the screening by the atomic electrons surround­
ing the nucleus plays an important role in pair production. The cross sections are thus 
dependent on the parameter ~ [see (2.67)], which is now defined by 

~= 100mec2hv 
E+E_Z1l3 

(2.116) 

with E + : total energy of outgoing positron; E _ : total energy of outgoing electron. 

hv = 0.5 MeV 

hv = 1.0 MeV 

hv = 1.5 MeV 
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Fig. 2.24. Energy distribution of 
Compton recoil electrons. The 
sharp drop at the maximum recoil 
energy is known as the Compton 
edge 
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At extreme relativistic energies and arbitrary screening, a Born approximation cal­
culation gives the formula 

dT= 4Z2r2a dE+ {(E 2 +E:) [!p!(~) -~Inz-/(Z)] 
e (h v)3 + 4 3 

+ ~ E+E_ [!P2d~) -+Inz-/(Z)]} (2.117) 

where !p! and !P2 are the screening functions used in (2.69) and the other variables are as 
defined in (2.68). 

As before, this formula simplifies in the limiting cases of no screening and complete 
screening. Thus for no screening (~~1), we obtain 

dT=4Z2ar~dE+ E~+E:+27+E_/3 [In 2E+E_ 21 -/(Z)] , 
(h v) hvmec2 

(2.118) 

while for complete screening, ~->O, 

Because of the Born approximation, these formulae are not very accurate for high Z 
or low energy. A more complicated formula valid for low energies and no screening has 
been derived by Bethe and Heitler and is given in the article by Bethe and Ashkin [2.10] 
along with a somewhat simpler formula from Hough. 

To obtain the total pair production cross section, a numerical integration of the 
above expressions must generally be performed. In the case of no screening with 
mec2 <t, h v <t, 137 mec2 Z - 1/3, an analytic integration is possible yielding 

2 2 [7 ( 2h v ) 109] Tpair=4Z are - In--2 -/(Z) --- . 
9 mec 54 

(2.120) 

Similarly for complete screening, h v ~ 137 me c2 Z -1/3, 

(2.121) 

For all other cases, a numerical integration of (2.117) must be performed. Figure 2.25 
illustrates the energy dependence of the total pair cross section. 

As for bremsstrahlung, pair production may also occur in the field of an atomic 
electron. Not surprisingly, a similar result is obtained for the cross section, but smaller 
by about a factor Z. To approximately account for this interaction, then, one need only 
replace Z2 by Z(Z + 1) in the above formulae. 

1O-1'----~~~.u.L..~~~u..u.J 
1 10 100 From the total cross section, it is interesting to calculate the mean free path, Apain 

Energy [MeV] of a y-ray for pair production. Thus, using (2.121) 

Fig. 2.25. Pair production cross 
section in lead 11 Apair = NTpair =:: f 4Z(Z + 1)Nr~ a[ln(183 Z -1/3) - /(Z)] , (2.122) 
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where N is the density of atoms and we have ignored the small constant term. This may 
be recognized as being very similar to the radiation length, and, in fact, comparison 
with (2.81) shows 

Apair = t L rad . (2.123) 

2.7.4 Electron-Photon Showers 

One of the most impressive results of the combined effect of pair production by high 
energy photons and bremsstrahlung emission by electrons is the formation of electron­
photon showers. A high energy photon in matter converts into an electron and positron 
pair which then emit energetic bremsstrahlung photons. These, in turn, convert into 
further e + e - pairs, and so on. The result is a cascade or shower of photons, electrons 
and positrons. This continues until the energy of the pair-produced electrons and 
positrons drops below the critical energy. At this point, the e + e - pairs will preferen­
tially lose their energy via atomic collisions rather than bremsstrahlung emission, thus 
halting the cascade. 

The development of the cascade is, of course, a statistical process. Using the notion 
of radiation length, however, we may construct a simple model to describe the mean 
number of particles produced and their mean energies as a function of penetration 
depth in the converting material. Suppose we begin with an energetic photon of energy 
Eo. On the average, then, the photon will convert into an e + e - pair after one radia­
tion length. The energy of each member of the pair is then Eo12. After two radiation 
lengths, the electron and positron will then each emit a bremsstrahlung photon with 
approximately half the energy of the charged particle. At this point there are 4 particles 
present: two photons and an electron-positron pair, each with energy Eo/4. At the end 
of three radiation lengths, the bremsstrahlung photons will have converted into two 
more e+ e- pairs, while the original pair will have emitted another set of brems­
strahlung photons. The number of particles present is thus 8 and their energy Eo/8. 
Continuing in this manner, it is easy to see that at the end of t radiation lengths, the 
total number of particles (i.e., photons, electrons and positrons) present will be 

N=2( (2.124) 

each with an average energy of 

(2.125) 

The same result would also be obtained had we started with an electron rather than 
a photon. 

Now what is the maximum penetration depth of the cascade? If we assume that the 
shower stops abruptly at the critical energy Ec' then, we have 

Eo 
E(tmax) = -( -= Ec 

2 max 

which, solving for tmax , yields, 

(2.126) 
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(2.127) 

The maximum number of particles produced is then, 

(2.128) 

This simple model, however, only gives a rough qualitative picture of the shower. 
To make a more precise calculation, recourse to such techniques as Monte Carlo 
simulations is generally required. Figure 2.26 shows the results of one such calculation 
for a 30 Ge V shower in iron [2.15]. The circles and squares essentially give the number 
of electrons and photons, respectively, as a function of depth in the iron, while the his­
togram describes the energy deposited by the shower, i.e., dEldt. As we can see now, 
the number of particles is an electron-photon cascade rises exponentially to a relatively 
broad maximum after which it declines gradually over many radiation lengths, rather 
than stopping abruptly as in the simple model above. It is important to keep in mind 
here that the calculation describes the average behavior of the cascade. As mentioned 
in Sect. 2.4.2, there can be large fluctuations when bremsstrahlung is involved, so that 
for any given individual shower, a large deviations from the mean will be observed. 

Beyond the first radiation length or so, the energy loss, dEldt, can be fit reasonably 
well by the gamma distribution 

dE (bt)a-l e -bt 
- = Eob -'--~---
dt r(a) 

(2.129) 

where a and b are parameters dependent on the material. The depth at which the maxi­
mum occurs is given by 

tmax = (a-l)1b = 1.0x (lny+ C i ) i = e, Y (2.130) 
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Fig. 2.27. Values of the parameter b 
in (2.129) for various materials (from 
[2.15]) 

where y = EI E c' that is the incident energy of electron or photon in units of the criti­
cal energy, and Ce = - 0.5 for electron-induced cascades while Cy = + 0.5 for photon­
induced cascades. To calculate the parameters in (2.129), one must calculate tmax using 
the second expression in (2.130). Then assuming b ::::: 0.5 or choosing a more accurate 
value from Fig. 2.27, a is found using the first relation in (2.130). 

Let us now consider the transverse profile of the shower. As the cascade develops, 
its lateral dimensions also increase due to various effects. These include the finite open­
ing angle between the electron and positron in pair production which directs these par­
ticles away from the longitudinal axis, multiple scattering of the electrons and the emis­
sion of bremsstrahlung photons away from the axis which then travel long distances 
in the material. 

The transverse dimensions of electromagnetic showers is most conveniently mea­
sured in terms of the Moliere radius, which is defined as [2.39] 

(2.131) 

where Es = mec 2 V 4nl a = 21.2 MeV and Ec is the critical energy. Like the radiation 
length, the Moliere radius scales fairly accurately with different materials, so that when 
this unit is used, the results are roughly independent of material type. Like L rad also, 
the Moliere radius for compounds and mixtures is calculated using Bragg's rule as in 
(2.84). 

Figure 2.28, now, illustrates the transverse energy loss profile for a 1 GeV shower 
calculated at various depths in lead [2.40]. Qualitatively, we can see that the cascade 
remains relatively narrow in the first radiation lengths of its development with most 
of the particles contained in a dense central core. Surrounding this central region is a 
tenuous halo of particles which extends outward to relatively large distances. As the 
shower progresses, however, the central core disperses, eventually disappearing after 
the maximum is reached. More than 90070 of the shower is nevertheless contained 
within a distance of about 2RM from the longitudinal axis. 

Knowledge of the longitudinal and transverse profiles of electron-photon showers 
is very important for the design and construction of "electromagnetic calorimeters" in 
particle physics. These detectors are designed to measure the total energy of very high 
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energy particles by absorbing the electromagnetic cascades which are induced in the 
bulk of the detector. The materials used in the calorimeter, their size and mass are thus 
determined by the energy loss characteristics of the shower. To absorb a 30 GeV shower 
in iron, for example, would require greater than 20 radiation lengths (or better than 
35 cm of solid iron) as can be seen from Fig. 2.26. Not surprisingly calorimeters are 
among the most complicated and the largest used in particle physics experiments. More 
information on these specialized devices may be found in [2.40, 41]. 

2.7.5 The Total Absorption Coefficient and Photon Attenuation 

The total probability for a photon interaction in matter is the sum of the individual 
cross sections outlined above. If we calculate the cross-section per atom, this yields 

(2.132) 

where we have multiplied the Compton cross-section by Z to take into account the Z 
electrons per atom. This is shown in Fig. 2.29 for the case of lead. If we now multiply a 
by the density of atoms, N, we then obtain the probability per unit length for an inter­
action, 

(2.133) 

with Na: Avogadro's Number; p: density of the material; A: molecular weight. 
This is more commonly known as the total absorption coefficient and is just the in­

verse of the mean free path of the photon. From (2.12), then, it follows that the frac­
tion of photons surviving a distance x is then 

IlIa = exp( - /1x) , (2.134) 

where 10 is the incident intensity. 
For compounds and mixtures, the total absorption coefficient may be calculated us­

ing Bragg's rule (2.38), 
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Fig. 2.29. Total photon absorption cross 
section for lead 

(2.135) 

where wi is the weight fraction of each element in the compound. 

2.8 The Interaction of Neutrons 

Like the photon, the neutron lacks an electric charge, so that it is not subject to Cou­
lomb interactions with the electrons and nuclei in matter. Instead, its principal means 
of interaction is through the strong force with nuclei. These reactions are, of course, 
much rarer in comparison because of the short range of this force. Neutrons must come 
within =:: 10 -13 cm of the nucleus before anything can happen, and since normal matter 
is mainly empty space, it is not surprising that the neutron is observed to be a very 
penetrating particle. 

When the neutron does interact, however, it may undergo a variety of nuclear pro­
cesses depending on its energy. Among these are: 

1) Elastic scattering from nuclei, i.e., A(n, n)A. This is the principal mechanism of 
energy loss for neutrons in the MeV region. 

2) Inelastic scattering, e.g., A (n, n')A *, A (n, 2 n')B, etc. In this reaction, the nucleus 
is left in an excited state which may later decay by gamma-ray or some other form of 
radiative emission. In order for the inelastic reaction to occur, the neutron must, of 
course, have sufficient energy to excite the nucleus, usually on the order of 1 MeV or 
more. Below this energy threshold, only elastic scattering may occur. 
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3) Radiative neutron capture, i.e., n+(Z,A) --+ y+(Z, A+ 1). In general, the cross-sec­
tion for neutron capture goes approximately as == 11 v where v is the velocity of the 
neutron. Absorption is most likely, therefore, at low energies. Depending on the 
element, there may also be resonance peaks superimposed upon this 1Iv depen­
dence. At these energies, of course, the probability of neutron capture is greatly 
enhanced. 

4) Other nuclear reactions, such as (n, p), (n, d), (n, a), (n, t), (n, ap), etc. in which the 
neutron is captured and charged particles are emitted. These generally occur in the 
eV to keY region. Like the radiative capture reaction, the cross section generally 
falls as 1Iv. Resonances may also occur depending on the element. 

5) Fission, i.e., (n, f). Again this is most likely at thermal energies. 
6) High energy hadron shower production. This occurs only for very high energy 

neutrons with E> 100 MeV. 

Because of the strong energy dependence of neutron interactions, it has become 
customary to classify neutrons according to their energy, although no specific 
boundaries are prescribed between classes. In general, high energy neutrons are consid­
ered to be those with energies above == 100 MeV or so, whereas those between a few 
ten's of MeV and a few hundred keY are known asjast neutrons. Between == 100 keY 
and ::::::0.1 eV, where nuclear resonance reactions occur, neutrons are referred to as 
epithermal. At lower energies comparable to the thermal agitation energy at room 
temperature, (i.e., E ==kT== 1140 eV), neutrons are known as thermal or slow. Going 
even lower to energies of milli- or micro-eV, neutrons come under the appellation of 
cold or ultra-cold. 

The total probability for a neutron to interact in matter is given by the sum of the 
individual cross sections, i.e., 

atO! = aelastic + ainelastic + acapture + ... (2.136) 

Figure 2.30 gives an example of the total reaction cross-section for neutrons on a few 
materials versus neutron energy. Here the energy dependence is quite smooth. A com­
pilation of cross sections for other materials may be found in the bibliography. 
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Fig. 2.30. Total reaction cross-sections for neutrons in 
water, paraffin and protons (data from [2.42]) 
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If we multiply (2.136) by the density of atoms we can obtain the mean free path 
length 

1 NaP 
-=Natot = --atot· 
A A 

(2.137) 

In analogy to photons, then, a beam of neutrons passing through matter will be ex­
ponentially attenuated 

N = No exp ( - xl A) , (2.138) 

where x is the thickness of the material. Equation (2.138), of course, is useful only for a 
collimated beam of neutrons. For the more general case of a noncollimated source, a 
sophisticated transport equation is usually necessary. 

2.8.1 Slowing Down of Neutrons. Moderation 

The slowing down of fast neutrons is known as moderation and is an important process 
in nuclear physics and engineering. In most cases, a fast neutron entering into matter 
will scatter back and forth on the nuclei, both elastically and inelastically, losing energy 
until it comes into thermal equilibrium with the surrounding atoms. At this point, it 
will diffuse through matter until it is finally captured by a nucleus or enters into some 
other type of nuclear reaction, e.g. fission. The neutron, of course, may undergo a 
nuclear reaction or be captured before attaining thermal energies, especially if 
resonances are present. Barring such reactions, however, the V-I dependence of the 
cross-section favors the survival of the neutron down to thermal velocities. 

Elastic scattering is the principal mechanism of energy loss for fast neutrons. At 
energies of several MeV, the problem may be treated nonrelativistically and very simply 
with conservation laws. Consider, therefore, a single collision in the lab frame of 
reference between a neutron with velocity Vo and a nucleus at rest with a mass M, as 
shown in Fig. 2.31. In these calculations, it is customary to work in units of neutron 
mass, i.e. mn = 1. The mass of the nucleus is then just the atomic mass number A. If we 
transform to the center-of-mass system, the velocity of the neutron becomes 

A 
Vern =--Vo 

A+1 

while the nucleus takes on a velocity 

1 
V=--Vo· 

A+1 

(2.139) 

(2.140) 

After the collision, the neutron takes on a new direction but retains its speed in the em 
system (see Fig. 2.31). Using the law of cosines, the corresponding velocity of the 
neutron in the lab system is then 

(2.141) 

where Bern is the center-of-mass scattering angle. If we now substitute (2.139) and 
(2.140) into (2.141), we find 

LAB SYSTEM 

• vo. 
m 

eM SYSTEM 

Fig. 2.31. Elastic scattering of a 
neutron on a nucleus of mass M 
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2(A)22(1)22 A 2 (Vlab) = -- Vo+ -- vo-2 2 Vo cos(n-Ocm ). 
A + 1 A + 1 (A + 1) 

Since the kinetic energy is E = +m v2, we thus have 

~=(~)2 
Eo Vo 

A 2+ 1 +2A cos Ocm 

(A + 1)2 

(2.142) 

(2.143) 

Using the cosine law in a similar manner, we can also find the laboratory scattering 
angle 0lab, 

(2.144) 

which using (2.142) yields 

II A cos Ocm+ 1 
cos Ulab = ---;;===:===="'''====~ V A 2 + 1 + 2A cos Ocm 

(2.145) 

Continuing, we also calculate the scattering parameters for the recoil nucleus 

4A 2 2A 
EA = Eo 2 cos <Plab = Eo 2 (1 +cos <Pcm) 

(A+1) (A+1) 
(2.146) 

cos <Plab = 
1 +cos <Pcm 

or 
2 

(2.147) 

From (2.143), it is easy to see now that the energy of the scattered neutron is limited 
to the range between 

( A 1)2 -- Eo<E<Eo, 
A+1 

(2.148) 

where the limits correspond to scattering at cos Ocm = ± 1. In the particular case of scat­
tering on protons, A = 1, 

O<E<Eo· 

This is not surprising, as intuitively, the lighter the nucleus the more recoil energy it 
absorbs from the neutron. This implies of course that the slowing down of neutrons is 
most efficient when protons or light nuclei are used. This explains the use of hydrogen­
ous materials such as water or paraffin (CH 2) in connection with neutron moderators 
and shielding. 

Let us now calculate the energy distribution of the scattered neutrons. At not too 
high energies (::;; 15 MeV), neutron scattering is usually restricted to s-wave scattering 
which is isotropic. Thus the probability of scattering into a solid angle dQ is simply 

d dQ 2 . II dOcm 1. II dll 
W = -- = n SIn ucm-- = -sIn ucm v cm • 

4n 4n 2 
(2.149) 

From (2.143), however, 
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dE = 2 __ A___ . () d{) sin em em' 
Eo (A + 1)2 

(2.150) 

which after substitution yields 

dWl = (A+1)2 1 1 

dE 4A Eo Eo(1- a) 
(2.151) 

where a = [(A -1)/(A + 1)f After one scattering, therefore, the energy distribution of 
an originally monoenergetic neutron is constant over the energy range given by (2.148). 

We can use this result now to find the distribution after two scatterings 

{
fO de dWl 1 

dW2 = E de e(1- a) 
1 In Eo aEo<E<Eo 

Eo(1- a)2 E 
(2.152) 

J de __ 1 ---= - 2 In~+2Ina a 2Eo<E<aEo. dE E/a dw 1 1 r E J 
aEo de e(1- a) Eo(1- a) E 

For three collisions, a similar calculation gives the expression 

1 I Eo ( )
2 

2Eo(1- a)3 n E 

- 1 3 [2(ln Eo)2 +6lnaln Eo +3 0na)3] 
2Eo(1-a) E E 

In _0 +31n a 1 (E )3 
2Eo(1- a)3 E 

aEo<E<Eo 

a3Eo<E<a2Eo. 
(2.153) 

For more collisions the distributions can be worked out by continuing the process 
although the algebra becomes more and more complicated. Figure 2.32 compares the 
distributions obtained after several collisions. Condon and Breit [2.43] have worked 
out the general problem and for the case of n scatterings on hydrogen and give the 
general formula 

1 
Eo(1-a) 

1 (E )n-l ____ In_o 
Eo(n-1)! E 

(2.154) 

Fig. 2.32. Energy distribution of neutrons 
aner several elastic scatterings 
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An obvious question which arises now is how many collisions are needed to reduce 
the average energy of a neutron to some given level? This is most easily found by cal­
culating the logarithmic change in energy: 

Eo 
u = In Eo -In E = In - , 

E 
(2.155) 

where Eo is the initial energy and the E the final energy. This is also known as the 
lethargy change. From (2.143) we see, in fact, that after a single scattering at angle e, 
u is given by 

u(e) = In (A + 1)2 
A 2 + 1 + 2A cos e 

(2.156) 

If we integrate (2.156) over all directions and divide by 4 Jr, we can then find the average 
u(e) for a single scattering, 

dQ 1 (A+l)2 
~ = < u (e» = J u (e) - = - J In 2 d (cos e) 

4 Jr 2 A + 1 + 2A cos e 
(A-l)2 A-l 

= 1+ In--. 
2A A+l 

(2.157) 

This leaves us with the interesting result that the average lethargy change, ~, after one 
scattering is a constant, independent of the initial energy. Now, for a neutron to slow 
down from an energy Eo to an energy E', a total lethargy change of In (Eo 1 E') is 
required. Since the average lethargy change per collision is ~, the average number of 
collisions n required for this total change would then be 

u 1 Eo 
n=-=-ln-. 

~ ~ E' 
(2.158) 

With carbon-12 as a moderator, for example, we would have ~ = 0.158, so that a 
1 MeV neutron slowing down to thermal energies (1/40 eV) would require (1/0.158) 
In(40xl06 ) == 111 collisions. For hydrogen, ~= 1, so that this number would only be 
n == 17.5. More rigorous approaches are given in [2.44, 45]. 



3. Radiation Protection. 
Biological Effects of Radiation 

That radiation can be hazardous to living organisms is well-known to any informed 
person today. However, except for this simple fact, further knowledge of just how and 
why this is so appears to be rare even among those who work with radiation profes­
sionally. Indeed, it behooves anyone handling radioactive material or working in a 
radiation environment to have at least a few elementary ideas concerning the effects 
of exposure to radiation, the permissible limits and the safety precautions to be taken. 
The nuclear physicist is, of course, no exception. In this chapter, therefore, we will 
briefly survey the dosimetric units used for discussing the effects of irradiation, and 
some simple safety precautions to be followed in the nuclear physics laboratory. 

3.1 Dosimetric Units 

The quantity of radiation received by an object is measured by several different units. 
Since radiation interacts with matter by ionizing or exciting the atoms and molecules 
making up the material, these units are either a measure of the quantity of ionization 
produced or the amount of energy deposited in the material. 

3.1.1 The Roentgen 

The oldest unit is the Roentgen, which is a measure of exposure and is defined as 

1 Roentgen (R) = the quantity of x-rays producing an ionization of 1 esu/cm3 

= (2.58 X 10- 4 Coul/kg) in air at STP. (3.1) 

Note that the definition refers specifically to x-rays and y-rays in air. As such, it is an 
easy quantity to measure with ionization chambers, however, it becomes inconvenient 
when the irradiated object is living tissue or some other material. 

In air, ionization is produced primarily by the slowing down of the recoil electrons 
resulting from the Compton scattering of the y-rays and x-rays. The amount of ioniza­
tion produced, therefore, depends on both the absorption coefficient for y-rays and the 
specific ionization of electrons. If isotropic radiation from a point is assumed and at­
tenuation from air is ignored, the ionization per unit time or exposure rate due to a 
given source may be found from the formula 

r·A 
Exposure rate = -2- , 

d 
(3.2) 

where A is the activity, d the distance to the source and r is an exposure rate constant 
dependent on the decay scheme of the particular source, the energy of the y's, the ab-
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sorption coefficient in air and the specific ionization of electrons. This constant has 
been calculated for a number of common y-sources and a short list is given in Table 
3.1. A more complete list is given in [3.1]. 

Table 3.1. Short list of exposure rate constants 
[3.1] 

Source 

137CS 

57co 
22Na 
60co 
222Ra 

3.1.2 Absorbed Dose 

T[R _cru2 Ihr -ruCi] 

3.3 
13.2 
12.0 
13.2 
8.25 

A more relevant quantity for discussing the effects of irradiation is the absorbed dose, 
D. This is a quantity which measures the total energy absorbed per unit mass and is 
the fundamental parameter in radiological protection. Its unit of measurement is the 
Gray which is defined as 

1 Gray (Gy) = 1 Joule/kg (3.3) 

A somewhat older unit for the absorbed dose, which is no longer actively used, is the 
rad where 

1 rad = 100 erg/g = 0.01 Gy (3.4) 

It should be noted that the absorbed dose gives no indication of the rate at which 
the irradiation occurred nor the specific type of radiation, factors which play an impor­
tant role when considering the biological effects of radiation. 

Example 3.1 Calculate the absorbed dose in air for 1 Roentgen of y-rays. Assume that 
for electrons, the average energy to create an ion-electron pair in air is 33.7 eV. 

1 R = 2.58 X 10- 4 Coul/kg x 191 = 1.61 x 1015 ion-pairs/kg. 
1.6 x 10- Coul/elect 

The energy expended in creating the ion-pairs is thus 

33.7 eV /ion-pr x 1.61 x 1015 ion-pr/kg = 5.42 x 1010 MeV /kg 

Since 1 MeV = 1.6x 10- 13 J, we then find 

D = (5.42 X 1010) x (1.6 x 10- 13) = 0.00867 Gy 
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Example 3.2 Assuming soft living tissue absorbs::::: 93 erg/g for 1 R of y radiation 
what is the dose rate received from working at an average distance of 50 cm from a 
100 ~Ci (3.7 MBq) 22Na source? 

Using Table 3.1, the exposure rate is 

12.0 x 0.1 mCi 
Exposure rate = 2 = 0.48 mR/hr 

50 

Dose rate = 93 x 0.48 x 10- 3 = 0.045 erg/g-hr = 0.045 mGy/hr 

3.1.3 Relative Biological Effectiveness (RBE) 

When considering biological effects, the nonspecificity of the absorbed dose proves to 
be inadequate. Indeed, studies show that the biological damage caused by radiation is 
a strong function of the specific radiation type and its energy. An absorbed dose of 
a-particles, for example, produces more damage than an equal dose of protons and 
this, more damage than a similar dose of electrons or y-rays. The difference lies in the 
linear energy transfer (LET) of the different particles, i.e., the energy locally deposited 
per unit path length 1. Thus, the more ionizing the particle the greater the local biolog­
ical damage. 

To account for this effect, each radiation type is assigned a radiation weighting fac­
tor, WR, (or quality factor) which indicates its relative biological effectiveness (RBE). 
Table 3.2 lists this factor for several different types of radiation. Thus, for equal ab­
sorbed doses, a-particles may be considered as about 4 times more damaging than pro­
tons, and these 5 times more damaging than electrons or photons, etc. 

Table 3.2. Radiation weighting factors [3.2] 

Radiation type and energy 

Photons, all energies 
Electrons and muons, all energies t 
Neutrons 

< IOkeV 
10 keY to 100 keY 

> 100 keY to 2 MeV 
>2MeV to 20 MeV 
>20 MeV 

Protons, other than recoil protons, energy> 2 MeV 
a-particles, fission fragments, heavy nuclei 

Radiation weighting 
factor, wR 

5 
10 
20 
10 
5 
5 

20 

t Excluding Auger electrons emitted from nuclei bound to DNA 

1 For most purposes, this is the same as dEldx. The only difference is the emission of bremsstrahlung, 
which generally escapes from the region of the particle path. This energy loss is included in the dEl dx, but 
not in the LET. 
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3.1.4 Equivalent Dose 

To obtain a normalized measure of the biological effect suffered by a tissue or organ 
due to irradiation, the equivalent dose 2, HT is calculated by multiplying the value of 
the absorbed dose, averaged over the entire tissue or organ, by the radiation weighting 
factor, i.e., 

Equivalent dose = HT = WR X DR (3.5) 

where DR is the average absorbed dose received by organ R. If more than one radia­
tion type is present, the sum of the absorbed doses for each radiation type weighted 
by the corresponding WR factor is calculated instead. Thus 

(3.6) 

where DT , R is the average absorbed dose received by organ T from the radiation type 
R. 

The unit of equivalent dose is the Sievert (Sv) which has the same dimensions as 
the Gray (J/kg). The use of the Sievert, however, indicates that the dose is normalized 
by the RBE, so that 1 Sv of a-particles produces approximately the same effect as 1 Sv 
of y-rays, etc. It should be kept in mind, however, that the equivalent dose is not a 
directly measurable quantity whereas the absorbed dose is. 

A much older unit, no longer in active use but which appears in the literature, is 
the rem. The relation between the two units is given by 

1 Sv = 100 rem . (3.7) 

Table 3.3. Tissue weighting factors [3.2) 

Tissue or organ Tissue weighting 
factor, wT 

Gonads 0.20 
Bone marrow 0.12 
Colon 0.12 
Lung 0.12 
Stomach 0.12 
Bladder 0.05 
Breast 0.05 
Liver 0.05 
Oesophagus 0.05 
Thyroid 0.05 
Skin 0.01 
Bone surface 0.01 
Remainder 0.05 

2 Prior to the 1990 ICRP recommendations [3.2], a quantity known as the dose equivalent was used instead. 
This quantity is almost identical to the equivalent dose except that the dose equivalent refers to the dose 
as measured at a point on the irradiated tissue. 
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3.1.5 Effective Dose 

The relation between the probability of developing biological effects such as cancer or 
genetic anomalies due to radiation is also found to depend on the specific organ or 
tissue receiving the radiation. To account for this, a tissue weighting factor, WT is 
defined for the different organs of the body. These are given in Table 3.3. Note that 
the tissue weighting factors are totally independent of the radiation type and energy 
(just as the radiation weighting factors are independent of tissue type.) 

Using these factors, the effective dose, E, is defined as 

(3.8) 

where the sum is over the different tissues and organs exposed. The effective dose has 
been found to better correlate with the probabilities of developing effects such as 
cancer, and it, like the equivalent dose, is measured in units of Sieverts. 

Note that the definition of the tissue weighting factors is such that their sum is nor­
malized to 1. For a uniform equivalent dose over the whole body, the effective dose 
is then numerically equal to the equivalent dose. 

3.2 Typical Doses from Sources in the Environment 

As is well known, we are constantly bathed in radiation coming from a variety of 
natural and artificial sources. These include cosmic rays, radioactive isotopes found 
naturally in the environment (e.g., the ground, building materials, etc.), nuclear 
fallout, medical diagnostics, and radioactive sources used in industry. To get an idea 
of the magnitude of these doses, Table 3.4 lists the typical doses received from some 
of these natural and artificial sources. 

These values may vary by as much as a factor 2 or 3 depending on the region in 
which the individual lives. At an altitude of 2000 meters, for example, the cosmic ray 

Table 3.4. Estimates of effective doses from some common sources 

Source Average dose per person (mSv/yr) 

Natural sources 
Overall 
Cosmic rays 
Terrestial 
Inhaled radon 

Environmental sources 
Nuclear power 
Baggage check at airport 
Subsonic airplane flight at 8000 m 

Medical exposures 
Diagnosis 

(e.g. 1 chest x-ray) 
Occupational 

World population [3.3] 

2.4 
0.37 

0.002 

0.4-1 

0.002 

USA [3.4] 

2.95 
0.27 
0.28 
2.0 

7 nSvltrip 
2 ~Sv/hr 

0.53 
0.1 mSv Ix·ray 
0.1- 3 

Germany [3.5] 

2-2.5 

=0.1 
0.8 -1.6 

0.5 -1.5 
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dose is practically double that at sea level. Similarly, the natural background dose may 
also be larger or smaller depending on the mineral and geological structure of the 
region. The natural background, in fact, is the major source of radiation exposure for 
the general public followed by irradiation from medical diagnosis. 

3.3 Biological Effects 

Radiation is harmful to living tissue because of its ionizing power in matter. This 
ionization can damage living cells directly by breaking the chemical bonds of important 
biological molecules (particularly DNA), or indirectly by creating chemical radicals 
from water molecules in the cells which then attack the biological molecules chemically. 
To a certain extent, these molecules are repaired by natural biological processes; how­
ever, the effectiveness of this repair depends on the extent of the damage. Obviously, 
if the repair is successful then no effect is observed, however, if the repair is faulty or 
not made at all, the cell may then suffer three possible fates: 

1. Death (of the cell). 
2. An impairment in the natural functioning of the cell leading to somatic effects (i.e., 

physical effects suffered by the irradiated individual only) such as cancer. 
3. A permanent alteration of the cell which is transmitted to later generations, i.e., a 

genetic effect. 

RADIATION 

~~ 
DIRECT IONIZATION 

OF DNA 

IONIZATION OF 

OTHER MOLECULES, e.g., H20 

radiation + H20 -H 20+ + e­
H20+ - H+ + OHo 

.-. ',0 I ,'. 0"-

OXIDATION OF DNA 
BY OH RADICALS 

RESTORATION / I CHEMICAL 

ENZYMATIC REPAIR _NO EFFECT 

I 
DNA 
RESTORED 

PERMANENT DAMAGE IN DNA 

l 
BIOLOGICAL EFFECTS 

1. GENETIC EFFECTS 

2. SOMATIC EFFECTS 

CANCER 
STERILITY 

Fig. 3.1. Sequence of events occurring in living matter exposed 
to radiation 
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The sequence of events is outlined in Fig. 3.1. 
Let us now consider the specific biological consequences which may result in 

humans. Depending on the dose, these consequences may be immediate or delayed by 
many years. 

3.3.1 High Doses Received in a Short Time 

The effects of high doses of radiation (~ lOy) received in a short time period (:5 few 
hours) are generally well known. The immediate effect is a disruption of the reproduc­
tive process in mitotic cells leading to their depletion. The most important of these are 
the white blood cells, the bone marrow and the cells lining the intestine. The first conse­
quences of a high dose of radiation will thus be noticed in the blood of an individual. 
If the dose is greater than 2 - 3 Sv, death may occur either due to the radiation itself 
or to complications arising from the depletion of the mitotic cells, e.g., infections. An 
outline of the possible sequence of events which might occur after exposure to a dose 
of several Sievert is given in Table 3.5. 

Table 3.5. Symptoms after receiving 4 - 6 Sv in a short time 

0- 48 hrs 
2 days to 6-8 wks 

Loss of appetite, nausea, vomiting, fatigue and prostration 
Above symptoms disappear, patient feels better 

2 - 3 wks to 6 - 8 wks 
6-8 wks 

Purpura and hemorrhage, diarrhea, loss of hair, fever, lethargy, death 
Recovery stage 

If the patient survives, a number of other effects may develop at a later time, for 
example, reddening of the skin, sterility, cataracts, and birth defects. These effects, in­
cluding death, all exhibit a threshold characteristic, i.e., there exists a safe minimum 
dose below which these effects do not appear. Above this threshold, there is a certain 
chance of developing one or more of the effects with the probability increasing with 
increasing dose. This threshold characteristic appears reasonable as, in general, a mini­
mum number of cells must be damaged before impairment of an organ is affected. As 

Table 3.6. Threshold doses for several effects [3.6] 

Stage of Effect Threshold dose (Sv) 
development 

Embryo Small head circumference 0.04 
Fetus Diminished body growth 0.2 

Increased infant mortality 
Child Hypothyroidism 5 
Adult Opacity of the eye lens 2.5 
Adult Death 2-3 
Adult Aging 3 
Adult Erythema 3 -10 

(reddening of the skin) 
Male adult Temporary sterility 0.5 -1 

Permanent sterility >5 
Female adult Permanent sterility 3-4 
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well, this also explains the dependence on the dose rate. A summary of some of these 
effects (known as deterministic or non-stochastic effects) and their threshold doses is 
given in Table 3.6. 

It is perhaps important to note here the relative sensitivity of the fetus to radiation. 
Prenatal irradiation with doses as small as 0.25 Sv at critical stages of embryo develop­
ment (between the 8th to 15th week) can cause abnormal growth and development at 
later stages. Indeed, effects such as mental retardation, lower IQ scores, etc. have been 
observed in the children of atomic bomb survivors. 

3.3.2 Low-Level Doses 

Low-level doses are taken to be doses of 0.2 Gy or less, or higher doses received at the 
maximum permissible rates as described in the next section. Here the principal effects 
are cancer and genetic effects. In contrast to the high dose situation, however, very lit­
tle is known about the relation of radiation to the occurrence of these two diseases. 
For cancer, this is due in part to the long delay between irradiation and the appearance 
of the effect, and in part, to the difficulty of isolating radiation from other possible 
causes such as drugs, cigarettes, chemicals, etc. In the case of genetic effects, no radia­
tion-induced genetic defect in humans (including the Hiroshima-Nagasaki survivors) 
has ever been significantly demonstrated, although laboratory experiments on mice and 
other animals have shown such injuries. Present knowledge of the genetic effects of 
radiation on man, in fact, is based entirely upon extrapolation from these experiments. 

Nevertheless, it is generally accepted that these effects: 

1. do not exhibit a threshold, that is, there is no safe level of radiation below which 
these effects are not observed, and 

2. that they do not depend on the dose rate, but rather on the total accumulated dose. 

Indeed, for a given total dose, one has a certain non-zero probability of developing one 
or the other of these effects. For this reason, these effects are usually referred to as 
stochastic effects to indicate their probabilistic nature. In general, a linear relation be­
tween the total dose and the risk of developing cancer or a genetic effect is assumed, 
although there may be deviations from this model at higher doses. Current estimates 
of the probability from [3.4] are given in Table 3.7. These values vary somewhat de­
pending on the source and should be taken as order of magnitude estimates. Moreover, 
they should be put into perspective by comparing them with the risks taken in some 
common, everyday occupations. This is shown in Table 3.8 where the risk has been 
transformed into an average loss in life expectancy. 

Table 3.7. Risk of radiation-induced cancer [3.4] 

Radiation exposure 

Single, brief exposure to 0.1 Sv 
Continuous lifetime exposure 

to 1 mSv/yr 
Continuous exposure to 0.01 Sv/yr 

from age 18 until age 65 

Excess fatal cancers 
(per 105 persons exposed) 

790 

560 

3000 
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Table 3.8. Comparison of risk from radiation with risk from other occupations. Normal life expectancy is 
taken as 73 years. (from [3.6]) 

Occupation 

0.20 Sv 
(typical dose of radiation worker in research lab after 47 yrs, 
i.e. from age 18 until 65) 

0.5 Sv 
(typical dose of worker in nuclear power plant after 47 yrs) 

2.35 Sv 
Trade 
Service industries 
Transportation and public utilities 
Off-the-job accidents 
Construction 
Mining and quarrying 

3.4 Dose Limits 

Average loss of life expectancy 
(months) 

0.4 

5 

1.2 
5 
7.5 

10 
11 

We now turn to a question important for anyone handling radioactive materials: What 
is the maximum dose an individual can be permitted to receive in addition to the 
natural background dose? This is a difficult question to answer. Indeed, as we have 
seen, no safe level of radiation exists and, moreover, the effects are cumulative. Never­
theless, certain benefits are derived from radiation, e.g. medical diagnosis or cancer 
therapy, so that abandoning the use of radiation altogether would also result in a net 
loss to society. The setting of maximum dose limits thus implies establishing a balance 
between the benefits to be gained versus the risks incurred. This is obviously a subjec­
tive question and indeed the equilibrium point may be different for different people, 
localities, etc. 

The only internationally recognized body for setting these limits is the International 
Commission on Radiological Protection (ICRP). Because of the possible differences 
mentioned above, the ICRP presents its limits as recommendations only. Each country 
is then free to accept, reject or modify these values as it feels fit. 

Two sets of limits are defined: one for individuals exposed occupationally and one 
for the general public. Within each set, dose limits for different parts of the body are 
given, since some organs are more sensitive than others, as well as for the whole body. 

Table 3.9. Dose limits as recommended by the ICRP [3.2] 

Whole body 

Single organs 
Lens of eye 
Skin (100 cm2) 

Other organs or tissues 

Occupational 

100 mSv in 5 yrs, 
but not more than 
50 mSv in any year 

150 mSv/yr 

500mSv/yr 
500mSv/yr 

General public 

1 mSv Iyr averaged over 
any consecutive 5 years 

15 mSv/yr 

50mSv/yr 
50mSv/yr 
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It should be stressed that these are allowable doses in addition to the natural back­
ground dose. Table 3.9 summarizes some of the dose limits for various organs. 

Note that these limits are approximately 2.5 times lower than the recommended 
limits prior to 1990. This is due mostly to a readjustment of the doses received by the 
Hiroshima-Nagasaki atomic bomb survivors to lower levels. 

3.5 Shielding 

To ensure total safety, all radioactive materials in the laboratory or place of work 
should be surrounded by sufficiently thick shielding material such that the radiation 
in neighboring work areas is kept at minimum permissible levels. This quantity of 
shielding is determined by the material chosen, the distance of the work area from the 
source and the maximum time it is inhabited. 

The choice of shielding materials and the design of the shield depend on the type 
of radiation and its intensity. Gamma rays, for example, are best attenuated by materi­
als with a high atomic number, as we have seen in Chap. 2. Materials such as Pb or 
iron, therefore, would be more stable than, say, plastic or water. Similarly, for stop­
ping charged particles, dense materials would be preferred because of their higher 
dEl dx. For neutron shielding, on the other hand, hydrogenous materials should be 
chosen in order to facilitate moderation. In these choices, the possibility of secondary 
radiation from interactions in the shield should also be considered. For example, 
positrons are easily stopped by a very thin layer of Pb, however, once at rest they an­
nihilate with electrons resulting in the emission of even more penetrating annihilation 
radiation. The shield, then, must not only be designed for stopping positrons but also 
for absorbing 511 ke V photons! A summary of the recommended shielding schemes for 
various radiations found in the nuclear physics laboratory is given in Table 3.10. 

Table 3.10. Shielding materials for various radiations 

Radiation 

Gamma-rays 
Electrons 

Positrons 

Charged particles 
Neutrons 

Shielding 

High-Z material, e.g. Pb 
Low-Z materials, e.g., polystyrene or lucite. High-Z materials should be avoided 
because of bremsstrahlung production. For intense electron sources, a double layer 
shield consisting of an inner layer of low-Z material followed by a layer of Pb (or 
some other high-Z material) to absorb bremsstrahlung should be used. The inner 
layer should, of course, be sufficiently thick to stop the electrons while the outer 
layer should provide sufficient attenuation of bremsstrahlung. 
High-Z material. Since the stopping of positrons is always accompanied by anni­
hilation radiation, the shield should be designed for absorbing this radia-
tion. A double layer design, here, is usually not necessary. 
High density materials in order to maximize dE/dx 
Hydrogenous materials such as water or paraffin. As for electrons, this shielding 
should also be followed by a layer of Pb or other high-Z material in order to 
absorb y's from neutron capture reactions. 

While certain materials are better suited than others for a given type of radiation, 
cost usually limits the choice of shielding to a few readily available materials. The most 
used are lead, iron and steel, water, paraffin and concrete. Lead is often used because 
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of its high atomic number and density. As well, it is soft and malleable and easily cast 
into various forms. When large amounts of Pb are required, it is usually cheaper to 
use scrap iron or steel. For very large volumes, concrete blocks are generally the most 
advantageous as far as cost is concerned. In accelerator laboratories, concrete is, in 
fact, the standard shielding material. 

3.6 Radiation Safety in the Nuclear Physics Laboratory 

Since our text is concerned with experimental nuclear physics, it behooves us to say a 
few words concerning safety in the nuclear physics lab. In general, the risks of working 
in a student nuclear physics laboratory are very small. The radioactive sources are of 
relatively low intensity and are all normally sealed against any "rubbing off" of 
radioactive material. Nevertheless, needless exposure should be avoided and to ensure 
that this risk be kept at a minimum, a few safety precautions should be followed. 



4. Statistics and the Treatment of Experimental Data 

Statistics plays an essential part in all the sciences as it is the tool which allows the 
scientist to treat the uncertainties inherent in all measured data and to eventually draw 
conclusions from the results. For the experimentalist, it is also a design and planning 
tool. Indeed, before performing any measurement, one must consider the tolerances 
required of the apparatus, the measuring times involved, etc., as a function of the 
desired precision on the result. Such an analysis is essential in order to determine its 
feasibility in material, time and cost. 

Statistics, of course, is a subject unto itself and it is neither fitting nor possible to 
cover all the principles and techniques in a book of this type. We have therefore limited 
ourselves to those topics most relevant for experimental nuclear and particle physics. 
Nevertheless, given the (often underestimated) importance of statistics we shall try to 
give some view of the general underlying principles along with examples, rather than 
simple "recipes" or "rules oj thumb". This hopefully will be more useful to the 
physicist in the long run, if only because it stimulates him to look further. We assume 
here an elementary knowledge of probability and combinatorial theory. 

4.1 Characteristics of Probability Distributions 

Statistics deals with random processes. The outcomes of such processes, for example, 
the throwing of a die or the number of disintegrations in a particular radioactive source 
in a period of time T, fluctuate from trial to trial such that it is impossible to predict 
with certainty what the result will be for any given trial. Random processes are de­
scribed, instead, by a probability density function which gives the expected frequency 
of occurrence for each possible outcome. More formally, the outcome of a random 
process is represented by a random variable x, which ranges over all admissible values 
in the process. If the process is the throwing of a single die, for instance, then x may 
take on the integer values 1 to 6. Assuming the die is true, the probability of an out­
come x is then given by the density function P(x) = 1/6, which in this case happens to 
be the same for all x. The random variable x is then said to be distributed as P(x). 

Depending on the process, a random variable may be continuous or discrete. In the 
first case, it may take on a continuous range of values, while in the second only a finite 
or denumerably infinite number of values is allowed. If x is discrete, P(xJ then gives 
the frequency at each point Xi' If x is continuous, however, this interpretation is not 
possible and only probabilities of finding x in finite intervals have meaning. The distri­
bution P(X') is then a continuous density such that the probability of finding x' in the 
interval x to x+dx is P(x)dx. 
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4.1.1 Cumulative Distributions 

Very often it is desired to know the probability of finding x between certain limits, e.g., 
P(Xj :5X:5X2)' This is given by the cumulative or integral distribution 

X2 

P(Xj :5X:5X2) = J P(x)dx, (4.1) 
X1 

where we have assumed P(x) to be continuous. If P(x) is discrete, the integral is replac­
ed by a sum, 

2 

P(Xj :5X:5X2) = L P(xJ. 
i= 1 

By convention, also, the probability distribution is normalized to 1, i.e., 

J P(x)dx = 1 

if x is continuous or 

L P(xJ = 1 
i 

(4.2) 

(4.3) 

(4.4) 

if x is discrete. This simply says that the probability of observing one of the possible 
outcomes in a given trial is defined as 1. It follows then that P(Xi) or J P(x) dx cannot 
be greater than 1 or less than O. 

4.1.2 Expectation Values 

An important definition which we will make use of later is the expectation value of a 
random variable or a random variable function. If x is a random variable distributed as 
P(x), then 

E[x) = J xP(x)dx (4.5) 

is the expected value of x. The integration in (4.5) is over all admissible x. This, of 
course, is just the standard notion of an average value. For a discrete variable, (4.5) 
becomes a sum 

E[x) = L XiP(X;) . 
i 

Similarly, if f(x) is a function of x, then 

E[f(x») = Jj(x)P(x)dx 

is the expected value of f(x). 

(4.6) 

(4.7) 

To simplify matters in the remainder of this section, we will present results assum­
ing a continuous variable. Unless specified otherwise, the discrete case is found by 
replacing integrals with a summation. 

4.1.3 Distribution Moments. The Mean and Variance 

A probability distribution may be characterized by its moments. The rth moment of x 
about some fixed point Xo is defined as the expectation value of (x - xo)' where r is an 
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integer. An analogy may be drawn here with the moments of a mass distribution in 
mechanics. In such a case, P(x) plays the role of the mass density. 

In practice, only the first two moments are of importance. And, indeed, many 
problems are solved with only a knowledge of these two quantities. The most important 
is the first moment about zero, 

fl = E[x] = JxP(x)dx. (4.8) 

This can be recognized as simply the mean or average of x. If the analogy with mass 
moments is made, the mean thus represents the "center of mass" of the probability dis­
tribution. 

It is very important here to distinguish the mean as defined in (4.8) from the mean 
which one calculates from a set of repeated measurements. The first refers to the 
theoretical mean, as calculated from the theoretical distribution, while the latter is an 
experimental mean taken from a sample. As we shall see in Sect. 4.4.2, the sample 
mean is an estimate of the theoretical mean. Throughout the remainder of this chapter, 
we shall always use the Greek letter fl to designate the theoretical mean. 

The second characteristic quantity is the second moment about the mean (also 
known as the second central moment), 

(4.9) 

This is commonly called the variance and is denoted as a 2. The square root of the 
variance, a, is known as the standard deviation. As can be seen from (4.9), the variance 
is the average squared deviation of x from the mean. The standard deviation, a, thus 
measures the dispersion or width of the distribution and gives us an idea of how much 
the random variable x fluctuates about its mean. Like fl, (4.9) is the theoretical variance 
and should be distinguished from the sample variance to be discussed in Sect. 4.4. 

Further moments, of course, may also be calculated, such as the third moment 
about the mean. This is known as the skewness and it gives a measure of the distribu­
tion's symmetry or asymmetry. It is employed on rare occasions, but very little in­
formation is generally gained from this moment or any of the following ones. 

4.1.4 The Covariance 

Thus far we have only considered the simple case of single variable probability distribu­
tions. In the more general case, the outcomes of a process may be characterized by 
several random variables, x, Y, Z, .... The process is then described by a multivariate 
distribution P(x, y, z, ... ). An example is a playing card which is described by two 
variables: its denomination and its suit. 

For multivariate distributions, the mean and variance of each separate random 
variable x, y, ... , are defined in the same way as before (except that the integration is 
over all variables). In addition a third important quantity must be defined: 

cov(x,y) =E[(X-flx)(Y-fly)] , (4.10) 

where flx and fly are the means of x and Y respectively. Equation (4.10) is known as the 
covariance of x and y and it is defined for each pair of variables in the probability den­
sity. Thus, if we have a trivariate distribution P(x, y, z), there are three covariances: 
cov(x, y), cov(x, z) and cov(y, z). 
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The covariance is a measure of the linear correlation between the two variables. 
This is more often expressed as the correlation coefficient which is defined as 

cov(x, y) 
P= , (4.11) 

(Jx(Jy 

where (Jx and (Jy are the standard deviations of x and y. The correlation coefficient 
varies between - 1 and + 1 where the sign indicates the sense of the correlation. If the 
variables are perfectly correlated linearly, then Ip I = 1. If the variables are indepen­
dent 1 then p = O. Care must be taken with the converse of this last statement, however. 
If p is found to be 0, then x and y can only be said to be linearly independent. It can 
be shown, in fact, that if x and yare related parabolically, (e.g., y = x 2), then p = O. 

4.2 Some Common Probability Distributions 

While there are many different probability distributions, a large number of problems in 
physics are described or can be approximately described by a surprisingly small group 
of theoretical distributions. Three, in particular, the binomial, Poisson and Gaussian 
distributions find a remarkably large domain of application. Our aim in this section is 
to briefly survey these distributions and describe some of their mathematical proper­
ties. 

4.2.1 The Binomial Distribution 

Many problems involve repeated, independent trials of a process in which the outcome 
of a single trial is dichotomous, for example, yes or no, heads or tails, hit or miss, etc. 
Examples are the tossing of a coin N times, the number of boys born to a group of N 
expectant mothers, or the number of hits scored after randomly throwing N balls at a 
small, fixed target. 

More generally, let us designate the two possible outcomes as success and failure. 
We would then like to know the probability of r successes (or failures) in Ntries regard­
less of the order in which they occur. If we assume that the probability of success does 
not change from one trial to the next, then this probability is given by the binomial dis­
tribution, 

Per) = N! '(1_ N-, 
'(N- )' p p) , r. r . 

(4.12) 

where p is the probability of success in a single trial. 
Equation (4.12) is a discrete distribution and Fig. 4.1 shows its form for various 

values of Nand p. Using (4.8) and (4.9), the mean and variance many be calculated to 
yield 

11 = L rP(r) = Np and (4.13) 

I The mathematical definition of independence is that the joint probability is a separable function, i.e., 
P(x,y) = PI (x)Pz(y). 
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(4.14) 

It can be shown that (4.12) is normalized by summing P(r) from r = 0 to r = N. 
Here it will be noticed that P(r) is nothing but the rth term of the binomial expansion 
(whence the name!), so that 

L N! p' (1 - p)N -, = [( 1 - p) + p 1 N = 1 . 
, r! (N - r)! 

(4.15) 

Finding the cumulative distribution between limits other than 0 and N is somewhat 
more complicated, however, as no analytic form for the sum of terms exist. If there are 
not too many, the individual terms may be calculated separately and then summed. 
Otherwise, tabulations of the cumulative binomial distribution may be used. 

In the limit of large N and not too small p, the binomial distribution may be ap­
proximated by a Gaussian distribution with mean and variance given by (4.13) and 
(4.14). For practical calculations, using a Gaussian is usually a good approximation 
when N is greater than about 30 and p ~ 0.05. It is necessary, of course, to ignore the 
discrete character of the binomial distribution when using this approximation (al­
though there are corrections for this). If p is small (:50.05), such that the product Np is 
finite, then the binomial distribution is approximated by the Poisson distribution dis­
cussed in the next section. 

4.2.2 The Poisson Distribution 

The Poisson distribution occurs as the limiting form of the binomial distribution when 
the probability p -> 0 and the number of trials N -> 00, such that the mean 11 = N p, 
remains finite. The probability of observing r events in this limit then reduces to 

l1'e- Jl 
P(r)=--. 

r! 
(4.16) 

Like (4.12), the Poisson distribution is discrete. It essentially describes processes for 
which the single trial probability of success is very small but in which the number of 
trials is so large that there is nevertheless a reasonable rate of events. Two important 
examples of such processes are radioactive decay and particle reactions. 

To take a concrete example, consider a typical radioactive source such as 137CS 

which has a half-life of 27 years. The probability per unit time for a single nucleus to 
decay is then A = In 2127 = 0.026 /year = 8.2 X 10- 10 S-1. A small probability indeed! 
However, even a 1 Ilg sample of 137CS will contain about 1015 nuclei. Since each nucleus 
constitutes a trial, the mean number of decays from the sample will be 11 = N p = 
8.2 X 105 decays/so This satisfies the limiting conditions described above, so that the 
probability of observing r decays is given by (4.16). Similar arguments can also be made 
for particle scattering. 

Note that in (4.16), only the mean appears so that knowledge of Nand p is not al­
ways necessary. This is the usual case in experiments involving radioactive processes or 
particle reactions where the mean counting rate is known rather than the number of 
nuclei or particles in the beam. In many problems also, the mean per unit dimension A, 
e.g. the number of reactions per second, is specified and it is desired to know the proba-
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bility of observing r events in t units, for example, t = 3 s. An important point to note is 
that the mean in (4.16) refers to the mean number in t units. Thus, /1 = At. In these 
types of problems we can rewrite (4.16) as 

(Ai)'e- At 
P(r)=--­

r! 
(4.17) 

An important feature of the Poisson distribution is that it depends on only one 
parameter: /1. [That /1 is indeed the mean can be verified by using (4.8)]. From (4.9), we 
also the find that 

(4.18) 

that is the variance of the Poisson distribution is equal to the mean. The standard 
deviation is then (J = VU. This explains the use of the square roots in counting experi­
ments (see Examples 1.1 and 1.2, on p. 11 and 12). 

Figure 4.2 plots the Poisson distribution for various values of /1. Note that the 
distribution is not symmetric. The peak or maximum of the distribution does not, 
therefore, correspond to the mean. However, as /1 becomes large, the distribution 
becomes more and more symmetric and approaches a Gaussian form. For /12:20, a 
Gaussian distribution with mean /1 and variance (J2 = /1, in fact, becomes a relatively 
good approximation and can be used in place of the Poisson for numerical calcula­
tions. Again, one must neglect the fact that we are replacing a discrete distribution by a 
continuous one. 

4.2.3 The Gaussian or Normal Distribution 

The Gaussian or normal distribution plays a central role in all of statistics and is the 
most ubiquitous distribution in all the sciences. Measurement errors, and in particular, 
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Fig. 4.3. The Gaussian distribution for various G. The standard 
deviation determines the width of the distribution 
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Fig. 4.4. Relation between the standard deviation G and the full width 
at half-maximum (FWHM) 

instrumental errors are generally described by this probability distribution. Moreover, 
even in cases where its application is not strictly correct, the Gaussian often provides a 
good approximation to the true governing distribution. 

The Gaussian is a continuous, symmetric distribution whose density is given by 

P(x) = 1 exp (_ (x- ~)2) . 
o~ 20 

(4.19) 

The two parameters fl and 0 2 can be shown to correspond to the mean and variance of 
the distribution by applying (4.8) and (4.9). 

The shape of the Gaussian is shown in Fig. 4.3. which illustrates this distribution 
for various o. The significance of 0 as a measure of the distribution width is clearly 
seen. As can be calculated from (4.19), the standard deviation corresponds to the half 
width of the peak at about 60070 of the full height. In some applications, however, the 
full width at half maximum (FWHM) is often used instead. This is somewhat larger 
than 0 and can easily be shown to be 

FWHM = 20 V2ln 2 = 2.350. (4.20) 

This is illustrated in Fig. 4.4. In such cases, care should be taken to be clear about 
which parameter is being used. Another width parameter which is also seen in the liter­
ature is the full-width at one-tenth maximum (FWTM). 

The integral distribution for the Gaussian density, unfortunately, cannot be cal­
culated analytically so that one must resort to numerical integration. Tables of integral 
values are readily found as well. These are tabulated in terms of a reduced Gaussian 
distribution with fl = 0 and 0 2 = 1. All Gaussian distributions may be transformed to 
this reduced form by making the variable transformation 

x-fl 
Z=--, (4.21) 

o 

where fl and 0 are the mean and standard deviation of the original distribution. It is a 
trivial matter then to verify that Z is distributed as a reduced Gaussian. 
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Fig. 4.5. The area contained between the limits f1 ± 1 a, f1 ± 2 a and f1 ± 3 a in a Gaussian distribution 

An important practical note is the area under the Gaussian between integral inter­
vals of 0'. This is shown in Fig. 4.5. These values should be kept in mind when interpret­
ing measurement errors. The presentation of a result as X± 0' signifies, in fact, that the 
true value has :=::68% probability of lying between the limits x- 0' and x+ 0' or a 95070 
probability of lying between x - 20' and x + 2 0', etc. Note that for a 10' interval, there is 
almost a 113 probability that the true value is outside these limits! If two standard 
deviations are taken, then, the probability of being outside is only :=::5%, etc. 

4.2.4 The Chi-Square Distribution 

As we will see in Sect. 4.7, the chi-square distribution is particulary useful for testing 
the goodness-of-fit of theoretical formulae to experimental data. Mathematically, the 
chi-square is defined in the following manner. Suppose we have a set of n independent 
random variables, Xi, distributed as Gaussian densities with theoretical means f-li and 
standard deviations O'i, respectively. The sum 

u = £ (Xi- f-li)2 
i= 1 O'i 

(4.22) 

is then known as the chi-square. This is more often designated by the Greek letter X 2; 

however, to avoid confusion due to the exponent we will use u = X2 instead. Since Xi is a 
random variable, u is also a random variable and it can be shown to follow the distribu­
tion 

(u/2)<v12)-l exp ( - u/2) 
P(u)du = du , 

2r(v/2) 
(4.23) 

where v is an integer and F(v/2) is the gamma function. The integer v is known as the 
degrees of freedom and is the sole parameter of the distribution. Its value thus deter­
mines the form of the distribution. The degrees of freedom can be interpreted as a par­
ameter related to the number of independent variables in the sum (4.22). 

Figure 4.6 plots the chi-square distribution for various values of v. The mean and 
variance of (4.23) can also be shown to be 

f-l=v, ~=2v. (4.24) 

To see what the chi-square represents, let us examine (4.22) more closely. Ignoring 
the exponent for a moment, each term in the sum is just the deviation of Xi from its 
theoretical mean divided by its expected dispersion. The chi-square thus characterizes 
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Fig. 4.6. The chi-square distribution for various values of the 
degree of freedom parameter v 
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the fluctuations in the data Xi' If indeed the Xi are distributed as Gaussians with the pa­
rameters indicated, then on the average, each ratio should be about 1 and the chi­
square, U = v. For any given set of Xi' of course, there will be a fluctuation of u from 
this mean with a probability given by (4.23). The utility of this distribution is that it can 
be used to test hypotheses. By forming the chi-square between measured data and an 
assumed theoretical mean, a measure of the reasonableness of the fluctuations in the 
measured data about this hypothetical mean can be obtained. If an improbable chi­
square value is obtained, one must then begin questioning the theoretical parameters 
used. 

4.3 Measurement Errors and the Measurement Process 

Measurements of any kind, in any experiment, are always subject to uncertainties or er­
rors, as they are more often called. We will argue in this section that the measurement 
process is, in fact, a random process described by an abstract probability distribution 
whose parameters contain the information desired. The results of a measurement are 
then samples from this distribution which allow an estimate of the theoretical param­
eters. In this view, measurement errors can be seen then as sampling errors. 

Before going into this argument, however, it is first necessary to distinguish be­
tween two types of errors: systematic and random. 

4.3.1 Systematic Errors 

Systematic errors are uncertainties in the bias of the data. A simple example is the zero­
ing of an instrument such as a voltmeter. If the voltmeter is not correctly zeroed before 
use, then all values measured by the voltmeter will be biased, i.e., offset by some 
constant amount or factor. However, even if the utmost care is taken in setting the in­
strument to zero, one can only say that it has been zeroed to within some value. This 
value may be small, but it sets a limit on the degree of certainty in the measurements 
and thus to the conclusions that can be drawn. 
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An important point to be clear about is that a systematic error implies that all mea­
surements in a set of data taken with the same instrument are shifted in the same direc­
tion by the same amount - in unison. This is in sharp contrast to random errors where 
each individual measurement fluctuates independently of the others. Systematic errors, 
therefore, are usually most important when groups of data points taken under the same 
conditions are being considered. Unfortunately, there is no consistent method by which 
systematic errors may be treated or analyzed. Each experiment must generally be 
considered individually and it is often very difficult just to identify the possible sources 
let alone estimate the magnitude of the error. Our discussion in the remainder of this 
chapter, therefore, will not be concerned with this topic. 

4.3.2 Random Errors 

In contrast to systematic errors, random errors may be handled by the theory of 
statistics. These uncertainties may arise from instrumental imprecisions, and/or, from 
the inherent statistical nature of the phenomena being observed. Statistically, both are 
treated in the same manner as uncertainties arising from the finite sampling of an in­
finite population of events. The measurement process, as we have suggested, is a 
sampling process much like an opinion poll. The experimenter attempts to determine 
the parameters of a population or distribution too large to measure in its entirety by 
taking a random sample of finite size and using the sample parameters as an estimate of 
the true values. 

This point of view is most easily seen in measurements of statistical processes, for 
example, radioactive decay, proton-proton scattering, etc. These processes are all 
governed by the probabilistic laws of quantum mechanics, so that the number of disin­
tegrations or scatterings in a given time period is a random variable. What is usually of 
interest in these processes is the mean of the theoretical probability distribution. When 
a measurement of the number of decays or scatterings per unit time is made, a sample 
from this distribution is taken, i.e., the variable x takes on a value Xl. Repeated mea­
surements can be made to obtain X2, X3, etc. This, of course, is equivalent to tossing a 
coin or throwing a pair of dice and recording the result. From these data, the experi­
menter may estimate the value of the mean. Since the sample is finite, however, there is 
an uncertainty on the estimate and this represents our measurement error. Errors 
arising from the measurement of inherently random processes are called statistical 
errors. 

Now consider the measurement of a quantity such as the length of a table or the 
voltage between two electrodes. Here the quantities of interest are well-defined num­
bers and not random variables. How then do these processes fit into the view of mea­
surement as a sampling process? What distribution is being sampled? 

To take an example, consider an experiment such as the measurement of the length 
of a table with say, a simple folding ruler. Let us make a set of repeated measurements 
reading the ruler as accurately as possible. (The reader can try this himself!). It will 
then be noticed that the values fluctuate about and indeed, if we plot the frequency of 
the results in the form of a histogram, we see the outlines of a definite distribution be­
ginning to take form. The differing values are the result of many small factors which 
are not controlled by the experimenter and which may change from one measurement 
to the next, for example, play in the mechanical joints, contractions and expansions 
due to temperature changes, failure of the experimenter to place the zero at exactly the 
same point each time, etc. These are all sources of instrumental error, where the term 
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instrument also includes the observer! The more these factors are taken under control, 
of course, the smaller will be the magnitude of the fluctuations. The instrument is then 
said to be more precise. In the limit of an ideal, perfect instrument, the distribution 
then becomes a i5-function centered at the true value of the measured quantity. In 
reality, of course, such is never the case. 

The measurement of a fixed quantity, therefore, involves taking a sample from an 
abstract, theoretical distribution determined by the imprecisions of the instrument. In 
almost all cases of instrumental errors, it can be argued that the distribution is Gaus­
sian. Assuming no systematic error, the mean of the Gaussian should then be equal to 
the true value of the quantity being measured and the standard deviation proportional 
to the precision of the instrument. 

Let us now see how sampled data are used to estimate the true parameters. 

4.4 Sampling and Parameter Estimation. 
The Maximum Likelihood Method 

Sampling is the experimental method by which information can be obtained about the 
parameters of an unknown distribution. As is well known from the debate over opinion 
polls, it is important to have a representative and unbiased sample. For the experimen­
talist, this means not rejecting data because they do not "look right". The rejection 
of data, in fact, is something to be avoided unless there are overpowering reasons for 
doing so. 

Given a data sample, one would then like to have a method for determining the best 
value of the true parameters from the data. The best value here is that which minimizes 
the variance between the estimate and the true value. In statistics, this is known as 
estimation. The estimation problem consists of two parts: (1) determining the best 
estimate and (2) determining the uncertainty on the estimate. There are a number of 
different principles which yield formulae for combining data to obtain a best estimate. 
However, the most widely accepted method and the one most applicable to our pur­
poses is the principle of maximum likelihood. We shall very briefly demonstrate this 
principle in the following sections in order to give a feeling for how the results are 
derived. The reader interested in more detail or in some of the other methods should 
consult some of the standard texts given in the bibliography. Before treating this topic, 
however, we will first define a few terms. 

4.4.1 Sample Moments 

Let Xj , X2, X3, •.• , xn be a sample of size n from a distribution whose theoretical mean 
is f.1 and variance (12. This is known as the sample population. The sample mean, X, is 
then defined as 

_ 1 n 

X=- LX;, 
n ;=1 

(4.25) 

which is just the arithmetic average of the sample. In the limit n -> 00, this can be shown 
to approach the theoretical mean, 
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. 1 n 
f1.= hm - LXi· (4.26) 

n~oo n i=l 

Similarly, the sample variance, which we denote by S2 is 

S2 = ~ f (Xi-X)2, 
n i= I 

(4.27) 

which is the average of the squared deviations. In the limit n -+ 00, this also approaches 
the theoretical variance (12. 

In the case of multivariate samples, for example, (Xl, yd, (X2' h), ... , the sample 
means and variances for each variable are calculated as above. In an analogous 
manner, the sample covariance can be calculated by 

cov(X, y) = ~ f (Xi-X) (Yi-.Y) . 
n i= I 

(4.28) 

In the limit of infinite n, (4.28), not surprisingly, also approaches the theoretical 
covariance (4.10). 

4.4.2 The Maximum Likelihood Method 

The method of maximum likelihood is only applicable if the form of the theoretical dis­
tribution from which the sample is taken is known. For most measurements in physics, 
this is either the Gaussian or Poisson distribution. But, to be more general, suppose we 
have a sample of n independent observations XI, X2, ... , Xn , from a theoretical 
distribution f(x I B) where B is the parameter to be estimated. The method then consists 
of calculating the likelihood function, 

(4.29) 

which can be recognized as the probability for observing the sequence of values Xl, X2, 

... , xn . The principle now states that this probability is a maximum for the observed 
values. Thus, the parameter B must be such that L is a maximum. If L is a regular func­
tion, B can be found by solving the equation, 

dL =0. 
dB 

(4.30) 

If there is more than one parameter, then the partial derivatives of L with respect to 
each parameter must be taken to obtain a system of equations. Depending on the form 
of L, it may also be easier to maximize the logarithm of L rather than L itself. Solving 
the equation 

d(lnL) = 0 
dB 

(4.31) 

then yields results equivalent to (4.30). The solution, {}, is known as the maximum 
likelihood estimator for the parameter B. In order to distinguish the estimated value 
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from the true value, we have used a caret over the parameter to signify it as the 
estimator. 

It should be realized now that e is also a random variable, since it is a function of 
the Xi. If a second sample is taken, e will have a different value and so on. The 
estimator is thus also described by a probability distribution. This leads us to the 
second half of the estimation problem: What is the error on e? This is given by the 
standard deviation of the estimator distribution. We can calculate this from the 
likelihood function if we recall that L is just the probability for observing the sampled 
values Xl, X2, ••• , xn • Since these values are used to calculate e, L is related to the dis­
tribution for e. Using (4.9), the variance is then 

(4.32) 

This is a general formula, but, unfortunately, only in a few simple cases can an analytic 
result be obtained. An easier, but only approximate method which works in the limit of 
large numbers, is to calculate the inverse second derivative of the log-likelihood func­
tion evaluated at the maximum, 

(4.33) 

If there is more than one parameter, the matrix of the second derivatives must be 
formed, i.e., 

u.= _ 82 lnL 
l} ~B.8B. v I J 

(4.34) 

The diagonal elements of the inverse matrix then give the approximate variances, 

(4.35) 

A technical point which must be noted is that we have assumed that the mean value 
of e is the theoretical B. This is a desirable, but not essential property for an estimator, 
guaranteed by the maximum likelihood method only for infinite n. Estimators which 
have this property are non-biased. We will see one example in the following sections in 
which this is not the case. Equation (4.32), nevertheless, remains valid for all e, since 
the error desired is the deviation from the true mean irrespective of the bias. 

Another useful property of maximum likelihood estimators is invariance under 
transformations. If u = f( B), then the best estimate of u can be shown to be a = f(e). 

Let us illustrate the method now by applying it to the Poisson and Gaussian dis­
tributions. 

4.4.3 Estimator for the Poisson Distribution 

Suppose we have n measurements of samples, xl> X2, X3, ..• , xn from a Poisson dis­
tribution with mean /.1. The likelihood function for this case is then 

n x· n x· 

L(f.1lx) = II ~exp(-/.1)=exp(-n/.1) II ~ 
i = 1 Xi! i = 1 Xi! 

(4.36) 
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To eliminate the product sign, we take the logarithm 

L* = lnL = -nf.1,+ LXilnf.1,- L lnxi! . 

Differentiating and setting the result to zero, we then find 

which yields the solution 

A 1 ~ _ 
f.1,=- £... Xi=X, 

n 

(4.37) 

(4.38) 

(4.39) 

Equation (4.39), of course, is just the sample mean. This is of no great surprise, but it 
does confirm the often unconscious use of (4.39). 

The variance of x can be found by using (4.33); however, in this particular case, we 
will use a different way. From (4.9) we have the definition 

(4.40) 

Applying this to the sample mean and rearranging the terms, we thus have 

E[(x- f.1,)2] = E [ (: L Xi- f.1, YJ = :2 E[( L Xi- nf.1,)2] = :2 E[{L (Xi- f.1,)f] . 

(4.41) 

Expanding the square of the sum, we find 

[L (Xi-f.1,)]2= L (Xi-f.1,)2+ L L (Xi-f.1,)(Xj-f.1,). 
i *j 

If now the expectation value is taken, the cross term vanishes, so that 

2 2 
2 - 1 ~ 2 1 ~ 2 na a 

a (x) = -2 E[ £... (Xi-f.1,) ] = -2 £... E[(Xi-f.1,) ] = -2- = -. 
n n n n 

(4.42) 

(4.43) 

As the reader may have noticed, (4.43) was derived without reference to the Poisson 
distribution, so that (4.43) is, in fact, a general result: the variance of the sample mean 
is given by the variance of the parent distribution, whatever it may be, divided by the 
sample size. 

For a Poisson distribution, a 2 = f.1" so that the error on the estimated Poisson 
mean is 

(4.44) 

where have substituted the estimated value f1 for the theoretical f.1,. 

4.4.4 Estimators for the Gaussian Distribution 

For a sample of n points, all taken from the same Gaussian distribution, the likelihood 
function is 
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L = IT 1 exp [- (Xi-~)2]. 
i=l o'"Vh 20' 

(4.45) 

Once again, taking the logarithm, 

n 1 (Xi- fl)2 
L* = InL = --In(2nO' 2)- - L ---'------;,-..c.-

2 2 0'2 
(4.46) 

Taking the derivatives with respect to fl and 0'2 and setting them to 0, we then have 

aL* 
--- (4.47) 

afl 

and 

aL* = __ n_+ ~ L (Xi-fl)2_1_=0. 
aO' 2 20'2 2 a 0'2 

(4.48) 

Solving (4.47) first yields 

A LXi -
fl=--=X. (4.49) 

n 

The best estimate of the theoretical mean for a Gaussian is thus the sample mean, 
which again comes as no great surprise. 

From the general result in (4.43), the uncertainty on the estimator is thus 

O'(x) =~. vn (4.50) 

This is usually referred to as the standard error of the mean. Note that the error 
depends on the sample number as one would expect. As n increases, the estimate x 
becomes more and more precise. When only one measurement is made, n = 1, o'(x) 
reduces to o'. For a measuring device, a thus represents the precision of the instrument. 

For the moment, however, a is still unknown. Solving (4.48) for 0'2 yields the 
estimator 

(4.51) 

where we have replaced fl by its solution in (4.49). This, of course, is just the sample 
variance. 

For finite values of n, however, the sample variance turns out to be a biased 
estimator, that is the expectation value of s2 does not equal the true value, but is offset 
from it by a constant factor. It is not hard to show, in fact, that E[S2] = 0'2_ O' 2/n = 
(n -1) O' 2/n. Thus for n very large, S2 approaches the true variance as desired; however, 
for small n, 0'2 is underestimated by S2. The reason is quite simple: for small samples, 
the occurrence of large values far from the mean is rare, so the sample variance tends to 
be weighted more towards smaller values. For practical use, a somewhat better estimate 
therefore, would be to multiply (4.51) by the factor n/(n -1), 
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(4.52) 

Equation (4.52) is unbiased, however, it is no longer the best estimate in the sense that 
its average deviation from the true value is somewhat greater than that for (4.51). The 
difference is small however, so that (4.52) still provides a good estimate. Equation 
(4.52) then is the recommended formula for estimating the variance. Note that unlike 
the mean, it is impossible to estimate the standard deviation from one measurement be­
cause of the (n -1) term in the denominator. This makes sense, of course, as it quite 
obviously requires more than one point to determine a dispersion! 

The variance of &2 in (4.52) may also be shown to be 

(4.53) 

and the standard deviation of (j 

( A) (J & 
(J (J = =:: ----:==~ 

V2(n-1) V2(n-1) 
(4.54) 

4.4.5 The Weighted Mean 

We have thus far discussed the estimation of the mean and standard deviation from 
a series of measurements of the same quantity with the same instrument. It often oc­
curs, however, that one must combine two or more measurements of the same quantity 
with differing errors. A simple minded procedure would be to take the average of the 
measurements. This, unfortunately, ignores the fact that some measurements are more 
precise than others and should therefore be given more importance. A more valid meth­
od would be to weight each measurement in proportion to its error. The maximum 
likelihood method allows us to determine the weighting function to use. 

From a statistics point of view, we have a sample XI,x2' ... ,xn' where each value 
is from a Gaussian distribution having the same mean f1 but a different standard devia­
tion (Ji. The likelihood function is thus the same as (4.45), but with (J replaced by (Ji. 

Maximizing this we then find the weighted mean 

(4.55) 

Thus the weighting factor is the inverse square of the error, i.e., 11 (JT. This cor­
responds to our logic as the smaller the (Ji, the larger the weight and vice-versa. 

Using (4.33), the error on the weighted mean can now be shown to be 

(4.56) 

Note that if all the (Ji are the same, the weighted mean reduces to the normal formula in 
(4.49) and the error on the mean to (4.50). 
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4.5 Examples of Applications 

4.5.1 Mean and Error from a Series of Measurements 

Example 4.1 Consider the simple experiment proposed in Sect. 4.3.2 to measure the 
length of an object. The following results are from such a measurement: 

17.62 
17.61 
17.61 

17.62 
17.62 
17.615 

17.615 
17.625 
17.61 

17.62 
17.62 
17.605 

17.61 
17.62 
17.61 

What is the best estimate for the length of this object? 

Since the errors in the measurement are instrumental, the measurements are Gaus­
sian distributed. From (4.49), the best estimate for the mean value is then 

x=17.61533 

while (4.52) gives the standard deviation 

& = 5.855 X 10- 3 . 

This can now be used to calculate the standard error of the mean (4.50), 

a(x) = &/05 = 0.0015. 

The best value for the length of the object is thus 

X= 17.616±0.002. 

Note that the uncertainty on the mean is given by the standard error of the mean and 
not the standard deviation! 

4.5.2 Combining Data with Different Errors 

Example 4.2 It is necessary to use the lifetime of the muon in a calculation. However, 
in searching through the literature, 7 values are found from different experiments: 

2.198±0.001 ~s 
2.197 ± 0.005 ~s 
2.1948±0.0010 ~s 

2.203 ± 0.004 ~s 
2.198±0.002 ~s 

What is the best value to use? 

2.202 ± 0.003 ~s 
2.1966 ± 0.0020 ~s 

One way to solve this problem is to take the measurement with the smallest error; 
however, there is no reason for ignoring the results of the other measurements. Indeed, 
even though the other experiments are less precise, they still contain valid information 
on the lifetime of the muon. To take into account all available information we must 
take the weighted mean. This then yields then mean value 

T = 2.19696 

with an error 
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a(r) = 0.00061. 

Note that this value is smaller than the error on any of the individual measurements. 
The best value for the lifetime is thus 

r= 2.1970 ± 0.0006 ~s . 

4.5.3 Determination of Count Rates and Their Errors 

Example 4.3 Consider the following series of measurements of the counts per minute 
from a detector viewing a 22Na source, 

2201 2145 2222 2160 2300 

What is the decay rate and its uncertainty? 

Since radioactive decay is described by a Poisson distribution, we use the estimators 
for this distribution to find 

f1 = x = 2205.6 and 

a(f1) = ~ = V 22~5.6 = 21 . 

The count rate is thus 

Count Rate = (2206 ± 21) counts/min. 

It is interesting to see what would happen if instead of counting five one-minute pe­
riods we had counted the total 5 minutes without stopping. We would have then ob­
served a total of 11 028 counts. This constitutes a sample of n = 1. The mean count rate 
for 5 minutes is thus 11208 and the error on this, a = V 11208 = 106. To find the 
counts per minute, we divide by 5 (see the next section) to obtain 2206 ± 21, which is 
identical to what was found before. Note that the error taken was the square root of the 
count rate in 5 minutes. A common error to be avoided is to first calculate the rate per 
minute and then take the square root of this number. 

4.5.4 Null Experiments. Setting Confidence Limits When No Counts Are Observed 

Many experiments in physics test the validity of certain theoretical conservation laws by 
searching for the presence of specific reactions or decays forbidden by these laws. In 
such measurements, an observation is made for a certain amount of time T. Obviously, 
if one or more events are observed, the theoretical law is disproven. However, if no 
events are observed, the converse cannot be said to be true. Instead a limit on the life­
time of the reaction or decay is set. 

Let us assume therefore that the process has some mean reaction rate A.. Then the 
probability for observing no counts in a time period Tis 

P(O I},,) = exp (-)" n . (4.57) 
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This, now, can also be interpreted as the probability distribution for A when no counts 
are observed in a period T. We can now ask the question: What is the probability that A 
is Jess AO? From (4.1), 

AD 

P(A:5AO) = J Texp( -AT) dA = 1- exp(-AoT) , 
o 

(4.58) 

where we have normalized (4.57) with the extra factor T. This probability is known as 
the confidence level for the interval between 0 to AO' To make a strong statement we 
can choose a high confidence level (CL), for example, 90070. Setting (4.58) equal to this 
probability then gives us the value of AO, 

1 
AO= - -In(1-CL). 

T 
(4.59) 

For a given confidence level, the corresponding interval is, in general, not unique and 
one can find other intervals which yield the same integral probability. For example, it 
might be possible to integrate (4.57) from some lower limit A' to infinity and still obtain 
the same area under the curve. The probability that the true A is greater than A' is then 
also 90070. As a general rule, however, one should take those limits which cover the 
smallest range in A. 

Example 4.4 A 5Q g sample of 82Se is observed for 100 days for neutrinoless double 
beta decay, a reaction normally forbidden by lepton conservation. However, current 
theories suggest that this might occur. The apparatus has a detection efficiency of 20070. 
No events with the correct signature for this decay are observed. Set an upper limit on 
the lifetime for this decay mode. 

Choosing a confidence limit of 90070, (4.59) yields 

A:5AO= - 1 In(1-0.9)=0.115day-l, 
100 xO.2 

where we have corrected for the 20070 efficiency of the detector. This limit must now be 
translated into a lifetime per nucleus. For 50 g, the total number of nuclei is 

N = Na x 50 = 3.67 X 1023 , 
82 

which implies a limit on the decay rate per nucleus of 

A< 0.115 =3.13xl0- 25 day-l. 
3.67 x 1023 

The lifetime is just the inverse of A which yields 

T~ 8.75 X 1021 years 90070 CL , 

where we have converted the units to years. Thus, neutrinoless double beta decay may 
exist but it is certainly a rare process! 
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Example 4.5 Consider a near perfect electronic system for recording electronic pulses. 
Suppose we wish to measure its efficiency by sending in N pulses from a pulse generator 
and observing the number of pulses registered. Suppose that this number is also N. 
What can be said about the efficiency of the counter system from this measurement? 

This experiment is equivalent to measuring the inefficiency of the system which is 
very small. Just as in Example 4.4, then, the question to ask is: what lower limit on 
the efficiency (or upper limit on the inefficiency) can be set from this result? 

Let e be the efficiency of the system. The probability of the system registering r 
counts when N pulses are injected is then given by the binomial distribution 

N! 
P(N,r) = e r(1_e)N-r 

(N -r)! r! 

The probability of detecting N pulses when N are injected is then 

P(N,N) = eN . 

Let us now try to invert this probability. With some reflection, in fact, we can see that 
the probability that the efficiency has some value e = e I when N pulses are counted is 
also given by 

pee = e') ex e,N 

except that e is now the random variable instead of N. Normalizing the above probabil­
ity distribution with respect to e, we find 

pee) = (N+ l)e N . 

This now allows us to calculate a confidence level CL for some lower limit eo, 

1 

CL = J P(e')de ' = 1 - e{j+ 1 

eo 

Solving for eo yields the lower limit 

eo = (1 - CL)II(N+ 1) • 

To illustrate this with some numbers, suppose N = 100. Choosing a 950/0 confidence 
level, we find that eo = 0.9708. Thus we can say that the efficiency e 2':: 0.97 with a 
95% certainty! 

4.5.5 Distribution of Time Intervals Between Counts 

A distribution which we will make use of later is the distribution of time intervals be­
tween events from a random source. Suppose we observe a radioactive source with a 
mean rate A. The probability of observing no counts in a period T is then given by 
(4.57). In a manner similar to Sect. 4.5.4, we can interpret (4.57) as the probability den-
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sity for the time interval T during which no counts are observed. Normalizing (4.57), 
we obtain the distribution 

P(T) = A exp( -AT) (4.60) 

for the time T between counts. Equation (4.60) is just an exponential distribution and 
can, in fact, be measured. 

4.6 Propagation of Errors 

We have seen in the preceding sections how to calculate the errors on directly measured 
quantities. Very often, however, it is necessary to calculate other quantities from these 
data. Clearly, the calculated result will then contain an uncertainty which is carried 
over from the measured data. 

To see how the errors are propagated, consider a quantity u = f(x, y) where x and y 
are quantities having errors ax and ay , respectively. To simplify the algebra, we only 
consider a function of two variables here; however, the extension to more variables will 
be obvious. We would like then to calculate the standard deviation au as a function of 
ax and ay • The variance a~ can be defined as 

(4.61) 

To first order, the mean u may be approximated by f(x,Y). This can be shown by ex­
pandingf(x,y) about (x,Y). Now, to express the deviation of u in terms of the devia­
tions in x and y, let us expand (u - u) to first order 

(u-u) :::::(x-x) of I +(y-y) of I ' 
ox x oy ji 

(4.62) 

where the partial derivatives are evaluated at the mean values. Squaring (4.62) and sub­
stituting into (4.61) then yields 

E[(u - U)2] ::::: E [(X-X)2 (of)\ (y_ ji)2 (Of)2 + 2(x-x)(y- ji) of of]. 
oX oy ox oy 

(4.63) 

Now taking the expectation value of each term separately and making use of the defini­
tions (4.8,9) and (4.10), we find 

a~::::: ( of)2a;+ (of)2a ;+2COV(X,y) of of. 
oX oy ox oy 

(4.64) 

The errors therefore are added quadratically with a modifying term due to the 
covariance. Depending on its sign and magnitude, the covariance can increase or de­
crease the errors by dramatic amounts. In general most measurements in physics exper­
iments are independent or should be arranged so that the covariance will be zero. Equa-
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tion (4.64) then reduces to a simple sum of squares. Where correlations can arise, how­
ever, is when two or more parameters are extracted from the same set of measured 
data. While the raw data points are independent, the parameters will generally be cor­
related. One common example are parameters resulting from a fit. The correlations can 
be calculated in the fitting procedure and all good computer fitting programs should 
supply this information. An example is given in Sect. 4.7.2. If these parameters are 
used in a calculation, the correlation must be taken into account. A second example of 
this type which might have occurred to the reader is the estimation of the mean and 
variance from a set of data. Fortunately, it can be proved that the estimators (4.49) and 
(4.52) in the Gaussian case are statistically independent so that p = O! 

4.6.1 Examples 

As a first example let us derive the formulas for the sum, difference, product and ratio 
of two quantities x and y with errors ax and ay. 

i) Error of a Sum: u = x+ y 

a~ = a~+ a;+ 2 cov (x, y) . (4.65) 

ii) Error of a Difference: u = x - y 

a~= a~+a;-2cov(x,y). (4.66) 

If the covariance is 0, the errors on both a sum and difference then reduce to the 
same sum of squares. The relative error, aulu, however, is much larger for the case of a 
difference since u is smaller. This illustrates the disadvantage of taking differences be­
tween two numbers with errors. If possible, therefore, a difference should always be 
directly measured rather than calculated from two measurements! 

iii) Error of a Product: u = xy 

a~:= y2 a;+ x 2 a;+ 2 cov (x, y) xy . 

Dividing the left side by u2 and the right side by x 2y2, 

(4.67) 

iv) Error of a Ratio: u = xly 

a~:= y-2 a~+ x 2 y-4 a;- 2 cov (x, y)xy-3 . 

Dividing both sides by u 2 as in (iii), we find 

2 2 2 
~ :=~+~-2 cov(x, y) 
u2 x 2 y2 xy 

(4.68) 

which, with the exception of the sign of the covariance term is identical to the formula 
for a product. Equation (4.68) is generally valid when the relative errors are not too 
large. For ratios of small numbers, however, (4.68) is inapplicable and some additional 
considerations are required. This is treted in detail by James and Roos [4.1]. 
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Example 4.6 The classical method for measuring the polarization of a particle such as 
a proton or neutron is to scatter it from a suitable analyzing target and to measure the 
asymmetry in the scattered particle distribution. One can, for example, count the num­
ber of particles scattered to the left of the beam at certain angle and to the right of the 
beam at the same corresponding angle. If R is the number scattered to the right and L 
the number to the left, the asymmetry is then given by 

R-L 
e=---. 

R+L 

Calculate the error on e as a function of the counts Rand L. 
This is a straight forward application of (4.64). Taking the derivatives of e, we thus 

find 

ae R-L 2L 
-----
oR R+L (R+L)2 Ntot 

ae R-L -2R 
----

aL R+L (R+L)2 Ntot 

, 

where the total number of counts N tot = R + L. The error is thus 

2 4L2 2 4R2 2 
a (e)~-4-aR+--4-aL. 

N tot N tot 

The covariance is obviously 0 here since the measurements are independent. The errors 
on Rand L are now given by the Poisson distribution, so that a~ = Rand a1 = L. Sub­
stituting into the above, then yields 

a2(e)~4(L2R+4R2L) =4 R~ . 
N tot N tot 

If the asymmetry is small such that R ~ L ~ N tot l2, we have the result that 

a(e) ~ V 1 . 
N tot 

4.7 Curve Fitting 

In many experiments, the functional relation between two or more variables describing 
a physical process, y = f(Xl, X2, ••. ), is investigated by measuring the value of y for 
various of Xl, X2, ••.• It is then desired to find the parameters of a theoretical curve 
which best describe these points. For example, to determine the lifetime of a certain 
radioactive source, measurements of the count rates, N l , N 2 , .•• ,Nn , at various times, 
tl, t2 , ... , tn' could be made and the data fitted to the expression 

N(t) = No exp ( - tlr) . (4.69) 
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Since the count rate is subject to statistical fluctuations, the values Ni will have uncer­
tainties ai = VM and will not all lie along a smooth curve. What then is the best curve 
or equivalently, the best values for r and No and how do we determine them? The meth­
od most useful for this is the method of least squares. 

4.7.1 The Least Squares Method 

Let us suppose that measurements at n points, Xi, are made of the variable Yi with an er­
ror ai (i = 1, 2, ... , n), and that it is desired to fit a function f(x; at, a2, ... , am) to 
these data where at, a2, ... , am are unknown parameters to be determined. Of course, 
the number of points must be greater than the number of parameters. The method of 
least squares states that the best values of aj are those for which the sum 

S = i~t [Yi-f~i; aj) r (4.70) 

is a minimum. Examining (4.70) we can see that this is just the sum of the squared 
deviations of the data points from the curve f(xJ weighted by the respective errors on 
Yi' The reader might also recognize this as the chi-square in (4.22). For this reason, the 
method is also sometimes referred to as chi-square minimization. Strictly speaking this 
is not quite correct as Yi must be Gaussian distributed with meanf(xi; a) and variance 
aT in order for S to be a true chi-square. However, as this is almost always the case for 
measurements in physics, this is a valid hypothesis most of the time. The least squares 
method, however, is totally general and does not require knowledge of the parent dis­
tribution. If the parent distribution is known the method of maximum likelihood may 
also be used. In the case of Gaussian distributed errors this yields identical results. 

To find the values of ai' one must now solve the system of equations 

oS = O. 
oai 

(4.71) 

Depending on the function f(x) , (4.71) mayor may not yield on analytic solution. In 
general, numerical methods requiring a computer must be used to minimize S. 

Assuming we have the best values for ai' it is necessary to estimate the errors on the 
parameters. For this, we form the so-called covariance or error matrix, V;j' 

(4.72) 

where the second derivative is evaluated at the minimum. (Note the second derivatives 
form the inverse of the error matrix). The diagonal elements V;j can then be shown to be 
the variances for ai, while the offdiagonal elements V;j represent the covariances be­
tween ai and aj. Thus, 

[~i 
cov(1,2) cov(1,3) 

o OJ a~ cov(2,3) ... 
f= 

a~ 
(4.73) 

and so on. 
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4.7.2 Linear Fits. The Straight Line 

In the case of functions linear in their parameters ai' i.e., there are no terms which are 
products or ratios of different a/s, (4.71) can be solved analytically. Let us illustrate 
this for the case of a straight line 

y =f(x) = ax+b, (4.74) 

where a and b are the parameters to be determined. Forming S, we find 

(4.75) 

Taking the partial derivatives with respect to a and b, we then have the equations 

To simplify the notation, let us define the terms 

Using these definitions, (4.76) becomes 

2( -E+aD+bA) = 0, 

2( -C+aA +bB) = O. 

This then leads to the solution, 

EB-CA 
a = -D-B---A-2" 

b= DC-EA 
DB-A2 

(4.76) 

(4.77) 

(4.78) 

(4.79) 

Our work is not complete, however, as the errors on a and b must also be determined. 
Forming the inverse error matrix, we then have 

V-I = (A11 A12), where 
A21 A22 

(4.80) 
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Inverting (4.80), we find 

V= 1 ( A22 
A 11 A 22 -A I2 -A12 

-A12) 
A11 

(4.81) 

so that 

O' 2(a) = A22 B 
A l1 A 22 -AI2 BD-A 2 ' 

D (4.82) 
BD-A2 ' 

cov(a, b) = -A12 2 
A l1 A 22 -A 12 

-A 
BD-A2 . 

To complete the process, now, it is necessary to also have an idea of the quality of the 
fit. Do the data, in fact, correspond to the functionf(x) we have assumed? This can be 
tested by means of the chi-square. This is just the value of S at the minimum. Recalling 
Sect. 4.2.4, we saw that if the data correspond to the function and the deviations are 
Gaussian, S should be expected to follow a chi-square distribution with mean value 
equal to the degrees of freedom, v. In the above problem, there are n independent data 
points from which m parameters are extracted. The degrees of freedom is thus 
v = n - m. In the case of a linear fit, m = 2, so that v = n - 2. We thus expect S to be 
close to v = n - 2 if the fit is good. A quick and easy test is to form the reduced chi­
square 

i S (4.83) 
v v 

which should be close to 1 for a goodfit. 
A more rigorous test is to look at the probability of obtaining a X2 value greater 

than S, i.e., P(X 2 "2:!S). This requires integrating the chi-square distribution or using 
cumulative distribution tables. In general, if P(X 2 "2:!S) is greater than 5070, the fit can be 
accepted. Beyond this point, some questions must be asked. 

An equally important point to consider is when S is very small. This implies that the 
points are not fluctuating enough. Barring falsified data, the most likely cause is an 
overestimation of the errors on the data points. If the reader will recall, the error bars 
represent a 1 a deviation, so that about 1/3 of the data points should, in fact, be expect­
ed to fall outside the fit! 

Example 4.7 Find the best straight line through the following measured points 

x 
y 
a 

o 
0.92 
0.5 

1 
4.15 
1.0 

2 
9.78 
0.75 

3 
14.46 
1.25 

Applying (4.75) to (4.82), we find 

a = 4.227 b = 0.878 

O'(a) = 0.044 O'(b) = 0.203 and 
cov(a, b) = - 0.0629. 

4 
17.26 
1.0 

5 
21.90 

1.5 
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To test the goodness-of-fit, we must look at the chi-square 

i = 2.078 

for 4 degrees of freedom. Forming the reduced chi-square, X2/v::::: 0.5, we can see 
already that his is a good fit. If we calculate the probability P(X 2 >2.07) for 4 degrees 
of freedom, we find P ::::: 97.5070 which is well within acceptable limits. 

Example 4.8 For certain nonlinear functions, a linearization may be affected so that 
the method of linear least squares becomes applicable. One case is the example of the 
exponential, (4.69), which we gave at the beginning of this section. Consider a decaying 
radioactive source whose activity is measured at intervals of 15 seconds. The total 
counts during each period are given below. 

t [s] 1 15 30 45 60 75 90 105 120 135 
N[ets] 106 80 98 75 74 73 49 38 37 22 

What is the lifetime for this source? 

The obvious procedure is to fit (4.69) to these data in order to determine T. Equa­
tion (4.69), of course, is nonlinear, however it can be linearized by taking the logarithm 
of both sides. This then yields 

-t 
InN= -+lnNo. 

T 

Setting y = In N, a = -lIT and b = In No, we see that this is just a straight line, so that 
our linear least-squares procedure can be used. One point which we must be careful 
about, however, is the errors. The statistical errors on N, of course, are Poissonian, so 
that a(N) = tIN. In the fit, however, it is the logarithm of N which is being used. The 
errors must therefore be transformed using the propagation of errors formula; we then 
have 

a 2(lnN) = (olnN)2 a2(N) = _l_N = N- 1 • 

oN N 2 

Using (4.75) to (4.82) now, we find 

a = -1/ T = - 0.008999 a(a) = 0.001 

b = InNo= 4.721 a(b) = 0.064. 

The lifetime is thus 

T= 111±12s . 

The chi-square for this fit is i = 15.6 with 8 degrees of freedom. The reduced chi­
square is thus 15.6/(8::::: 1.96, which is somewhat high. If we calculate the probability 
p(i> 15) ::::: 0.05, however, we find that the fit is just acceptable. The data and the best 
straight line are sketched in Fig. 4.7 on a semi-log plot. 

While the above fit is acceptable, the relatively large chi-square should, neverthe­
less, prompt some questions. For example, in the treatment above, background counts 
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101~ __ ~ __ ~ __ ~ __ ~~~~~~~~~~ 
o ~ ~ ~ 00 ~ ~ ~ ~ ~ 

Time 

Fig. 4.7. Fit to data of Example 4.8. Note 
that the error bars of about 1/3 of the 
points do not touch the fitted line. This is 
consistent with the Gaussian nature of the 
measurements. Since the region defined by 
the errors bars (± 1 a) comprises 68070 of 
the Gaussian distribution (see Fig. 4.5), 
there is a 32% chance that a measurement 
will exceed these limits! 

were ignored. An improvement in our fit might therefore be obtained if we took this 
into account. If we assume a constant background, then the equation to fit would be 

N(t) = Noexp( - tlr)+ C. 

Another hypothesis could be that the source has more than one decay component in 
which case the function to fit would be a sum of exponentials. These forms unfortu­
nately cannot be linearized as above and recourse must be made to nonlinear methods. 
In the special case described above, a non-iterative procedure [4.2- 6] exists which may 
also be helpful. 

4.7.3 Linear Fits When Both Variables Have Errors 

In the previous examples, it was assumed that the independent variables Xi were com­
pletely free of errors. Strictly speaking, of course, this is never the case, although in 
many problems the errors on X are small with respect to those on y so that they may be 
neglected. In cases where the errors on both variables are comparable, however, ignor­
ing the errors on x leads to incorrect parameters and an underestimation of their errors. 
For these problems the effective variance method may be used. Without deriving the 
result which is discussed by Lybanon [4.7] and Orear [4.8] for Gaussian distributed 
errors, the method consists of simply replacing the variance o} in (4.70) by 

2 2 df 2 ( )
2 

ai-->ay + dx ax, (4.84) 

where ax and ay are the errors on x andy respectively. Since the derivative is normally a 
function of the parameters ai' S is nonlinear and numerical methods must be used to 
minimize S. 

4.7.4 Nonlinear Fits 

As we have already mentioned, nonlinear fits generally require a numerical procedure 
for minimizing S. Function minimization or maximization 2 is a problem in itself and 

2 A minimization can be turned into a maximization by simply adding a minus sign in front of the function 
and vice-versa. 
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a number of methods have been developed for this purpose. However, no one method 
can be said to be applicable to all functions, and, indeed, the problem often is to find 
the right method for the function or functions in question. A discussion of the different 
methods available, of course, is largely outside the scope of this book. However, it is 
nevertheless worthwhile to briefly survey the most used methods so as to provide the 
reader with a basis for more detailed study and an idea of some of the problems to be 
expected. For practical purposes, a computer is necessary and we strongly advise the 
reader to find a ready-made program rather than attempt to write it himself. More 
detailed discussions may be found in [4.9-11]. 

Function Minimization Techniques. Numerical minimization methods are generally 
iterative in nature, i.e., repeated calculations are made while varying the parameters in 
some way, until the desired minimum is reached. The criteria for selecting a method, 
therefore, are speed and stability against divergences. In general, the methods can be 
classified into two broad categories: grid searches and gradient methods. 

The grid methods are the simplest. The most elementary procedure is to form a grid 
of equally spaced points in the variables of interest and evaluate the function at each of 
these points. The point with the smallest value is then the approximate minimum. 
Thus, if F(x) is the function to minimize, we would evaluate Fat xo, xo+ ,1 x, xo+ 2,1x, 
etc. and choose the point x' for which F is smallest. The size of the grid step, ,1x, 
depends on the accuracy desired. This method, of course, can only be used over a finite 
range of x and in cases where x ranges over infinity it is necessary to have an approxi­
mate idea of where the minimum is. Several ranges may also be tried. 

The elementary grid method is intrinsically stable, but it is quite obviously ineffi­
cient and time consuming. Indeed, in more than one dimension, the number of func­
tion evaluations becomes prohibitively large even for a computer! (In contrast to the 
simple grid method is the Monte Carlo or random search. Instead of equally spaced 
points, random points are generated according to some distribution, e.g., a uniform 
density.) 

More efficient grid searches make use of variable stepping methods so as to reduce 
the number of evaluations while converging onto the minimum more rapidly. A rela­
tively recent technique is the simplex method [4.12]. A simplex is the simplest geo­
metrical figure in n dimensions having n + 1 vertices. In n = 2 dimensions, for example, 
the simplex is a triangle while in n = 3 dimensions, the simplex is a tetrahedron, etc. 
The method takes on the name simplex because it uses n + 1 points at each step. As an 
illustration, consider a function in two dimensions, the contours of which are shown in 
Fig. 4.8. The method begins by choosing n + 1 = 3 points in some way or another, 
perhaps at random. A simplex is thus formed as shown in the figure. The point with the 
highest value is denoted as PH, while the lowest is PL' The next step is to replace PH 
with a better point. To do this, PH is reflected through the center of gravity of all points 
except PH, i.e., the point 

(4.85) 

This yields the point p* = P+ (P- PH)' If F(P*) < F(Pd , a new minimum has been 
found and an attempt is made to do even better by trying the point 
p** = P+ 2(P- PH)' The best point is then kept. If F(P*) >F(PH) the reflection is 
brought backwards to p** = P-+(P-PH). If this is not better than PH, a new 
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Fig. 4.8. The simplex method for function 
minimization 

simplex is formed with points at Pi = (Pi+ Pd12 and the procedure restarted. In this 
manner, one can imagine the triangle in Fig. 4.8 "falling" to the minimum. The simplex 
technique is a good method since it is relatively insensitive to the type of function, but it 
can also be rather slow. 

Gradient methods are techniques which make use of the derivatives of the function 
to be minimized. These can either be calculated numerically or supplied by the user if 
known. One obvious use of the derivatives is to serve as guides pointing in the direction 
of decreasing F. This idea is used in techniques such as the method of steepest descent. 
A more widely used technique, however, is Newton's method which uses the derivatives 
to form a second-degree Taylor expansion of the function about the point xo, 

OFI 1 02FI 2 F(x) ==F(xo)+- (x-xo)+- --2 (x-xo)· 
oX Xo 2 oX Xo 

(4.86) 

In n dimensions, this is generalized to 

F(x) == F(xo) + g T (x-xo) + +(X-XO)T 9(x-xo) , (4.87) 

where gi is the vector of first derivatives oFloXi and Gij the matrix of second deriva­
tives 02 F IOXi OXj. The matrix G is also called the hessian. In essence, the method 
approximates the function around Xo by a quadratic surface. Under this assumption, it 
is very easy to calculate the minimum of the n dimensional parabola analytically, 

G - 1 
Xmin = Xo- _ g. (4.88) 

This, of course, is not the true minimum of the function; but by forming a new 
parabolic surface about Xmin and calculating its minimum, etc., a convergence to the 
true minimum can be obtained rather rapidly. The basic problem with the technique is 
that it requires G to be everywhere positive definite, otherwise at some point in the 
iteration a maximum may be calculated rather than a minimum, and the whole process 
diverges. This is more easily seen in the one-dimensional case in (4.86). If the second 
derivative is negative, then, we clearly have an inverted parabola rather than the desired 
well-shape figure. 
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Despite this defect, Newton's method is quite powerful and algorithms have been 
developed in which the matrix G is artificially altered whenever it becomes negative. In 
this manner, the iteration continues in the right direction until a region of positive­
definiteness is reached. Such variations are called quasi-Newton methods. 

The disadvantage of the Newton methods is that each iteration requires an evalua­
tion of the matrix G and its inverse. This, of course, becomes quite costly in terms of 
time. This problem has given rise to another class of methods which either avoid 
calculating G or calculate it once and then "update" G with some correcting function 
after each iteration. These methods are described in more detail by James [4.11]. 

In the specific case of least squares minimization, a common procedure used with 
Newton's method is to linearize the fitting function. This is equivalent to approximat­
ing the hessian in the following manner. Rewriting (4.70) as 

s= I sL (4.89) 
k 

where Sk = [Yk-!(Xk»)/ O"k> the hessian becomes 

(4.90) 

The second term in the sum can be considered as a second order correction and is set to 
zero. The hessian is then 

(4.91) 

This approximation has the advantage of ensuring positive-definiteness and the result 
converges to the correct minimum. However, the covariance matrix will not in general 
converge to the correct covariance values, so that the errors as determined by this 
matrix may not be correct. 

As the reader can see, it is not a trivial task to implement a nonlinear least squares 
program. For this reason we have advised the use of a ready-made program. A variety 
of routines may be found in the NAG library [4.13], for example. A very powerful 
program allowing the use of a variety of minimization methods such a simplex, 
Newton, etc., is Minuit [4.14] which is available in the CERN program library. This 
library is distributed to many laboratories and universities. 

Local vs Global Minima. Up to now we have assumed that the function F contains only 
one minimum. More generally, of course, an arbitrary function can have many local 
minima in addition to a global, absolute minimum. The methods we have described are 
all designed to locate a local minimum without regard for any other possible minima. It 
is up to the user to decide if the minimum obtained is indeed what he wants. It is 
important, therefore, to have some idea of what the true values are so as to start the 
search in the right region. Even in this case, however, there is no guarantee that the 
process will converge onto the closest minimum. A good technique is to fix those 
parameters which are approximately known and vary the rest. The result can then be 
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used to start a second search in which all the parameters are varied. Other problems 
which can arise are the occurrence of overflow or underflow in the computer. This oc­
curs very often with exponential functions. Here good starting values are generally 
necessary to obtain a result. 

Errors. While the methods we have discussed allow us to find the parameter values 
which minimize the function S, there is no prescription for calculating the errors on the 
parameters. A clue, however, can be taken from the linear one-dimensional case. Here 
we saw the variance of a parameter B was given by the inverse of the second derivative 
(4.72), 

a 2 = I~ :2;1- 1 

If we expand S in Taylor series about the minimum 

S(B) = S(B*)+~ fis «()_ B*)2 
2 8£1 

= S(B*) +-; «()_ (}*)2. 
a 

At the point B = ()* + a, we thus find that 

S«()* + a) = S(B*) + 1 . 

(4.92) 

(4.93) 

(4.94) 

Thus the error on () corresponds to the distance between the minimum and where the S 
distribution increases by 1. 

This can be generalized to the nonlinear case where the S distribution is not general­
ly parabolic around the minimum. Finding the errors for each parameter then implies 
finding those points for which the S value changes by 1 from the minimum. If S has a 
complicated form, of course, this is not always easy to determine and once again, a 
numerical method must be used to solve the equation. If the form of S can be approxi­
mated by a quadratic surface, then, the error matrix in (4.73) can be calculated and 
inverted as in the linear case. This should then give an estimate of the errors and covari­
ances. 

4.8 Some General Rules for Rounding-off Numbers 
for Final Presentation 

As a final remark in this chapter, we will suggest here a few general rules for the round­
ing off of numerical data for their final presentation. 

The number of digits to be kept in a numerical result is determined by the errors on 
that result. For example, suppose our result after measurement and analysis is cal­
culated to be x = 17.615334 with an error a(x) = 0.0233. The error, of course, tells us 
that the result is uncertain at the level of the second decimal place, so that all following 
digits have absolutely no meaning. The result therefore should be rounded-off to corre­
spond with the error. 
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Rounding off also applies to the calculated error. Only the first significant digit has 
any meaning, of course, but it is generally a good idea to keep two digits (but not more) 
in case the results are used in some other analysis. The extra digit then helps avoid a 
cumulative round-off error. In the example above, then, the error is rounded off to 
(J = 0.0233 --> 0.023; the result, x, should thus be given to three decimal places. 

A general method for rounding off numbers is to take all digits to be rejected and to 
place a decimal point in front. Then 

1) if the fraction thus formed is less than 0.5, the least significant digit is kept as is, 
2) if the fraction is greater than 0.5, the least significant digit is increased by 1, 
3) if the fraction is exactly 0.5, the number is increased if the least significant digit is 

odd and kept if it is even. 

In the example above, three decimal places are to be kept. Placing a decimal point in 
front of the rejected digits then yields 0.334. Since this is less than 0.5, the rounded 
result is x = 17.615 ± 0.023. 

One thing which should be avoided is rounding off in steps of one digit at a time. 
For example, consider the number 2.346 which is to be rounded-off to one decimal 
place. Using the method above, we find 2.346 --> 2.3. Rounding-off one digit at a time, 
however, yields 

2.346 --> 2.35 --> 2.4 ! 



5. General Characteristics of Detectors 

As an introduction to the following chapters on detectors, we will define and describe 
here some general characteristics common to detectors as a class of devices. For the 
reader without detector experience, these characteristics will probably take on more sig­
nificance when examples of specific detectors are treated. He should not hesitate to 
continue on, therefore, and return at a later time if he has not fully understood the con­
tents of this chapter. 

While the history of nuclear and elementary particle physics has seen the develop­
ment of many different types of detectors, all are based on the same fundamental prin­
ciple: the transfer of part or all of the radiation energy to the detector mass where it is 
converted into some other form more accessible to human perception. As we have seen 
in Chap. 2, charged particles transfer their energy to matter through direct collisions 
with the atomic electrons, thus inducing excitation or ionization of the atoms. Neutral 
radiation, on the other hand, must first undergo some sort of reaction in the detector 
producing charged particles, which in turn ionize and excite the detector atoms. The 
form in which the converted energy appears depends on the detector and its design. The 
gaseous detectors discussed in the next chapter, for example, are designed to directly 
collect the ionization electrons to form an electric current signal, while in scintillators, 
both the excitation and ionization contribute to inducing molecular transitions which 
result in the emission of light. Similarly, in photographic emulsions, the ionization in­
duces chemical reactions which allow a track image to be formed, and so on. 

Modern detectors today are essentially electrical in nature, i.e., at some point along 
the way the information from the detector is transformed into electrical impulses which 
can be treated by electronic means. This, of course, takes advantage of the great pro­
gress that has been made in electronics and computers to provide for faster and more 
accurate treatment of the information. Indeed, most modern detectors cannot be ex­
ploited otherwise. When discussing "detectors", therefore, we will also take this to 
mean the electronics as well. This, of course, is not to say that only electrical detectors 
are used in modern experiments, and indeed there are many other types which are 
employed. However, if an electrical detector can be used, it is generally preferred for 
the reasons already mentioned. Our discussion in the following sections, therefore, will 
only be concerned with this type. 

5.1 Sensitivity 

The first consideration for a detector is its sensitivity, i.e., its capability of producing a 
usable signal for a given type of radiation and energy. No detector can be sensitive to 
all types of radiation at all energies. Instead, they are designed to be sensitive to certain 
types of radiation in a given energy range. Going outside this region usually results in 
an unusable signal or greatly decreased efficiency. 
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Detector sensitivity to a given type of radiation of a given energy depends on several 
factors: 

1) the cross section for ionizing reactions in the detector 
2) the detector mass 
3) the inherent detector noise 
4) the protective material surrounding the sensitive volume of the detector. 

The cross-section and detector mass determine the probability that the incident radia­
tion will convert part or all its energy in the detector into the form of ionization. (We 
assume here that the properties of the detector are such that the ionization created will 
be efficiently used.) As we saw in Chap. 2, charged particles are highly ionizing, so that 
most detectors even of low density and small volume will have some ionization pro­
duced in their sensitive volume. For neutral particles, this is much less the case, as they 
must first undergo an interaction which produces charged particles capable of ionizing 
the detector medium. These interaction cross sections are usually much smaller so that 
a higher mass density and volume are necessary to ensure a reasonable interaction rate, 
otherwise the detector becomes essentially transparent to the neutral radiation. The 
mass required, depends on the type of radiation and the energy range of interest. In the 
case of the neutrino, for example, detector masses on the order of tons are usually 
necessary! 

Even if ionization is produced in the detector, however, a certain minimum amount 
is necessary in order for the signal to be usable. This lower limit is determined by the 
noise from the detector and the associated electronics. The noise appears as a fluctuat­
ing voltage or current at the detector output and is always present whether there is 
radiation or not. Obviously, the ionization signal must be larger than the average noise 
level in order to be usable. For a given radiation type in a given energy range, the total 
amount of ionization produced is determined by the sensitive volume. 

A second limiting factor is the material covering the entrance window to the sensi­
tive volume of the detector. Because of absorption, only radiation with sufficient 
energy to penetrate this layer can be detected. The thickness of this material thus sets a 
lower limit on the energy which can be detected. 

5.2 Detector Response 

In addition to detecting the presence of radiation, most detectors are also capable of 
providing some information on the energy of the radiation. This follows since the 
amount of ionization produced by radiation in a detector is proportional to the energy 
it loses in the sensitive volume. If the detector is sufficiently large such that the radia­
tion is completely absorbed, then this ionization gives a measure of the energy of the 
radiation. Depending on the design of the detector, this information mayor may not be 
preserved as the signal is processed, however. 

In general, the output signal of electrical detectors is in the form of a current pulse 1. 

The amount of ionization is then reflected in the electrical charge contained in this 

1 Detectors may also be operated in a continuous mode in which the signal is a continuous current or voltage 
varying in time with the intensity of the radiation. This can be performed by electrically integrating the num­
ber of pules over a certain period of time. 
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signal, i.e., the integral of the pulse with respect to time. Assuming that the shape of 
the pulse does not change from one event to the other, however, this integral is directly 
proportional to the amplitude or pulse height of the signal, so that this characteristic 
may be used instead. The relation between the radiation energy and the total charge or 
pulse height of the output signal is referred to as the response of the detector. 

Ideally, of course, one would like this relation to be linear although it is not ab­
solutely necessary. It does, however, simplify matters greatly when transforming the 
measured pulse height to energy. For many detectors, the response is linear or approxi­
mately so over a certain range of energies. In general, however, the response is a func­
tion of the particle type and energy, and it does not automatically follow that a detector 
with a linear response for one type of radiation will be linear for another. A good 
example is organic scintillator. As will be seen later, the response is linear for electrons 
down to a very low energies but is nonlinear for heavier particles such as the proton, 
deuteron, etc. This is due to the different reaction mechanisms which are triggered in 
the medium by the different particles. 

5.3 Energy Resolution. The Fano Factor 

For detectors which are designed to measure the energy of the incident radiation, the 
most important factor is the energy resolution. This is the extent to which the detector 
can distinguish two close lying energies. In general, the resolution can be measured by 
sending a monoenergetic beam of radiation into the detector and observing the result­
ing spectrum. Ideally, of course, one would like to see a sharp delta-function peak. In 
reality, this is never the case and one observes a peak structure with a finite width, 
usually Gaussian in shape. This width arises because of fluctuations in the number of 
ionizations and excitations produced. 

The resolution is usually given in terms of the full width at half maximum of the 
peak (FWHM). Energies which are closer than this interval are usually considered un­
resolvable. This is illustrated in Fig. 5.1. If we denote this width as LJE, then the relative 
resolution at the energy E is 

Resolution = LJEIE. (5.1) 

Equation (5.1) is usually expressed in percent. A NaI detector has about a 8070 or 9% 
resolution for y-rays of about 1 MeV, for example, while germanium detectors have 
resolutions on the order of 0.1 %! 
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Fig. 5.1. Definition of energy resolution. 
Two peaks are generally considered to be 
resolved if they are separated by a distance 
greater than their full widths at half maxi­
mum (FWHM). The solid line shows the sum 
of two identical Gaussian peaks separated by 
just this amount 
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In general, the resolution is a function of the energy deposited in the detector, with 
the ratio (5.1) improving with higher energy. This is due to the Poisson or Poisson-like 
statistics of ionization and excitation. Indeed, it is found that the average energy 
required to produce an ionization is a fixed number, w, dependent only on the material. 
For a deposited energy E, therefore, one would expect on the average, J = Elw ioniza­
tions. Thus as energy increases, the number of the ionization events also increases 
resulting in smaller relative fluctuations. 

To calculate the fluctuations it is necessary to consider two cases. For a detector in 
which the radiation energy is not totally absorbed, for example, a thin transmission 
detector which just measures the dE/dx loss of a passing particle, the number of signal­
producing reactions is given by a Poisson distribution. The variance is then given by 

(5.2) 

where J is the mean number of events produced. The energy dependence of the resolu­
tion can then be seen to be 

R = 2.35 - = 2.35 -, VI ~ J E 
(5.3) 

where the factor 2.35 relates the standard deviation of a Gaussian to its FWHM. Thus 
the resolution varies inversely as the square root of the energy. 

If the full energy of the radiation is absorbed as is the case for detectors used in 
spectroscopy experiments, the naive assumption of Poisson statistics is incorrect. And 
indeed, it is observed that the resolution of many such detectors is actually smaller than 
that calculated from Poisson statistics. The difference here is that the total energy 
deposited is a fixed, constant value, while in the previous case, the energy deposited can 
fluctuate. The total number of ionizations which can occur and the energy lost in each 
ionization are thus constrained by this value. Statistically, this means that the ioniza­
tion events are not all independent so that Poisson statistics is not applicable. Fano 
[5.1] was the first to calculate the variance under this condition and found 

(5.4) 

where J is the mean ionization produced and F is a number known as the Fano factor. 
The factor F is a function of all the various fundamental processes which can lead 

to an energy transfer in the detector. This includes all reactions which do not lead to 
ionization as well, for example, phonon excitations, etc. It is thus an intrinsic constant 
of the detecting medium. Theoretically, F is very difficult to calculate accurately as it 
requires a detailed knowledge of all the reactions which can take place in the detector. 
From (5.4), the resolution is then given by 

R = 2.35 VFJ = 2.35 V Fw . 
J E 

(5.5) 

If F = 1, the variance is the same as that for a Poisson distribution and (5.5) reduces to 
(5.3). This seems to be the case for scintillators, however, for many detectors such as 
semiconductors or gases, F < 1. This, of course, greatly increases the resolution of these 
types of detectors. 
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In addition to the fluctuations in ionization, a number of external factors can affect 
the overall resolution of a detector. This includes effects from the associated electronics 
such as noise, drifts, etc. Assuming all these sources are independent and distributed as 
Gaussians, the total resolution E is then given by (4.64), i.e., 

(5.6) 

5.4 The Response Function 

For the measurement of energy spectra, an important factor which must be considered 
is the response junction of the detector for the type of radiation being detected. This is 
the spectrum of pulse heights observed from the detector when it is bombarded by a 
monoenergetic beam of the given radiation. Up to now, we have assumed that this 
response spectrum is a Gaussian peak. If we ignore the finite width for a moment, this 
essentially corresponds to a Dirac delta function, i.e., for a fixed incident energy the 
output signal has a single, fixed amplitude. Then, if the response is linear, the spectrum 
of pulse heights measured from the detector corresponds directly to the energy spec­
trum of the incident radiation. This is the ideal case. Unfortunately, a Gaussian peak 
response is not always realized particularly in the case of neutral radiation. 

The response function of a detector at a given energy is determined by the different 
interactions which the radiation can undergo in the detector and its design and 
geometry. To take an example, consider monoenergetic charged particles, say elec­
trons, incident on a detector thick enough to stop the particles. Assuming all the elec­
trons lose their energy by atomic collisions, it is clear that the spectrum of pulse heights 
will be a Gaussian peak. In reality, however, some of the electrons will scatter out of 
the detector before fully depositing their energy. This produces a low energy tail. 
Similarly some electrons will emit bremsstrahlung photons which may escape from the 
detector. This again gives rise to events at a lower energy than the peak. The response 
function thus consists of a Gaussian peak with a low energy tail determined by the 
amount of scattering and bremsstrahlung energy loss. If the tail is small, however, this 
can still be a reasonable approximation to the ideal Gaussian response depending on 
the precision desired. Moreover, the response function can be improved by changing 
the design and geometry of the detector. A material of lower atomic number Z can be 
chosen, for example, to minimize back scattering and bremsstrahlung. Similarly if the 
detector is made to surround the source, backscattering electrons will be captured thus 
decreasing the escape of these particles, etc. 

To see how the response function can change with radiation type, consider the same 
detector with gamma rays instead. As we have already mentioned, gamma rays must 
first convert" into charged particles in order to be detected. The principal mechanisms 
for this are the photoelectric effect, Compton scattering and pair production. In the 
photoelectric effect, the gamma ray energy is transferred to the photoelectron which is 
then stopped in the detector. Since the energy of all the photoelectrons is the same, this 
results in a sharp peak in the pulse height spectrum, which is the desired Gaussian 
response. However, some gamma rays will also suffer Compton scatterings. As given 
by (2.113), the Compton electrons are distributed continuously in energy so that a dis­
tribution, similar to Fig. 2.24, also appears in the response function. This, of course, 
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a b 

Pulse height Pulse height 

Fig. 5.2a, b. The response functions of two different detectors for 661 keY gamma rays. (a) shows the 
response of a germanium detector which has a large photoelectric cross section relative to the Compton scat­
tering cross section at this energy. A large photopeak with a relatively small continuous Compton distribu­
tion is thus observed. (b) is the response of an organic scintillator detector. Since this material has a low 
atomic number Z, Compton scattering is predominant and only this distribution is seen in the response func­
tion 

immediately destroys the ideal delta-function response. In a similar manner, those 
events interacting via the pair production mechanism will also contribute a structure to 
the function. One such total response function is sketched in Fig. 5.2. The observed 
pulse height spectrum, therefore, simply reflects the different interactions which occur 
in the detector volume. Since the relative intensity of each structure in the spectrum is 
determined by the relative cross sections for each interaction mechanism, the response 
function will also be different at different energies and for different detector media. 

If the detector is now used to measure a spectrum of gamma rays, the observed 
pulse height distribution will be a convolution of the gamma ray spectrum and the 
detector response, i.e., 

PH(E) = J S(E')R(E, E') dE' , (5.7) 

where R(E, E') is the response function at the incident energy E' and S(E') is the spec­
trum of gamma ray energies. To determine the gamma ray spectrum S(E'), from the 
measured pulse height distribution then requires knowing R(E, E') in order to invert 
(5.7). Here, of course, we see the utility of having R(E, E') = o(E'-E)! 

5.5 Response Time 

A very important characteristic of a detector is its response time. This is the time which 
the detector takes to form the signal after the arrival of the radiation. This is crucial to 
the timing properties of the detector. For good timing, it is necessary for the signal to 
be quickly formed into a sharp pulse with a rising flank as close to vertical as possible. 
In this way a more precise moment in time is marked by the signal. 

The duration of the signal is also of importance. During this period, a second event 
cannot be accepted either because the detector is insensitive or because the second 
signal will pile up on the first. This contributes to the dead time of the detector and 
limits the count rate at which it can be operated. The effect of dead time is discussed in 
Sect. 5.7. 
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5.6 Detector Efficiency 

Two types of efficiency are generally referred to when discussing radiation detection: 
absolute efficiency and intrinsic detection efficiency. The absolute or total efficiency of 
a detector is defined as that fraction of events emitted by the source which is actually 
registered by the detector, i.e., 

6': _ events registered 
tot - . db events emltte y source 

(5.8) 

This is a function of the detector geometry and the probability of an interaction in the 
detector. As an example, consider a cylindrical detector with a point source at a 
distance d on the detector axis as shown in Fig. 5.3. If the source emits isotropically, 
then, the probability of the particle being emitted at an angle B is 

P(B)dQ = dQ/4n. (5.9) 

The probability that a particle hitting the detector will have an interaction in the 
detector is given by (2.7). Combining the two then yields 

d~ot=[l-exp( ~x)]~~, (5.10) 

where x is the path length in the detector and it is the mean free path for an interaction. 
The total efficiency is then found by integrating (5.10) over the volume of the detector. 

In many cases, however, the value of x does not vary too much over the detector or 
the value of it is so small that the exponential can be considered as zero. The absolute 
efficiency can then be factored into two parts: the intrinsic efficiency, @int' and the geo­
metrical efficiency or acceptance, 6'geom. The total or absolute efficiency of the detector 
is then given by the product 

~ot =:: @int 6'geom . (5.11) 

The intrinsic efficiency is that fraction of events actually hitting the detector which 
is registered, i.e., 

~ = events registered 
!fit events impinging on detector 

(5.12) 

This probability depends on the interaction cross sections of the incident radiation on 
the detector medium. The intrinsic efficiency is thus a function of the type of radiation, 

Detector 

Source 

Fig. 5.3. Calculating the detection efficiency of a 
cylindrical detector for a point source 
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its energy and the detector material. For charged particles, the intrinsic efficiency is 
generally good for most detectors, since it is rare for a charged particle not to produce 
some sort of ionization. For heavier particles, though, quenching effects may be pre­
sent in some materials which drain the ionization produced. The problem of efficiency 
is generally more important for neutral particles as they must first interact to create 
secondary charged particles. These interactions are much rarer in general, so that 
capturing a good fraction of the incident neutral radiation is not always assured. The 
dimensions of the detector become important as sufficient mass must be present in 
order to provide a good probability of interaction. 

The geometric efficiency, in contrast, is that fraction of the source radiation which 
is geometrically intercepted by the detector. This, of course, depends entirely on the 
geometrical configuration of the detector and source. The angular distribution of the 
incident radiation must also be taken into account. For the cylindrical detector in Fig. 
5.3, @"geom is simply the average solid angle fraction. For multidetector systems, where 
coincidence requirements are imposed, however, the calculations can be somewhat 
complicated and recourse to numerical simulation with Monte Carlo methods must be 
made. 

5.7 Dead Time 

Related to the efficiency is the dead time of the detector. This is the finite time required 
by the detector to process an event which is usually related to the duration of the pulse 
signal. Depending on the type, a detector mayor may not remain sensitive to other 
events during this period. If the detector is insensitive, any further events arriving dur­
ing this period are lost. If the detector retains its sensitivity, then, these events may pile­
up on the first resulting in a distortion of the signal and subsequent loss of information 
from both events. These losses affect the observed count rates and distort the time 
distribution between the arrival of events. In particular, events from a random source 
will no longer have the Poissonian time distribution given by (4.60). To avoid large 
dead time effects, the counting rate of the detector must be kept sufficiently low such 
that the probability of a second event occurring during a dead time period is small. The 
remaining effect can then be corrected. 

When calculating the effects of dead time, the entire detection system must be taken 
into account. Each element of a detector system has it own dead time and, indeed, it is 
often the electronics which account for the larger part of the effect. Moreover, when 
several elements have comparable dead times, combining the effects is also a difficult 
task and a general method does not exist for solving such problems. 

As an illustration let us analyze the effect on count rate due to the dead time of 
a simple element in the system. Suppose the element has a dead time T and that T is con­
stant for all events. Two fundamental cases are usually distinguished: extendable or 
non-extendable dead times. These are also referred to as the paralyzable or non­
paralyzable models. In the extendable case, the arrival of a second event during a dead 
time period extends this period by adding on its dead time T starting from the moment 
of its arrival. This is illustrated in Fig. 5.4. This occurs in elements which remain sensi­
tive during the dead time. In principle if the event rate is sufficiently high, events can 
arrive such that their respective dead time periods all overlap. This produces a prolong­
ed period during which no event is accepted. The element is thus paralyzed. The non-
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Fig. 5.4. Extendable (paralyzable) and non­
extendable (non-paralyzable) dead time models 

extendable case, in contrast, corresponds to a element which is insensitive during the 
dead time period. The arrival of a second event during this period simply goes un­
noticed and after a time r the element becomes active again. 

Let us consider the non-extendable case first. Suppose m is the true count rate and 
the detector registers k counts in a time T. Since each detected count n engenders a dead 
time r, a total dead time kr is accumulated during the counting period T. During this 
dead period, a total of mkr counts is lost. The true number of counts is therefore 

mT=k+mkr. (5.13) 

Solving for m in terms of k, we find 

kiT 
m=-----

1- (kIT)r 
(5.14) 

Thus (5.14) provides us with a formula for finding the true rate m from the observed 
rate kiT. 

The extendable case is somewhat more difficult. Here, one realizes that only those 
counts which arrive at time intervals greater than r are recorded. As given by (4.60), the 
distribution of time intervals between events decaying at a rate m, is 

p(t) = m exp (-mt) . (5.15) 

The probability that t> r is then 

00 

P(t>r) = m J exp (-mt)dt = exp (-mr) (5.16) 
r 

The number of counts observed in a time T, therefore, is just that fraction of the m T 
true events whose arrival times satisfy this condition, 

k = m T exp ( - m r) . (5.17) 

To find the true value, m, (5.17) must be solved numerically. Figure 5.5 shows the be­
havior of (5.17). Note that the function first increases, goes through a maximum at 
m = 11 r and then decreases once again. This means that for a given observed rate, kiT, 
there are two corresponding solutions for m. Care should be taken, therefore, to distin­
guish between the two. 
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Fig. 5.5. Numerical solution of equation (5.17) to determine 
the true count rate in the extended dead time model. Note 
there are two possible solutions 

m. true rate 

The above results are generally adequate for most practical problems, however, 
they are only first order approximations. More rigorous treatments are given by Foglio 
Parra and Mandelli Bettoni [5.2] and a general discussion of dead time problems by 
Muller [5.3]. The case of a variable dead time is also treated by Libert [5.4]. 

Given the above results, the problem which often arises is to determine which class, 
extendable or non-extendable, is applicable. Indeed, many detectors systems are com­
binations of both, having some elements which are extendable and others which are 
not. And some may not be in either class. Moreover the dead time of the elements could 
be variable depending on the count rate, the pulse shapes, etc. A solution often used is 
to deliberately add in a blocking circuit element with a dead time larger than all other 
elements into the system such that the detector system can be treated by one of the 
fundamental models. This, of course, slows down the system but removes the uncer­
tainty in the dead-time model. This should be done quite early in the system, however, 
in order to avoid pile-up problems later. See for example the Inhibit in Chap. 16. 

5.7.1 Measuring Dead Time 

The classical method of measuring dead time is the so-called two-source technique. In 
this procedure, the count rates of two different sources are measured separately and 
together. To illustrate the principle of the method, let us suppose nj and n2 are the true 
count rates of the two sources and R j , R2 and R12 are the rates observed for the 
separate and combined sources. For simplicity also, let us assume that there is no 
background. In the non-extended case, we then have the relations 

and 

(5.18) 

Eliminating the n's, we have 

(5.19) 

which yields the solution 
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(5.20) 

While conceptually the double source method is quite simple, it is in practice, a cum­
bersome and time consuming method which yields results to no better than 5 -100/0 
[5.3]. This can be seen already in (5.20) which shows r to be given by a difference 
between two numbers. From the point of view of statistical errors (see Sect. 4.6.1), of 
course, this is disadvantageous. Experimentally, care must also be taken to ensure the 
same positioning for the sources when they are measured separately and together. Even 
then, however, there may be scattering effects of one source on the other which may 
modify the combined rates, etc. 

A number of other methods have been proposed, however. One technique is to 
replace one of the sources with a pulse generator [5.5] of frequency f «3 r) -1. If Rs is 
the observed rate of the source alone and Re is the observed combined rate of the source 
and generator, then it can be shown that the dead time in the non-extended case is 

r=:: l-[(Re- R s)/flll2 

Rs 
(5.21) 

Equation (5.21) is only approximate, but it should give results to better than 1 % as long 
as the oscillator frequency condition stated above is met [5.3]. This method, of course, 
avoids the problem of maintaining a fixed source geometry but it does require an 
estimate of the dead time and a fast pulser to ensure the frequency condition above. A 
more general formula valid at all frequencies has been worked out by Muller [5.6] 
requiring, however, a long numerical calculation of a correction factor. 

For an extended dead time, it can also be shown [5.3] that 

(m + f- mfr) exp( - mr) = Re (5.22) 

where m is the true rate of the source. If (5.17) for the case of source alone is used, the 
relation 

R -R 
e s=(1-mr)exp(-mr) 
f 

(5.23) 

is found which can be solved for m r. If m is known then, of course, r follows. 
A very quick and accurate method which can be used for measuring the dead time 

of the electronics system alone is to inject pulses from two oscillators [5.3] of frequency 
fl and f2 and to measure the mean frequency of the combined pulses, fe. For the non­
extended model, it can be shown then, 

I' = [fl + f2 - 2fd2 r 
Je l1lT 

for O<r<T12 

for TI2<r<T 
(5.24) 

where T is the period of the faster oscillator, i.e., the smaller of 11 fl and 1112. For the 
extended model, we have similarly 

f, = [fl + f2 - 2fd2 r 
e LO 

for O<r<T 

for r>T. 
(5.25) 
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The expressions are thus identical if the frequency of the faster oscillator is chosen such 
that f < (2 r) -1; the dead time, irrespective of the model, is then given by 

(5.26) 

where R 1 , R2 and Rc are the total measured counts for the two oscillators separately 
and combined in a measurement period t m. If f is chosen greater then (2 r) - 1, then a 
determination of the model type can be made by comparing the results to the predic­
tions in (5.24) and (5.25). 

When using this method, of course, it is important to assure that the form of the 
pulses are close to those of true detector signals and that the frequencies of the oscil­
lators are stable. In such cases, the two-oscillator method can yield quick and accurate 
results to a precision better than 10 - 3. 



6. Ionization Detectors 

Ionization detectors were the first electrical devices developed for radiation detection. 
These instruments are based on the direct collection of the ionization electrons and ions 
produced in a gas by passing radiation. During the first half of the century, three basic 
types of detector were developed: the ionization chamber, the proportional counter and 
the Geiger-Muller counter. Except for specific applications, these particular devices are 
not in widespread use in modern nuclear and particle physics experiments today. They 
are, however, still very much employed in the laboratory as radiation monitors. They 
are cheap, simple to operate and easy to maintain. Their basic design and structure, in 
fact, have changed little since the late 1940's when the then newly-developed scintilla­
tion counter began taking the place of these instruments in nuclear research. 

During the late 1960's, a renewed interest in gas ionization instruments was stimu­
lated in the particle physics domain by the invention of the multi-wire proportional 
chamber. These devices were capable of localizing particle trajectories to less than a 
millimeter and were quickly adopted in high-energy experiments. Stimulated by this 
success, the following years saw the development of the drift chamber and, somewhat 
later, the time projection chamber. These devices operate on the same basic principles 
as the simple proportional counter, but otherwise bear little physical resemblance to 
their simpler predecessor. They are now used extensively in high energy particle physics 
experiments and require more sophisticated electronics as well as data acquisition by 
computer. There are also many variants of the above instruments which have been de­
signed for more particular needs. 

Because of their higher density, attention has also been focused on the use of liquids 
as an ionizing medium. The physics of ionization and transport in liquids is not as well 
understood as in gases, but much progress in this domain has been made and develop­
ment is continuing in this area. 

6.1 Gaseous Ionization Detectors 

Because of the greater mobility of electrons and ions, a gas is the obvious medium to 
use for the collection of ionization from radiation. Many ionization phenomena arise 
in gases and over the years these have been studied and exploited in the detectors we 
will describe below. The three original gas devices, i.e., the ionization chamber, the 
proportional counter and the Geiger-Muller counter, serve as a good illustration of the 
application of gas ionization phenomena in this class of instruments. These detectors 
are actually the same device working under different operating parameters, exploiting 
different phenomena. The basic configuration (Fig. 6.1) consists of a container, which 
we will take to be a cylinder for simplicity, with conducting walls and a thin end win­
dow. The cylinder is filled with a suitable gas, usually a noble gas such as argon. Along 
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Fig. 6.1. Basic construction of a simple gas 
ionization detector 

its axis is suspended a conducting wire to which a positive voltage, + Vo, relative to the 
walls is applied. A radial electric field 

E= 1 Vo 
r In(b/a) 

(6.1) 

with r: radial distance from axis; b: inside radius of cylinder; a: radius of central wire is 
thereby established. If radiation now penetrates the cylinder, a certain number of elec­
tron-ion pairs will be created, either directly, if the radiation is a charged particle, or in­
directly through secondary reactions if the radiation is neutral. The mean number of 
pairs created is proportional to the energy deposited in the counter. Under the action of 
the electric field, the electrons will be accelerated towards the anode and the ions to­
ward the cathode where they are collected. 

The current signal observed, however, depends on the field intensity. This is illus­
trated in Fig. 6.2 which plots the total charge collected as a function of V. At zero volt­
age, of course, no charge is collected as the ion-electron pairs recombine under their 
own electrical attraction. As the voltage is raised, however, the recombination forces 
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are overcome and the current begins to increase as more and more of the electron-ion 
pairs are collected before they can recombine. At some point, of course, all created 
pairs will be collected and further increases in voltage show no effect. This corresponds 
to the first flat region in Fig. 6.2. A detector working in this region (II) is called an ion­
ization chamber since it collects the ionization produced directly by the passing radia­
tion. The signal current, of course, is very small and must usually be measured with an 
electrometer. Ionization chambers are generally used for measuring gamma ray expo­
sure and as monitoring instruments for large fluxes of radiation. 

Returning to Fig. 6.2, if we now increase the voltage beyond region II we find 
that the current increases again with the voltage. At this point, the electric field is 
strong enough to accelerate freed electrons to an energy where they are also capable 
of ionizing gas molecules in the cylinder. The electrons liberated in these secondary 
ionizations then accelerate to produce still more ionization and so on. This results in 
an ionization avalanche or cascade. Since the electric field is strongest near the anode, 
as seen from (6.1), this avalanche occurs very quickly and almost entirely within a few 
radii of this wire. The number of electron-ion pairs in the avalanche, however, is direct­
ly proportional to the number of primary electrons. What results then is a proportional 
amplification of the current, with a multiplication factor depending on the working 
voltage V. This factor can be as high as 106 so that the output signal is much larger than 
that from an ionization chamber, but still in proportion to the original ionization pro­
duced in the detector. This region of proportional multiplication extends up to point III 
and a detector operating in this domain is known as a proportional chamber. Because it 
is the basic model for the more sophisticated gas devices to be described later, we will 
treat the proportional counter in more detail later. 

If the voltage is now increased beyond point III, the total amount of ionization cre­
ated through multiplication becomes sufficiently large that the space charge created 
distorts the electric field about the anode. Proportionality thus begins to be lost. This is 
known as the region of limited proportionality. Increasing V still higher, the energy be­
comes so large that a discharge occurs in the gas. What happens physically is that in­
stead of a single, localized avalanche at some point along the anode wire (as in a pro­
portional counter), a chain reaction of many avalanches spread out along the entire 
length of the anode is triggered. These secondary avalanches are caused by photons 
emitted by deexciting molecules which travel to other parts of the counter to cause 
further ionizing events. The output current thus becomes completely saturated, always 
giving the same amplitude regardless of the energy of the initial event. In order to stop 
the discharge, a quenching gas must be present in the medium to absorb the photons 
and drain their energy into other channels. Detectors working in this voltage region are 
called Geiger-Muller or breakdown counters. The Geiger voltage region, in fact, is 
characterized by a plateau over which the count rate varies little. The width of the 
plateau depends on the efficacy of the quencher in the gas. In general, the working volt­
age of a Geiger counter is chosen to be in the middle of the plateau in order to minimize 
any variations due to voltage drift. 

Finally, now, if the voltage is increased still further a continuous breakdown occurs 
with or without radiation. This region, of course, is to be avoided to prevent damage to 
the counter. In this illustration, we thus see how phenomena such as gas multiplication 
and discharge, in addition to gas ionization, can be used for radiation detection. 
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6.2 Ionization and Transport Phenomena in Gases 

Because of the importance of ionization detectors in physics research much work has 
been and still is devoted to the ionization process and the movement of electrons and 
ions in gases. We shall, therefore, devote some time to reviewing some of these pro­
cesses in the following sections. 

6.2.1 Ionization Mechanisms 

As we saw in Chap. 2, the energy loss of a charged particle in matter is essentially divid­
ed between two types of reaction: (1) excitation, and (2) ionization in which a free elec­
tron and ion are created. The excitation of an atom, X, 

X+p-+X*+p , (6.2) 

where p is a charged particle, is a resonant reaction which requires the correct amount 
of energy to be transferred. Typical cross-sections in noble gases at resonance [6.2] are 
on the order of a =::: 10 -17 cm2. While no free electrons or ions are created, the excited 
molecule or atom may participate in further reactions which do result in ionization. 
This is discussed later. 

For an ionization, 

(6.3) 

there is, of course, no exact energy requirement and, in fact, its cross-section is some­
what higher with a=::: 10 -16 cm2 [6.2]. However, the ionization process has a energy 
threshold which is relatively high, and since low energy transfers are more probable, 
the excitation reactions generally dominate. 

The electrons and ions created by the incident radiation itself, (6.3), are known as 
primary ionization. In a number of these ionizations, however, a sufficiently large 
amount of energy is transferred to the electron (delta-rays) such that this electron also 
creates ion-electron pairs. This latter ionization is known as secondary ionization. If 
their energy is high enough, the secondary ionization electrons may also ionize and so 
on until the threshold for ionizing reactions is reached. 

A second mechanism of ionization in gases is the Penning Effect. In certain atoms, 
metastable states are excited which, because of a large spin-parity difference, are un­
able to deexcite immediately to the ground state by the emission of a photon. In such 
atoms, a deexcitation may occur through a collision with a second atom resulting in the 
ionization of the latter. Common examples are molecular gases on noble gases and no­
ble gases on noble gases, e.g., 

Ne*+Ar-+Ne+Ar+ +e- (6.4) 

A third important mechanism which occurs in noble gases is the formation of mo­
lecular ions. In this process, a positive gas ion interacts with a neutral atom of the same 
type to form a molecular ion, i.e., 

He+ + He-+He{ . (6.5) 
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6.2.2 Mean Number of Electron-Ion Pairs Created 

Since the occurrence of the ionizing reactions above is statistical in nature, two identi­
cal particles will not, in general, produce the same number of ion-electron pairs. We 
can ask, however: What is the average number of ion-electron pairs (from all mecha­
nisms) created for a given energy loss? Note that this is not equal to the energy loss di­
vided by the ionization potential, since some energy is also lost to excitation! For gases, 
this average turns out to be on the order of 1 ion-electron pair per 30 eV of energy lost, 
that is, for a 3 keY particle, an average of 3000/30 = 100 ion-electron pairs will be cre­
ated. Moreover, what is surprising is that this average value does not depend very 
strongly on particle type and only weakly on the type of gas. Table 6.1 gives a compari­
son of the measured values for this average for several types of gas used in ionization 
detectors. 

Table 6.1. Excitation and ionization characteristics of various gases 

Excitation potential Ionization potential Mean energy for 
ion·electron pair creation 

reV] reV] reV] 

H2 10.8 15.4 37 
He 19.8 24.6 41 
N2 8.1 15.5 35 

°2 7.9 12.2 31 
Ne 16.6 21.6 36 
Ar 11.6 15.8 26 
Kr 10.0 14.0 24 
Xe 8.4 12.1 22 
CO2 10.0 13.7 33 
CH4 13.1 28 
C4H IO 10.8 23 

Table 6.2. Measured Fano factors for various gas mixtures 

Gas F Ref. 

Ar 100070 02+ 0.01 
. -0.02 [6.4] 

<0.40±0.03 [6.5] 
Ar+80070 Xe <0.21 ±0.03 [6.5] 
Ar+24070 Xe <0.23±0.02 [6.5] 
Ar+20070 Xe <0.16±0.02 [6.5] 
Ar + 5070 Xe <0.14±0.03 [6.5] 
Ar + 5070 Kr <0.37±0.06 [6.5] 
Ar+20070 Kr <0.12±0.02 [6.5] 
Ar+ 79070 Kr <0.13±0.02 [6.5] 
Xe 100070 <0.15 ± 0.01 [6.6] 

<0.15±0.03 [6.5] 
Kr 100070 <0.23±0.01 [6.6] 

<0.19±0.02 [6.5] 
Kr+1.3070 Xe <0.19 ± 0.01 [6.6] 
Kr+20070 Xe <0.21 ±0.02 [6.6] 
Kr+40070 Xe <0.22±0.01 [6.6] 
Kr + 60070 Xe <0.21 ±0.01 [6.6] 
Kr+95OJo Xe <0.21 ±0.01 [6.6] 
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The average energy, W, required for creating an electron-ion pair is important since 
it determines the efficiency and the energy resolution of the detector. From (5.6), the 
resolution for a particle of energy E is 

R=2.35 V 7 ' (6.6) 

where F is the Fano factor for the gas medium. While the Fano factor is not well deter­
mined for most gases, it is clear that F is much less than 1. Table 6.2 gives some mea­
sured values for various noble gas mixtures. 

6.2.3 Recombination and Electron Attachment 

While the number of electron-ion pairs created is important for the efficiency and ener­
gy resolution of the detector, it is equally important that these pairs again remain in a 
free state long enough to be collected. Two processes, in particular, hinder this opera­
tion: recombination and electron attachment. 

When there is no electric field, ion-electron pairs will generally recombine under the 
force of their electric attraction, emitting a photon in the process, 

(6.7) 

For molecular ions, a similar recombination reaction occurs 

X- + Y+--+XY+hv . (6.8) 

In general, the rate of recombinations will depend on the concentrations of the posi­
tive and negative ions so that, 

dn = b n - n + dt , (6.9) 

where b is a constant dependent on the type of gas and n + and n - are the positive and 
negative ion concentrations respectively. If we set n + = n - = n, integration then yields 
the result 

no n=----
1 + bno t 

where no is the initial concentration at t = O. 

(6.10) 

Electron attachment involves the capture of free electrons by electronegative atoms 
to form negative ions, 

(6.11) 

These are atoms which have an almost full outer electron shell so that the addition of 
an extra electron actually results in the release of energy. The negative ion formed is 
consequently stable. The energy released in this capture is known as the electron affini­
ty. Clearly, therefore, the presence of any electronegative gases in the detector will 



6.3 Transport of Electrons and Ions in Gases 133 

severely diminish the efficiency of electron-ion collection by trapping the electrons be­
fore they can reach the electrodes. Some well known electronegative gases are °2 , H 20, 
CO2 , CCl4 and SF6 • The noble gases He, Ne, Ar, in contrast, have negative electron af­
finities. 

6.3 Transport of Electrons and Ions in Gases 

For ionization detectors, an understanding of the motion of the electrons and ions in 
gases is extremely important as these factors influence many operating characteristics 
of the detector. For the most part, this motion is described by the classical kinetic theo­
ry of gases. Two phenomena are of particular importance: diffusion, and drift in an 
electric field. 

6.3.1 Diffusion 

In the absence of an electric field, electrons and ions liberated by passing radiation dif­
fuse uniformly outward from their point of creation. In the process they suffer multiple 
collisions with the gas molecules and lose their energy. They thus come quickly into 
thermal equilibrium with the gas and eventually recombine. At thermal energies, the 
velocities of the charges are described by the Maxwell distribution which gives a mean 
speed of 

v = V 8kT , 
nm 

(6.12) 

where k is Boltzmann's constant, T the temperature and m the mass of the particle. 
Quite obviously, the average speed of the electrons is much greater than that of the ions 
due their smaller mass. At room temperature, the electron speed is a few times 106 cmls 
while the positive ion speeds are on the order of 104 cm/s. 

From kinetic theory, the linear distribution of charges after diffusing a time t can be 
shown to be Gaussian, 

:: = ~exp(- 4:J, (6.13) 

where No is the total number of charges, x the distance from the point of creation and 
D the diffusion coefficient. The rms spread in x is thus 

a(x) = V2Dt . (6.14) 

If three dimensions are considered, the spherical spread is given by 

a(r) = V6Dt , (6.15) 

where r is the radial distance. The radial spread of ions in air under normal conditions, 
for example, is about 1 mm after 1 second [6.3]. The diffusion coefficient is a parame­
ter which can be calculated from kinetic theory and can be shown to be 
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D = tVA, (6.16) 

where A is the mean free path of the electron or ion in the gas. For a classical ideal gas, 
the mean free path is related to the temperature T, and the pressure p, by 

A =_1_ kT 

V2 aop 
(6.17) 

where ao is the total cross section for a collision with a gas molecule. Substituting (6.12) 
and (6.17) into (6.16) then gives the explicit expression 

D - 2 1 V (kT)3 
- 3 Vn pao ---;;;-. 

(6.18) 

The dependence of D on the various parameters of the gas now becomes evident. 

6.3.2 Drift and Mobility 

In the presence of an electric field, the electrons and ions freed by radiation are acceler­
ated along the field lines towards the anode and cathode respectively. This acceleration 
is interrupted by collisions with the gas molecules which limit the maximum average ve­
locity which can be attained by the charge along the field direction. The average veloci­
ty attained is known as the drift velocity of the charge and is superimposed upon its 
normal random movement. Compared to their thermal velocities, the drift speed of the 
ions is slow, however, for electrons this can be much higher since they are much lighter. 

In kinetic theory, it is useful to define the mobility of a charge as 

f.1= ulE, (6.19) 

where u is the drift velocity and E the electric field strength. For positive ions, the drift 
velocity is found to depend linearly on the ratio Elp, (also known as the reduced elec­
tric field), up to relatively high electric fields. At a constant pressure, this implies that 
the mobility f.1 is a constant. For a given E, it is also quite clear that f.1 varies as the in­
verse of the pressure p. 

For ideal gases, in which the moving charges remain in thermal equilibrium, the 
mobility can be shown to be related to the diffusion constant by 

Dlf.1 = kTle . (6.20) 

This is the result of a classical argument and is known as the Einstein relation. 
Unlike positive ions, the mobility for electrons is much greater and is found to be a 

function of E. Velocities as high as a few times 106 cmls can generally be attained be­
fore saturation sets in. The electric fields at this point are generally on the order of 
1 kV fcm-atm. Figure 6.3 shows some measured results for electrons in different gas 
mixtures. 

The gain in velocity of the electrons may also affect the diffusion rate if the mean 
energy of the electrons exceeds thermal energies. The factor kT in (6.20) is then re­
placed by this mean energy. The diffusion constant D then increases accordingly caus­
ing a greater spread of the electron cloud as given by (6.14) and (6.15). This has imp or-
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tant consequences for detectors such as the drift chambers which attempt to determine 
the position of a track by measuring the drift time of the ionization electrons. A more 
rigorous theory of electron transport in gases is given by Palladino and Sadoulet [6.9]. 

6.4 Avalanche Multiplication 

Multiplication in gas detectors occurs when the primary ionization electrons gain suffi­
cient energy from the accelerating electric field to also ionize gas molecules. The result­
ing secondary electrons then produce tertiary ionization and so on. This results in the 
formation of an avalanche. Because of the greater mobility of the electrons, the ava­
lanche has the form of a liquid-drop with the electrons grouped near the head and the 
slower ions trailing behind as shown in Fig. 6.4. 

If A is the mean free path of the electron for a secondary ionizing collision, then 
a = 11 A is the probability of an ionization per unit path length. This is better known 
as the first Townsend coefficient. Figure 6.5 shows the coefficients for different gases. 
If there are n electrons, then in a path dx, there will be 

dn = nadx (6.21) 

new electrons created. Integrating, this yields the total number of electrons created in a 
path x, 

n=noexp(ax) , (6.22) 

Fig. 6.3. Drift velocities of elec­
trons in various gas mixtures as a 
function of electric field (from 
lean-Marie et al. [6.7]) 



136 

.. 

Positive t 
ion drift 

Electron I 
drift t 

Anode Wire 

'Ci' 
I 

E 
E 
x 

E 
u 

.~ 
'" a. 

6. Ionization Detectors 

102 r---------------, 

Xe 

c 10-2 

~ 
a. 

'" 
10-4 L--'------i.'-L--'_--'--_L--'-----'_--1.-::-' 

10 102 103 

E/p [V/cm x mm Hg] 

Fig. 6.4. Avalanche formation. Since the electrons are more mobile than the positive ions, the avalanche 
takes on the form of a liquid drop with the electrons at the head 

Fig. 6.S. First Townsend avalanche coefficients for several gases (from Brown [6.9)) 

where no is the original number of electrons. The mUltiplication factor is then 

M = nino = exp(ax) . (6.23) 

More generally in the case of nonuniform electric fields such as (6.1), a is a function of 
x, in which case 

(6.24) 

While (6.24) can increase without limit, physically, the multiplication factor is limited 
to about M < 108 or ax < 20 after which breakdown occurs. This is known as the 
Raether limit. 

The multiplication factor or gas gain is of fundamental importance for the develop­
ment of proportional counters. For this reason, various theoretical models have been 
developed for calculating a for different gases. A very early model by Rose and Korff 
[6.10], for example, gives 

a (-BP) p=Aexp -e 
where A and B are constants depending on the gas. A short review of this and other 
models is given by Kowalski [6.11]. 
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6.5 The Cylindrical Proportional Counter 

As an introduction to the more sophisticated particle tracking detectors which will be 
discussed in the following sections, we will examine in more detail the simple propor­
tional counter described in Sect. 6.1. The ionization chamber and Geiger counter, as we 
have mentioned, are not widely used in current physics experiments and are generally 
found as radiation monitoring and survey instruments. Good discussions of their con­
struction and characteristics are given in the books by Knoll [6.12] and in the older 
works by Rossi and Staub, and Wilkinson [6.13]. 

The simple proportional counter is generally used for detecting low energy x-rays on 
the order of a few keY and very low energy electrons from sources which can be mixed 
with the counter gas. With a filling gas of high neutron capture cross section, such as 
BF3 or 3He, proportional counters can also be used for thermal or epithermal neutron 
detection. In general, the fill gases are at normal atmospheric pressure, however, to in­
crease density and thus the efficiency, higher pressures may be used. 

The basic feature of the proportional counter, of course, is the proportional gas 
mUltiplication which occurs. In order for this to be useful, however, the geometry of 
the electric field must be considered. Consider, for example, a planar detector consist­
ing of parallel anode and cathode plates with a gas filling in between. The electric field 
is thus uniform and perpendicular to the plates. If a high enough voltage is applied to 
the electrodes, then the electrons created in an ionizing event will be accelerated to­
wards the anode plate triggering avalanches along its path. It is not hard to see, how­
ever, that the total ionization produced will depend on the length of the path and thus 
on where the ionizing event occurs. For events with the same energy, therefore, the sig­
nal amplitude will vary with position and the relation between signal and energy is lost. 

This problem can be solved by using a cylindrical geometry as we have already de­
scribed in Sect. 6.1. The electric field, as we saw, is then given by (6.1). Because of the 
1/ r dependence, the field is relatively weak at large r but becomes intense very close to 
the surface of the anode wire. If the voltage is correctly chosen, ions and electrons cre­
ated in the cylindrical volume will simply drift towards their respective electrodes. Only 
when the electrons are very close to the anode wire (a few wire diameters) does the elec­
tric field become intense enough for multiplication to occur. At this point, the ava­
lanche occurs very quickly and the signal is generated. Regardless of where the ioniz­
ing event occurs, therefore, all multiplications take place in a small region about the 
anode. 

Figure 6.4 illustrates the development of an avalanche near the anode wire. The av­
alanche takes on a drop-like form with the electrons at the head and the positive ions in 
the rear. As the drop approaches the anode wire, diffusion of the charges causes the 
drop to surround the wire in the azimuthal direction. The avalanche, however, remains 
highly localized in the direction along the wire. The electrons are then collected very 
quickly ( -1 ns) while the positive ions begin drifting towards the cathode. This ion 
drift is mainly responsible for the signal seen on the electrodes as we will see in the next 
section. 

6.5.1 Pulse Formation and Shape 

Contrary to what might be inferred from the brief description of ionization counters in 
Sect. 6.1, the pulse signal on the electrodes of ionization devices is formed by induction 
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due to the movement of the ions and electrons as they drift towards the cathode and 
anode, rather than by the actual collection of the charges itself. Let us see how this oc­
curs. For the cylindrical proportional counter, the electric field and potential can be 
written as 

E(r)= CVo ~ , 
2 n:e r 

qJ(r)= ---In -, CVo (r) 
2 n:e a 

(6.25) 

where r is the radial distance from the wire, Vo the applied voltage, e the dielectric con­
stant of the gas, and 

C= 
2 n: e 

In(b/a) 

is the capacitance per unit length of this configuration. 

(6.26) 

Suppose that there is now a charge q located at a distance r from the central wire. 
The potential energy of the charge is then 

W= qqJ(r) . 

If now the charge moves a distance dr, the change in potential energy is 

dW= q dqJ(r) dr . 
dr 

(6.27) 

(6.28) 

For a cylindrical capacitor, however, the electrostatic energy contained in the electric 
field is W = + I CV~, where I is the length of the cylinder. If the movement of the charges 
is fast relative to the time that an external power supply can react to changes in the en­
ergy of the system, we can consider the system as closed. Energy is then conserved, 
so that 

dqJ(r) 
dW= ICVodV= q--dr 

dr 

Thus there is a voltage change, 

dV = _q_ dqJ(r) dr 
ICVo dr 

(6.29) 

(6.30) 

induced across the electrodes by the displacement of the charge. Equation (6.30) is a 
general result, in fact, and can be used for any configuration. 

For our cylindrical proportional counter, let us assume that an ionizing event has 
occurred and that multiplication takes place at a distance r' from the anode. The total 
induced voltage from the electrons is then 

V- =~ J dqJ dr= --q-ln a+r' a () 
ICVoa+r' dr 2n:el a 

(6.31) 
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while that from the positive ions is 

b 
+ q r d<p q b 

V = ICVo J dr dr= - 2nel ln a+r' 
a+r' 

(6.32) 

The sum of the two contributions is then V = V- + v+ = - q/IC and their ratio of the 
contributions is 

a+r' 
In--

a 

b 
In---

a+r' 

(6.33) 

Since the multiplication region is limited to a distance of a few wire radii, it is easy to 
see that the contribution of the electrons is small compared to the positive ions. Taking 
some typical values of a = 10 Ilm, b = 10 mm and r' = 1 Ilm, V- turns out to be less 
than 10,10 of V+. The induced signal, therefore, is almost entirely due to the motion of 
the positive charges and one can ignore the motion of the electrons 1. 

With this simplification we can now calculate the time development of the pulse. 
Thus, 

r(t) 

J dV q r(t) 
V(t) = -dr= ---In--

dr 2 nel a 
reO) 

To find r(l), we have the definition (6.19) 

dr =f.1E(r) =f.1CVo~ 
dt 2ne r 

so that 

rdr = f.1CV o dt 
2ne 

(6.34) 

(6.35) 

(6.36) 

Since the positive ions all come from the region close to the anode, we can set r(O) = a 

for simplicity. Integration then yields 

( 
ClI: )112 

r(t) = a 2 + f.1 ne 0 t . (6.37) 

1 The contribution of the electrons can be ignored only if they are all created near the anode. In some high 
gain gases, such as the magic gas to be discussed later, this is not always the case. Indeed, ultraviolet photons 
emitted in avalanches near the anode can extend the avalanche radially outward where the process is finally 
halted by the low field. In such cases the path length of the electrons is long and their contribution to the in­
duced signal becomes significant [6.14). 
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Fig. 6.6. Pulse signal from a cylindrical propor­
tional counter. The pulse is usually cut short by 
an RC differentiating circuit with a time con­
stant T. The figure shows the effect of two differ­
ent constants 

Substituting into (6.34), we find 

q (.uCVo) q ( t ) V(t) = ---In 1 +--2 t = ---In 1 +- , 
4 net nf.a 4 net to 

where to = a2 n f./.u C Va. For this distance the total drift time T is 

T= t~(b2_a2) . 
a 

(6.38) 

(6.39) 

This function is graphed in Fig. 6.6 for some typical values. Since it is not necessary to 
use the entire signal, the pulse is usually differentiated (see Sect. 14.23.2) to shorten its 
duration. In this manner only the faster rising part of the pulse is exploited. Depending 
on the time constant of the differentiator, the fall time of the resulting pulse will vary. 

6.5.2 Choice of Fill Gas 

The choice of a filling gas for proportional counters is governed by several factors: low 
working voltage, high gain, good proportionality and high rate capability. In general, 
these conditions are met by using a gas mixture rather than a pure one. For a minimum 
working voltage, noble gases are usually chosen since they require the lowest electric 
field intensities for avalanche formation. Because of its higher specific ionization and 
lower cost, argon is usually preferred. Pure argon as a filling gas, however, cannot be 
operated with gains of more than about 103 -104 without continuous discharge occur­
ring [6.2]. This arises because of the high excitation energy (11.6 eV) for this element. 
Excited argon atoms formed in the avalanche thus deexcite giving rise to high energy 
photons capable of ionizing the cathode and causing further avalanches. 

This problem can be remedied by the addition of a polyatomic gas, such as methane 
or alcohol. A few inorganic gases, such as CO2 , BF3 can also be used. These molecules 
act as quenchers by absorbing the radiated photons and then dissipating this energy 
through dissociation or elastic collisions. A small amount of polyatomic gas already 
produces dramatic changes in counter operation. Indeed gains of up to 106 are ob­
tained. In conventional proportional counters a commonly used mixture is 90070 Ar and 
10070 methane (CH4). This mixture is also known as PlO gas. Another often used 
quencher is isobutane. 
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The gain can still be further increased by adding a judicious amount of electronega­
tive gas such as freon (CF3Br) or ethyl bromide. Apart from absorbing photons, these 
gases can also trap electrons extracted from the cathode before they can reach the an­
ode to cause an avalanche. A gain of 107 can then be attained before the onset of Gei­
ger-Muller operation. 

The use of an organic quencher, unfortunately, results in further problems after 
high fluxes of radiation have been absorbed. In effect, the recombination of dissociat­
ed organic molecules results in the formation of solid or liquid polymers which accu­
mulate on the anode and cathode of the detector. Positive ions reaching the cathode 
must then slowly diffuse through this layer to be neutralized. When a sufficiently large 
flux of radiation is present, however, the rate at which ions are produced is greater than 
the number leaking through to the cathode, so that a positive charge build-up occurs. 
This causes a continuous discharge in the counter which continues even after the radia­
tion is removed. Only a complete cleaning can then regenerate the counter. 

One possible solution to the problem is to use inorganic quenchers; however, they 
are much less efficient. The remedy instead is to add still another gas component. This 
time a small quantity of nonpolymerizing agent such as methylal or propylic alcohol. 
These agents then change the molecular ions at the cathode into a non-polymer species 
through an ion-exchange mechanism. 

For sealed gas counters, an additional problem which arises is the large amount of 
quencher consumed in each detected event. At a gain of 106 and assuming 100 electron­
ion pairs/event, about 108 molecules are dissociated per event. For a 10 cm3 counter 
with a 90 -10070 mixture at atmospheric pressure, then, changes in the operational 
characteristics will be observed after a total of 1010 events [6.2]. This, of course, is not 
a problem if a continuous gas flow is used. 

6.6 The Multiwire Proportional Chamber (MWPC) 

One of the basic requirements of experimental particle physics is the determination of 
particle trajectories. Up until about 1970, all tracking devices were, for the most part, 
optical in nature. Photographic emulsions, the cloud chamber, the bubble chamber, 
the spark chamber, etc. all required the recording of track information on film which 
was then analyzed frame by frame for events of interest. An all-electronic device, there­
fore, was greatly desired as it would allow more events to be treated more accurately. 
One possibility was to construct arrays of many proportional counters tubes; however, 
mechanically, this was not practical. The breakthrough occurred in 1968 with the in­
vention of the multiwire proportional chamber by Charpak [6.15]. Charpak showed, in 
effect, that an array of many closely spaced anode wires in the same chamber could 
each act as independent proportional counters. Moreover, with transistorized electron­
ics, each wire could have its own amplifier integrated onto the chamber frame to make 
a practical detector for position sensing. The MWPC was quickly adopted in high ener­
gy physics and stimulated a new generation of physics experiments. Since their inven­
tion, they have also found other applications as x-ray imaging devices in such diverse 
fields as astrophysics, crystallography, medecine, etc. 

6.6.1 Basic Operating Principle 

The basic MWPC consists of a plane of equally spaced anode wires centered between 
two cathode planes. Typical wire spacings are 2 mm with an anode-cathode gap width 



Fig. 6.7. Basic configuration of a 
multiwire proportional chamber. 
Each wire acts as an independent 
proportional counter. The signal 
on the firing wire is negative 
while the signals on the neighbor­
ing wires are small and positive 
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Fig. 6.S. Electric field lines and potentials in a multiwire proportional chamber. The effect of a slight wire 
displacement on the field lines is also shown (from Charpak et al. [6.16]) 

of 7 or 8 mm. Figure 6.7 illustrates this configuration schematically. If a negative volt­
age is applied to the cathode planes, an electric field configuration as shown in Fig. 6.8 
arises. Except for the region very close to the anode wires, the field lines are essentially 
parallel and almost constant. If we assume an infinite anode plane with zero diameter 
wires, the potential is then given by 

V(X,y) = _ CV In [4 (sin2 nx + sinh2 ny)] , 
4nB S S 

(6.40) 

where V is the applied voltage, s the wire spacing, and C, the anode-cathode 
capacitance. If L~s~d, this last quantity is given by 

2 nB 
C=-----

nL -In nd 
s s 

(6.41) 

where L is the anode to cathode gap distance and d is the anode wire diameter. While 
the assumptions we have made are not met in a real chamber, (6.40) and (6.41) are usu­
ally good approximations for most purposes. 
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Near the anode wires the field takes on a lIr dependence similar to the single wire 
cylindrical proportional chamber. If electrons and ions are now liberated in the con­
stant field region they will drift along the field lines toward the nearest anode wire and 
opposing cathode. Upon reaching the high field region, the electrons will be quickly ac­
celerated to produce an avalanche. The positive ions liberated in the multiplication pro­
cess then induce a negative signal on the anode wire as we saw in the single proportional 
counter. The neighboring wires are also affected; however, the signals induced here are 
positive and of small amplitude as illustrated in Fig. 6.7. In a similar manner, a positive 
signal is induced on the cathode. There is thus no ambiguity as to which wire is closest 
to the ionizing event. 

The signal from one anode plane, of course, only gives information on one coordi­
nate of the ionizing event. The second coordinate may be obtained by using a second 
detector whose anode wires are oriented perpendicularly to the first. Usually both de­
tectors are integrated into the same chamber to form an X- Y MWPC. This can be made 
even more sophisticated by adding diagonal planes of wires, etc., for additional infor­
mation. (Another method for obtaining two-dimensional information is described in 
Sect. 6.6.5). To measure the trajectory of a particle, two or more aligned MWPCs may 
now be used to form a telescope as shown in Fig. 6.9. Reading the positions of the sig­
naling wires then allows a reconstruction of the track. 
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Fig. 6.9. A MWPC telescope for particle tracking. 
Each MWPC contains an X and Y wire plane. If 
the MWPC's are aligned, the measured coor­
dinates allow a reconstruction of the particle tra­
jectory. More than two planes of wires in a cham­
ber may also be used 

The spatial resolution of a MWPC depends on the anode wire spacing and is typi­
cally one-half this value. In a MWPC with typical 2 mm wire spacing, therefore, the 
spatial resolution is :::: ± 1 mm. This can be increased by using a finer spacing, however, 
going below 1 mm becomes difficult to work with. 

An additional capability of the MWPC is multiple track resolution. Since each wire 
is a separate detector, two or more tracks can in principle be detected. However, this 
depends on their relative separation which must be at least as large as the wire spacing. 
Even before this point is reached, however, ambiguities in the reconstruction of the 
tracks may arise because of their proximity. 

6.6.2 Construction 

There are many methods for constructing a MWPC to which the abundant literature on 
this subject bears witness. The basic mechanical problem is to support the many wires 
and electrodes making up the chamber, which, for a high energy physics experiment, 
can be several square meters in area. A common technique is to stretch the anode wires 
out on a fiber-glass or epoxy frame and solder the ends to printed circuits which have 
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been integrated onto the frame. Tungsten wires, typically 20 - 40 J.1m in diameter, are 
generally used. The entire frame structure then has the appearance of a weaving loom. 
Similar frames are prepared for the cathode wire planes which can also be made of thin 
metal foils, wire mesh or thin strips of conducting material, and the detector windows 
which are usually made of mylar. The frames are then stacked and bolted together with 
the appropriate O-rings, etc., to assure gas tightness. 

The alignment of the anode wires is, of course, critical for precise position measure­
ment and it is important to consider their mechanical and electrical stability. When 
voltage is applied to the electrodes, there is an electrostatic repulsion between the wires 
which must be compensated by the mechanical tension in the wires. For a given voltage 
V and wire length L, the minimum mechanical tension [6.3] required is given by 

T>_l_ (CVL)2 , 
47re s 

(6.42) 

where s is the wire spacing and C is the capacitance of the chamber. The maximum ten­
sion that can be applied, of course, depends on the wire thickness and elasticity. If the 
tension is insufficient, then the wires find a new equilibrium state in which they are al­
ternatively displaced up and down, out of the plane of the anode. 

A similar problem which arises is the attraction of the cathode towards the anode. 
In larger chambers, this can result in a curving in of the cathode near the center. This 
changes the gap width which then affects the multiplication factor of the detector. In 
such cases, a support structure of some kind must be placed in the gap. This, of course, 
modifies the electric field in the gap which then necessitates some sort of correcting 
electrode to restore the field. 

For further details on chamber construction, we refer the reader to [6.2 - 3] and the 
references therein. Some more recent references are also given in [6.17]. 

6.6.3 Chamber Gas 

The requirements for the fill gas of a multi wire chamber are identical to those for a sim­
ple proportional counter. A very high gain gas mixture which is widely used is the so­
called "magic gas" consisting of Ar (75070), isobutane (24.5070) and freon-13B1 (0.5070), 
where the proportions are in volume. A small quantity of methylal may also be added 
to this mixture. The function of each of these components is described in Sect. 6.5.2. 
This gas was discovered early in the development of the MWPC and provides gains of 
close to 107• At this level of multiplication the signals are saturated and are thus inde­
pendent of energy. However, they are fast because of the significant contribution of the 
electrons (see footnote in Sect. 6.5.1) and provide good timing resolution. The detec­
tor, moreover, is extremely efficient and the large signal amplitudes greatly simplify the 
readout electronics. 

With modern low-noise, fast electronics, however, other gas mixtures perhaps with 
lower gain can be used to optimize other characteristics, for example, sensitivity to cer­
tain radiation type, energy resolution, high rate capability, etc. 

6.6.4 Timing Resolution 

The MWPC is a relatively fast detector and can also be used in timing applications. The 
timing resolution of the MWPC depends essentially on the drift time of the electrons. 
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The pulse on an anode wire, as we saw in Sect. 6.5.1, is induced by the positive ions in 
the avalanche as they drift towards the cathode. About 8070 of this signal (see Fig. 6.6) 
is in the first 10 ns of the pulse so that the leading edge is quite fast. The timing uncer­
tainty from this source is thus small. The limiting factor, instead, is the time spread be­
tween the arrival of the event and the occurrence of the avalanche at the anode. For a 
charged particle which traverses the chamber, ionization is distributed throughout the 
gap so that electrons will continue to arrive over a long period of time. The leading edge 
of the pulse thus rises in an approximately linear fashion. The first electrons to arrive, 
however, are those which pass closest to an anode wire. This distance cannot be more 
than a half a wire spacing so that the uncertainty in timing is not more than the time it 
takes for electrons to drift a half a wire spacing. For a typical two mm wire spacing, 
this is about =::: 25 - 30 ns. 

In the case of x-ray detection, the timing resolution is even better because of the 
short range of the conversion electrons. All electrons essentially arrive within a few 
nanoseconds of each other which greatly reduces the time spread. 

6.6.5 Readout Methods 

The information from a MWPC may be extracted in a number of different ways. The 
standard method is to consider each wire in the chamber as a separate detector connect­
ed to its own electronics. A typical pulse processing circuit for one wire is shown in Fig. 
6.10. The signal is first amplified, then discriminated and shaped to a standard logic 
level. To allow selection or rejection of events, a gate preceded by an appropriate delay 
is added. A gating signal from the trigger or some other part of the electronics system 
can then be used to select only those events desired. Events passing through the gate are 
then stored in a memory from which the entire wire pattern of the chamber can later be 
readout by a computer. Besides serving to reject unwanted events the gate pulse can al­
so be used to optimize detector performance by filtering events with multiple firing of 
the anode wires. This is discussed in the next section. 

In addition to the separate wire readout method, a number of analog methods have 
been developed for obtaining one and two-dimensional information from one plane of 
anode wires only. These methods make use of the fact that the avalanche at the anode is 
also highly localized along the length of the wire. Information on this point can be ob­
tained in a number of ways. 

The center of gravity of method exploits the signals induced on the cathode of the 
MWPC. If the cathodes are arranged as a series of strips with one plane oriented parallel 
to the anode wires and the other orthogonally, then the situation in Fig. 6.11 arises. The 
induced signals are largest on the strip closest to the avalanche and diminish propor­
tionately with distance from the avalanche point. If Yi is the coordinate of the ith strip 
and Qi is the measured charge on that strip, then the avalanche point can be estimated 
by calculating the center of gravity, 
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Fig. 6.10. Block diagram of the 
readout electronics for a MWPC 
anode wire 
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Fig. 6.11. Bidimensional readout 
using cathode strips (from Breskin et 
al. [6.18)). The signals from each 
strip are stored and the center of 
gravity of the distribution calculated 
to yield the position of the avalanche 

(6.43) 

where b is a small bias which is subtracted from each Qi in order to correct for the dis­
persive effects of noise [6.19]. The x coordinate is obtained in a similar manner from 
the opposite cathode plane. While this should in principle give the same result as the an­
ode signal, a better resolution in this coordinate can actually be obtained in some cases. 
This depends on the symmetry of the avalanche around the anode wire and consequent­
lyon the type of radiation being detected. With soft x-rays, a resolution of 35 11m has 
been obtained [6.20] in the y-direction along the anode wire, and a somewhat worse res­
olution in x. With a high energy charged particle beam, however, a resolution of closer 
to 100 11m is more typical. 

The method of charge division relies on the fact that the charge collected at either 
end of a resistive anode wire is divided in proportion to the length of wire from the 
point at which the charge is injected. This is illustrated in Fig. 6.12. If QA and Q8 are 
the charges collected then the coordinate along the wire is 

(6.44) 

where L is the length of the wire. Accuracies as high as 0.4070 of the wire length have 
been obtained [6.21]. 

One of earliest and simplest analog methods is the delay line technique which was 
developed before the current sophisticated electronics for MWPCs became available. 
In this technique, external delay lines are capacitively coupled to the cathode or anode 
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Fig. 6.12. Charge division method for 
coordinate readout on MWPC's 
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planes of the chamber [6.21]. Using the anode signal or some other triggering signal as 
a start, the time difference between the arrival of the signals at the ends of the delay line 
are measured. This then yields the two coordinates of the avalanche. 

6.6.6 Track Clusters 

Up to now, we have assumed that only one wire fires per event; this is usually not the 
case under real conditions. Particles traversing the chamber at an angle to the anode 
plane generally produce a cluster of firings as they cross over several wires as shown in 
Fig. 6.13. Moreover, even with perpendicularly incident particles, the creation of high 
energy ionization electrons (delta rays) will also produce multiple firings a fraction of 
the time. Because of the differing distances to the anode, the wires signals are spread 
out over a time period corresponding to the drift times of the electrons. The desired sig­
nal, of course, is the one which is closest to the event and the one which arrives first. 
One way to limit the cluster size is by adjusting the width of the gating signal in the 
readout electronics so that the late arriving electrons are eliminated. This can usually 
limit cluster size to 1 or 2 wires depending on the track angle. 
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Fig. 6.13. Track clusters caused by particles arriving at 
an angle to the anode plane 

The optimum gate width can be found by placing the MWPC in a well collimated 
beam and varying the width while recording the number of single and multiple firings. 
The point at which the single firings are at a maximum and the multiple firings at a 
minimum then determines the optimum gate width. In typical chambers with 2 mm 
wire spacing and 8 mm gaps, the minimum gate time is about 30 ns. With smaller gate 
widths, good events begin to be rejected and the detection efficiency drops. 

The cluster size for an event may also be controlled by increasing the amount of 
electronegative gas mixed with the chamber gas. Electrons produced in the far regions 
will then have a smaller probability of reaching the anodes thus limiting the number of 
wires producing a signal. The amount of electronegative gas that can be added, of 
course, is limited by the requirement for a good overall efficiency of the chamber. 

6.6.7 MWPC Efficiency 

The intrinsic efficiency of the MWPC depends on the number of electron-ion pairs pro­
duced and collected in the chamber. As such it is dependent on the dE/dx of the fill gas, the 
width of the gap, the pressure of the gas, the amount of electronegative gases, the high 
voltage applied, the threshold set on the electronics, the gate width on the readout, etc. 
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Fig. 6.14. A high voltage single track efficiency 
curve for an MWPC. In a good chamber this can be 
close to 100070 

Assuming that the dimensions of the chamber gap and the stopping power and com­
position of the fill gas are adequate, the determining factors for the efficiency of a giv­
en chamber are the high voltage and the electronics. For the typical chambers we have 
been describing, the efficiency for charged particles can be very high, in fact, with val­
ues on the order of 98 - 99070 or more. Figure 6.14 shows the measured efficiency for 
single tracks in a typical MWPC filled with magic gas as a function of the applied volt­
age. This measurement was performed by placing the chamber in a proton beam along 
with two beam-defining scintillation counters sandwiching the chamber. Using the co­
incidence between the counters as a trigger, the number of single tracks observed versus 
the number of triggers then yields the efficiency. As can be seen, a plateau is obtained 
at which the efficiency is close to 100070. The working voltage is then usually set at some 
point near the middle of this plateau. 

The threshold on the electronics and the gate width on the readout are also impor­
tant as we have mentioned. The threshold, of course, must be low enough such that all 
valid signals will be accepted but high enough so that noise will be rejected. In general, 
a threshold of about 1110 of the peak amplitude is sufficient [6.3] for 100070 detection 
efficiency of minimum ionizing particles. In typical MWPCs this is about 0.5 mV on 
1 kQ. The width of the gate on the readout electronics must also be sufficiently large so 
as not to lose events. The minimum width as we have indicated is about 30 ns. 

The efficiency of a chamber is also dependent on the count rate. At a fixed voltage, 
the efficiency will generally decrease as the incident flux is increased. This is the result 
of a space charge build-up around the chamber wires due to the positive ions released in 
avalanches. Since their drift velocities are low, an accumulation of ions occurs as the 
number of avalanches increases. The effect of this charge is to alter the electric field 
and lower the gain around the wire. The pulse height spectrum is then shifted down­
ward so that part of it is lost below the threshold thereby causing the efficiency to drop. 
This loss can be recovered to some extent by raising the voltage, however, the plateau 
will generally be narrower. The threshold may also be lowered, if possible. As a general 
rule, the maximum flux rate for per unit length of MWPC wire is about 104/s per mil­
limeter. 
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6.7 The Drift Chamber 

Early in the development of the MWPC, it was realized that spatial information could 
also be obtained by measuring the drift time of the electrons coming from an ionizing 
event. If a trigger is available to signal the arrival of a particle and the drift velocity is 
known, then the distance from the sensing wire to the origin of the electrons is 

11 

X = J u dt , (6.45) 

where to is the arrival time of the particle and tl is the time at which the pulse appears at 
the anode. In practice, of course, it is highly desirable to have a constant drift velocity, 
u, and hence a constant electric field, so as to have a linear relationship between time 
and distance. Drift chambers exploiting this aspect of electron transport were built 
shortly after the MWPC and have been used extensively in particle physics ever since. 

Figure 6.15 schematically illustrates the basic operation of a drift chamber. The 
drift cell is defined at one end by a high voltage electrode and at the other end by the 
anode of a simple proportional counter. In order to create a constant electric field, a se­
ries of cathode field wires individually held at appropriate voltages line the drift region. 
To signal the arrival of a particle, a scintillation counter covering the entire sensitive 
area is placed before or after the chamber. A particle traversing the chamber and scin­
tillator, now, liberates electrons in the gas which then begin drifting towards the anode. 
At the same time, the fast signal from the scintillator starts a timer. The signal created 
at the anode as the drifting electrons arrive then stops the timer to yield the drift time. 
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Scintillation counter 
Fig. 6.15. Basic operating principle of 
the drift chamber (from Sauli [6.3]) 

While drift paths as long as 50 cm have been used with this simple structure, the 
usual drift region is about 5 - 10 cm. Shorter pathlengths minimize the effect of diffu­
sion and avoid the use of very high voltages. With typical drift velocities of about 
5 cm/Ils, this then yields drift times of lor 2 IlS. This is also known as the memory time 
of the chamber. To cover a wider surface area, many adjacent drift cells can be used. 
Drift chambers several meters long have been constructed in this manner. To obtain 
several points on a track, several drift chambers with different wire orientations may 
also be stacked together. 

In principle, the chamber structure used for a MWPC may also be employed for 
drift chambers as well. The wire spacings, of course, will be somewhat larger so as to 
have a more reasonable drift time. A problem, however, is the nonuniformity of the 
field in the inter-anode wire gap (see Fig. 6.8). To correct this, additional field wires are 
usually added in the space between anode wires. One design optimized for high-resolu­
tion [6.22] is shown in Fig. 6.16. Here, the potential on the cathode wires is not con­
stant, but instead, uniformly graded downwards from 0 (ground) on the wire facing the 
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Fig. 6.16. Drift chamber design using interanode field wires (from Breskin et al. [6.22)) 

anode sense wire to a high negative voltage on the cathode wires facing the field wires 
on either side of the anode. The resulting equipotential lines are also shown in the 
figure. 

While Fig. 6.16 shows a planar design, drift chambers can also be made in cylindri­
cal form. Such chambers then give information on the r and if> coordinates of a particle 
trajectory. These are very much used at collider machines for direct visualization of 
outgoing particle tracks [6.23] without having to mathematically fit the detected coor­
dinates. This requires many points on a track to be measured and thus a high density of 
wires. This also results in a better resolution of vertices and multiple tracks. 

The advantage of drift chambers is the relatively small amount of wires and elec­
tronics required and the large surface areas which can be covered. They are generally 
easier to operate, however, much more attention must be given to the fill gas and the 
field uniformity if good resolution is desired. Like the MWPC, the maximum counting 
rates are also limited to about 104/s-mm per wire. Since there are less wires in a drift 
chamber, however, the maximum allowable flux on a drift chamber is generally less 
than for an MWPC. 

6.7.1 Drift Gases 

Since a precise knowledge of the drift velocity is necessary to operate drift chambers, 
the choice of a fill gas is of utmost importance. The basic criteria for choosing a drift 
gas are generally the same as those for a MWPC, however, particular attention must be 
given to the drift properties. 

The purity of the gas, of course, is very important. In particular, if electronegative 
gases are present, electrons will be captured as they drift to the anodes. The allowable 
level for these impurities depends on the length of the drift path: the longer this path, 
the higher the required purity level. 

To maximize operational stability, a gas exhibiting drift velocity saturation at not 
too high electric fields should be chosen. Some examples can be seen in Fig. 6.3 which 
shows the drift velocities of electrons in some gases flattening out over a range of elec­
tric field intensities. When operated in this region, the drift velocity is then less sensitive 
to field inhomogeneities, changes in the operating voltage, temperature, etc. 

The magnitude of the drift velocity must also be considered. If the chamber is to op­
erate at high count rates, then the drift velocity must be high so as to minimize dead 
time. If, instead, high spatial resolution is desired, a slower drift velocity is required to 
minimize timing errors. High drift velocities can be obtained with CF4 and a hydrocar­
bon quencher [6.24], for example, while slow velocities are observed in gases such as di­
methyl ether (DME) [6.25], CO2 , or He - C2H 6 • 
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6.7.2 Spatial Resolution 

The spatial resolution of a drift chamber depends on how well the relation between 
drift time and space coordinate is known and the amount of diffusion suffered by the 
electrons as they drift. The latter factor depends on the length of the drift path. If we 
assume a uniform drift velocity, then it can be seen from (6.14), that the spread in the 
electron cloud after a distance x is simply 

a= V 2:: . (6.46) 

The width of the diffusion distribution thus goes as the square root of the drift path. 
(This is not the error in localizing the center of the distribution, however. Recalling 
Sect. 4.4.4, the error is a IVn where n is the number of electrons in the cloud). To 
obtain higher spatial resolutions, therefore, a smaller drift length is necessary. With a 
5 cm drift path, resolutions on the order of 100 Ilm can be obtained. The intrinsic accu­
racy of the drift chamber can be much better, of course, and has been measured to be 
as low as 50 Ilm over a drift space of about 5 mm [6.3]. 

In more recent years, much effort has been put into designing very high resolution 
chambers with spatial resolutions of 50 Ilm or less for the next generation of high-ener­
gy experiments. These efforts have included searches for new low-diffusion, low drift 
velocity gases and new chamber designs and concepts. Operation at high pressure has 
also been investigated as a means of reducing diffusion as well as a new means of tim­
ing by triggering on the scintillation light emitted by the avalanche. A review of some of 
these efforts up to the time of this writing may found in [6.20] and [6.26]. 

6.7.3 Operation in Magnetic Fields 

A common occurrence in particle physics experiments is the location of the detector in 
or near the field of a magnet. In such cases, it is quite obvious that the path of the drift­
ing electrons and the drift velocity will be altered by the Lorentz force. A precise 
knowledge of the magnetic field is then necessary in order to correlate the drift time 
with position. In some cases also, it may be possible to adjust the electric field direction 
so as to compensate the effects of the magnetic field. 

6.8 The Time Projection Chamber (TPC) 

The most sophisticated of the current ionization detectors is the time projection cham­
ber or TPC. This device is essentially a three-dimensional tracking detector capable of 
providing information on many points of a particle track along with information on 
the specific energy loss, dEldx, of the particle. For this reason, the TPC has been re­
ferred to as an electronic bubble chamber. It has played an essential role in physics ex­
periments at high-energy electron-positron colliders and more recently has been pro­
posed for use in many other types of experiments [6.27, 28]. 

The TPC makes use of ideas from both the MWPC and drift chamber. Its basic 
structure is sketched in Fig. 6.17. The detector is a essentially a large gas-filled cylinder 
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with a thin high voltage electrode at the center. At high energy colliders, the diameter 
and length of the cylinder can be as large as two meters. When voltage is applied, a uni­
form electric field directed along the axis is created. A parallel magnetic field, the func­
tion of which will be explained in a moment, is also applied. The ends of the cylinder 
are covered by sector arrays of proportional anode wires arranged as shown. Parallel to 
each wire is a cathode strip cut up into rectangular segments. These segments are also 
known as cathode pads. 

At a collider machine, the detector is positioned so that its center is at the interac­
tion point. The TPC thus subtends a solid angle close to 4 n. Particles emanating from 
this point pass through the cylinder volume producing free electrons which drift to­
wards the endcaps where they are detected by the anode wires as in a MWPC. This 
yields the position of a space point projected onto the endcap plane. One coordinate is 
given by the position of the firing anode wire while the second is obtained from the sig­
nals induced on the row of cathode pads along the anode wire. Using the center-of­
gravity method described in Sect. 6.6.5, this locates the position of the avalanche along 
the firing anode wire. The third coordinate, along the cylinder axis, is now given by the 
drift time of the ionization electrons. Since all ionization electrons created in the sensi­
tive volume of the TPC will drift towards the endcap, each anode wire over which the 
particle trajectory crosses will sample that portion of the track. This yields many space 
points for each track allowing a full reconstruction of the particle trajectory. This is il­
lustrated in more detail in Fig. 6.18. 

Because of the relatively long drift distance, diffusion, particularly in the lateral di­
rection, becomes a problem. This is remedied by the parallel magnetic field which con­
fines the electrons to helical trajectories about the drift direction. This turns out to re­
duce diffusion by as much as a factor of 10. In order to avoid deviating the trajectories 
of the drifting electrons, the magnetic and electric fields must be in perfect alignment 
and uniform over the volume of the drift zone down to about one part in 104• 

A problem which arises during operation is the accumulation of a space charge in 
the drift volume due to positive ions from avalanches drifting back towards the central 
cathode. These ions are sufficiently numerous that a distortion of the electric field in 
the drifting volume occurs. This is prevented by placing a grid at ground potential just 
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positron. The muon track is denoted by a M (from Lil/berg [6.31]) 

before the anode wires. Positive ions are then captured at this grid rather than drifting 
back into the sensitive volume. The grid also serves to separate the drift region from 
the avalanche zone and allows an independent control of each. 

Since the charge collected at the endcaps is proportional to the energy loss of the 
particle, the signal amplitudes from the anode also provide information on the dE/dx 
of the particle. If the momentum of the particle is known from the curvature of its tra­
jectory in the magnetic field, for example, then this information can be used to identify 
the particle 2. In order for this method to work, however, sufficient resolution in the 
dE/dx measurement must be obtained. This is much more difficult to realize as many 
factors must be considered, e.g., electron loss due to attachment, wire gain variations 
in position and time, calibration of the wires, saturation effects, choice of gas and op­
erating pressure, etc., all of which require careful thought! 

Because of the very large amount of data produced for each event, an important 
consideration is the readout and data acquisition system for a TPC. The original TPC 

2 A general review of the particle identification method using dE/dx measurements is given in [6.29). 
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used at the PEP electron-positron collider employed charged-coupled devices (CCDs) 
to store the information [6.30] from the sense wires for later readout by slower ADCs. 
Charge-coupled devices are essentially analog shift registers capable of storing time and 
pulse height information. The CCD continuously samples information from the TPC 
wires at a rate determined by an external clock (about 15 MHz) and dumps this infor­
mation as long as there is not a trigger signifying a valid event. If a trigger signal arrives 
indicating a valid event, however, the clock rate is slowed down by about a factor of 
100 and the CCD contents read and digitized by ADCs. The information is then passed 
to a computer for track reconstruction. 

A second approach which has been used in later TPCs is to use flash ADCs (see 
Sect. 14.11) directly coupled to the sense wires. These ADCs are sufficiently fast such 
that several wires can be multiplexed into one ADC. A description of one such readout 
and data acquisition system is given in [6.31]. Figure 6.19 shows a reconstructed event 
from a TPC. 

6.9 Liquid Ionization Detectors (LID) 

With the ever increasing requirements of nuclear and high-energy experiments, physi­
cists have for some time now looked at the possibility of using liquids as an ionizing 
medium. Liquids, of course, present many advantages such as higher density and lower 
diffusion. Per unit length of liquid, therefore, a greater number of ion-electron pairs 
will be created. This, for example, would allow MWPCs with smaller gap and wire 
spacings to be constructed. The smaller gap thickness, in turn, would also result in 
smaller wire clusters. Similarly, lower diffusion would result leading to less track 
broadening and a higher spatial resolution. 

Liquids, unfortunately, suffer from a number of problems. Relative to gases, for 
example, ionization and transport phenomena in liquids are much less well understood. 
The principal problem, however, is technical: the presence of electronegative impurities 
such as oxygen which can attach drifting electrons. This requires purification to very 
high levels which is not always realizable for a given liquid. This situation has essential­
ly restricted the choice of liquid ionization media to the noble elements, particularlyar­
gon and xenon, and a few hydrocarbons in which attaining a high level of purity would 
appear to be technically feasible. Since the boiling points of these elements are at low 
temperatures, this also implies an additional cryogenic system for these detectors. 

The use of LID's dates back to the early 1950s when Marshall [6.32] was the first to 
build a small centimeter-size liquid detector and to actually use it in an experiment. Be­
cause of the successful development of semiconductor detectors at that time, however, 
LID research remained relatively inactive until the late 1960s when Luis Alvarez' group 
at Berkeley began investigating the use of liquified noble gases in wire chambers as a 
means of increasing spatial resolution. So as to keep the electronics simple, it was 
hoped that multiplication could be induced in the liquid to provide a larger signal. The 
experiments, however, were only partially successful. A type of Geiger-Muller multipli­
cation was, in fact, observed in a simple cylindrical counter filled with liquid argon 
(LA) [6.33], however, the detection efficiency was very low «20070). Better results 
were obtained with liquid xenon (LXe) in which proportional multiplication and an 
almost 100% detection efficiency were observed [6.34]; however, an impurity level of 
better than a few parts per million was necessary which required a long, painstaking 
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Fig. 6.20. Schematic diagram of a liquid argon cal­
orimeter composed of a stack of steel plates im­
mersed in liquid argon (from Delfosse et al. [6.39]) 

purification process. Moreover, very thin wires (3.5 11m) were required to obtain suffi­
cient gain. Based on this experience, a small multi-wire LXe ionization chamber with 
12 11m wires was constructed and demonstrated [6.35] to have a spatial resolution of 
± 15 11m. Given the thickness of the wires, no proportional multiplication was ob­
served. Despite this success, however, developments in this direction have been very 
slow probably because of the many technical difficulties involved and the lack of un­
derstanding of ionization and charge transport processes in liquids. More recently, a 
prototype micro-strip ionization chamber [6.36] has been operated with a resolution of 
less than 8.5 11m. Again, however, many technical problems still remain. 

At present, the only type of liquid ionization detector currently in routine use is the 
liquid argon calorimeter first introduced by Willis and Radeka [6.37] for electromagnetic 
shower detection in high energy physics experiments. This instrument essentially con­
sists of a horizontal stack of equally-spaced steel plates immersed in liquid argon as 
shown in Fig. 6.20. By applying a voltage between the steel plates, this forms a series of 
ionization chambers in which the plates act as electrodes and the LA as an ionizing me­
dium. Since the gaps are small on the order of 2 cm, the required purity level for the LA 
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is only a few parts in a million, which is readily achieved for this liquid. High energy 
photons incident on the calorimeter face convert on the steel plates creating an electro­
magnetic shower which is absorbed by the following layers of steel and LA. The ioniza­
tion created in each layer of argon allows one to sample the energy deposited by the 
shower as it develops. Since the entire shower is absorbed, the total ionization collected 
is proportional to the total energy of the shower. Such calorimeters have since become 
standard devices in high-energy experiments and similar instruments have been devel­
oped for hadron showers as well. A review of the calorimetric technique in general is 
given in [6.38]. 

Despite the many technical problems, the attractiveness of liquids has nevertheless 
led to proposals for more sophisticated detectors such as the liquid argon drift chamber 
[6.40] and the liquid argon TPC [6.41]. Because drift paths of a few tens of centimeters 
will be called for in these detectors, a purity level of less than 1 part in a billion will 
be necessary. Moreover, this purity must be maintained in the detector for long 
periods. This is to be contrasted to the LA calorimeter where purities of 1 ppm are 
generally used. Measurements of electron drift in a liquid argon [6.42] test chamber 
using a relatively simple purification system have been encouraging, however, yielding 
a purity of 0.2 ppb of oxygen equivalent and a measured extrapolated attenuation 
length of 7 m at an electric field strength of 1 kV /cm. 

As a final remark, we note the relatively recent research into new ionization liquids. 
While LA can be purified to very high levels, the cryogenic system required proves to 
be cumbersome and constraining. For this reason, some physicists have begun search­
ing for a suitable room-temperature liquid with the required drift properties and purity. 
Nonpolar organic liquids such as tetramethylsilane (TMS) or 2,2,4,4-tetramethylpen­
tane (TMP) appear to show some of the desired properties and are now currently under 
investigation. A general review of the physics and chemistry of these liquids is given 
in [6.43]. 



7. Scintillation Detectors 

The scintillation detector is undoubtedly one of the most often and widely used particle 
detection devices in nuclear and particle physics today. It makes use of the fact that cer­
tain materials when struck by a nuclear particle or radiation, emit a small flash of light, 
i.e. a scintillation. When coupled to an amplifying device such as a photomultiplier, 
these scintillations can be converted into electrical pulses which can then be analyzed 
and counted electronically to give information concerning the incident radiation. 

Probably the earliest example of the use of scintillators for particle detection was 
the spinthariscope invented by Crookes in 1903. This instrument consisted of a ZnS 
screen which produced weak scintillations when struck by a-particles. When viewed by 
a microscope in a darkened room, they could be discerned with the naked eye, although 
some practice was necessary. It was tedious to use, therefore, and thus never very popu­
lar, even though it was spectacularly employed by Geiger and Marsden in their famous 
a scattering experiments. Indeed, with the invention of the gaseous ionization instru­
ments, the optical scintillation counter fell into quick disuse. 

In 1944, not quite a half century later, Curran and Baker resuscitated the instru­
ment by replacing the human eye with the then newly developed photomultiplier tube. 
The weak scintillations could now be counted with an efficiency and reliability equal to 
that of the gaseous ionization instruments. Thus was born the modern electronic scin­
tillation detector. New developments and improvements followed rapidly so that by the 
mid-1950's scintillation detectors were among the most reliable and convenient avail­
able. This is still true today. In this chapter, we will survey the existing materials and 
current techniques in use as well as describe their basic underlying principles. 

7.1 General Characteristics 

The basic elements of a scintillation detector are sketched below in Fig. 7.1. Generally, 
it consists of a scintillating material which is optically coupled to a photomultiplier 
either directly or via a light guide. As radiation passes through the scintillator, it excites 
the atoms and molecules making up the scintillator causing light to be emitted. This 
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Fig. 7.1. Schematic diagram of a 
scintillation counter 
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light is transmitted to the photomultiplier (PM or PMT for short) where it is converted 
into a weak current of photoelectrons which is then further amplified by an electron­
multiplier system. The resulting current signal is then analyzed by an electronics sys­
tem. 

In general, the scintillator signal is capable of providing a variety of information. 
Among its most outstanding features are: 

1) Sensitivity to Energy. Above a certain minimum energy, most scintillators behave in 
a near linear fashion with respect to the energy deposited, i.e., the light output of a 
scintillator is directly proportional to the exciting energy. Since the photomultiplier 
is also a linear device, (when operated properly!), the amplitude of the final electrical 
signal will also be proportional to this energy. This makes the scintillator suitable as 
an energy spectrometer although it is not the ideal instrument for this purpose. 

2) Fast Time Response. Scintillation detectors are fast instruments in the sense that 
their response and recovery times are short relative to other types of detectors. This 
faster response allows timing information, i.e., the time difference between two 
events, to be obtained with greater precision, for example. This and its fast recovery 
time also allow scintillation detectors to accept higher count rates since the dead 
time, i.e., the time that is lost while waiting for the scintillator to recover, is reduced. 

3) Pulse Shape Discrimination. With certain scintillators, it is possible to distinguish 
between different types of particles by analyzing the shape of the emitted light 
pulses. This is due to the excitation of different fluorescence mechanisms by particles 
of different ionizing power. The technique is known as pulse-shape discrimination 
and is discussed in more detail later in this chapter. 

Scintillator materials exhibit the property known as luminescence. Luminescent ma­
terials, when exposed to certain forms of energy, for example, light, heat, radiation, 
etc., absorb and reemit the energy in the form of visible light. If the reemission occurs 
immediately after absorption or more precisely within 10 - 8 S (10 - 8 S being roughly the 
time taken for atomic transitions), the process is usually called fluorescence. However, 
if reemission is delayed because the excited state is metastable, the process is called 
phosphorescence or afterglow. In such cases, the delay time between absorption and 
reemission may last anywhere from a few microseconds to hours depending on the ma­
terial. 

As a first approximation, the time evolution of the reemission process may be 
described as a simple exponential decay (Fig. 7.2) 

No (-t) N=-exp -- , 
Td Td 

(7.1) 

where N is the number of photons emitted at time t, No the total number of photons 
emitted, and Td the decay constant. The finite rise time from zero to the maximum in 
most materials is usually much shorter than the decay time and has been taken as zero 
here for simplicity. 

While this simple representation is adequate for most purposes, some, in fact, ex­
hibit a more complex decay. A more accurate description, in these cases, may be given 
by a two-component exponential 

N = A exp ( ~ft ) + B exp ( ~st) , (7.2) 
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Fig. 7.3. Resolving scintillation light into fast (prompt) and slow 
(delayed) components. The solid line represents the total light decay 
curve 

where Ts and Tf are the decay constants. For most scintillators, one component is gener­
ally much faster than the other so that it has become customary to refer to them as the 
fast and slow components (hence the subscripts f and s), or the prompt and delayed 
components. Their relative magnitudes, A and B, vary from material to material, al­
though it is the fast component which generally dominates. Figure 7.3 shows the rela­
tion between these components. As will be seen in a later section, the existence of these 
two components forms the basis for the technique of pulse shape discrimination. 

While many scintillating materials exist, not all are suitable as detectors. In general, 
a good detector scintillator should satisfy the following requirements: 

1) high efficiency for conversion of exciting energy to fluorescent radiation 
2) transparency to its fluorescent radiation so as to allow transmission of the light 
3) emission in a spectral range consistent with the spectral response of existing photo­

multipliers 
4) a short decay constant, T. 

At present, six types of scintillator materials are in use: organic crystals, organic liq­
uids, plastics, inorganic crystals, gases and glasses. In the following sections we will 
briefly describe each category. Their basic properties are summarized in Table 7.1. 

7.2 Organic Scintillators 

The organic scintillators are aromatic hydrocarbon compounds containing linked or 
condensed benzene-ring structures. Their most distinguishing feature is a very rapid de­
cay time on the order of a few nanoseconds or less. 

Scintillation light in these compounds arises from transitions made by the free va­
lence electrons of the molecules. Thesedelocalized electrons are not associated with any 
particular atom in the molecule and occupy what are known as the n-molecular orbit­
als. A typical energy diagram for these orbitals is shown in Fig. 7.4, where we have dis­
tinguished the spin singlet states from the spin triplet states. The ground state is a sin­
glet state which we denote by So. Above this level are the excited singlet states (S*, S**, 
... ) and the lowest triplet state (To) and its excited levels (T*, T**, ... ). Also associat-
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Fig. 7.4. Energy level diagram of an 
organic scintillator molecule. For clarity, 
the singlet states (denoted by S) are 
separated from the triplet states (denoted 
by T) 

ed with each electron level is a fine structure which corresponds to excited vibrational 
modes of the molecule. The energy spacing between electron levels is on the order of a 
few eV whereas that between vibrational levels is of the order of a few tenths of eV. 

Ionization energy from penetrating radiation excites both the electron and vibra­
tionallevels as shown by the solid arrows. The singlet excitations generally decay imme­
diately (:5 10 ps) to the S* state without the emission of radiation, a process which is 
known as internal degradation. From S*, there is generally a high probability of mak­
ing a radiative decay to one of the vibrational states of the ground state So (wavy lines) 
within a few nanoseconds time. This is the normal process of fluorescence which is de­
scribed by the prompt exponential component in (7.2). The fact that S* decays to excit­
ed vibrational states of So, with emission of radiation energy less than that required for 
the transition So -+ S * also explains the transparency of the scintillators to their own 
radiation. 

For the triplet excited states, a similar internal degradation process occurs which 
brings the system to the lowest triplet state. While transitions from To to So are possi­
ble, they are, however, highly forbidden by multipole selection rules. The To state, 
instead, decays mainly by interacting with another excited To molecule, 

To+ To-+ S* + So + phonons (7.3) 

to leave one of the molecules in the S* state. Radiation is then emitted by the S* as de­
scribed above. This light comes after a delay time characteristic of the interaction be­
tween the excited molecule and is the delayed or slow component of scintillator light. 
The contribution of this slow component to the total light output is only significant in 
certain organic materials, however. 

Because of the molecular nature of luminescence in these materials, organics can be 
used in many physical forms without the loss of their scintillating properties. As detec­
tors, they have been used in the form of pure crystals and as mixtures of one or more 
compounds in liquid and solid solutions. A brief description of these types is given 
below. 

7.2.1 Organic Crystals 

The most common crystals are anthracene (C14 H lO ), trans-stilbene (C14H 12) and naph­
thalene (C lO H g). With the exception of anthracene which has a decay time of ==30 ns, 
these crystals have a fast time response on the order of a few nanoseconds. However, 
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due to channeling effects their amplitude response is anisotropic, that is, for a constant 
source of radiation the response varies with the orientation of the crystal. Obtaining a 
good energy resolution with a noncollimated source, then, can become a difficult prob­
lem. 

They are hard crystals and thus very durable, although stilbene tends to be brittle 
and more sensitive to thermal shock than anthracene. For this reason also, the cutting 
of such crystals to desired forms and shapes is often a difficult task. This and other dis­
advantages, unfortunately, have caused anthracene and stilbene to fall into disuse in 
the past years. 

Anthracene, nevertheless, has the distinction of having the highest light output of 
all the organic scintillators. For this reason, it is chosen as the reference to which the 
light outputs of other scintillators are compared. These outputs are thus usually ex­
pressed as percent of anthracene light. 

7.2.2 Organic Liquids 

These materials are liquid solutions of one or more organic scintillators in an organic 
solvent. While the scintillation process here is still the same as that described above, the 
mechanism of energy absorption is different. In solutions, the ionization energy seems 
to be absorbed mainly by the solvent and then passed on to the scintillation solute. This 
transfer usually occurs very quickly and efficiently, although the precise details of the 
mechanism are still not clear. 

Some of the organic scintillators most commonly used as solutes are p-Terphenyll, 
PBD 2, pP03 and POPOp4. Among the solvents, the most successful seem to be 
xylene, toluene, benzene, phenylcyclohexane, triethylbenzene and decaline. Measure­
ments have shown that the efficiency of liquid scintillators increases with solute 
concentration although a broad maximum is reached just before saturation of the solu­
tion. Typical concentrations are on the order of 3 g of solute per liter of solvent. 

The response of liquid scintillators is generally quite fast with decay times on the or­
der of 3 to 4 ns. They have a particular advantage in that they can be easily loaded with 
other materials so as to increase efficiency for a particular application. For example, 
Boron-ll, which has a high neutron cross-section, can be added to increase efficiency 
for neutron detection. Similarly, wavelength shifters, i.e. materials which absorb light 
of one frequency and reemit it at another, can also be added to make the spectrum of 
emitted light more compatible with a photomultiplier cathode. Loading, however, usu­
ally causes a lengthening of the decay time and a drop in light output because of a 
quenching effect which is produced by these additives. It has been found, though, that 
by adding naphthalene, biphenyl and other compounds to the solvent, much of the 
quenching effect can be removed. 

As a general rule, liquid scintillators are extremely sensitive to impurities in the sol­
vent. It is not uncommon, in fact, to find two different samples of the same liquid scin­
tillator with pulse heights differing by as much as a factor of 2 because of contaminat­
ing impurities. Dissolved oxygen, in particular, seems to have a large effect, although 

I C Is H I4 

z 2-phenyl,5-(4-biphenylyl)-1 ,3,4-oxadiazole (CZO HI4 Nz 0) 
3 2,5-diphenyloxazole (C15 HII NO) 
4 1 ,4-Bis-[2-(5-phenyloxazolyl»)-benzene (Cz4 H 16 Nz 0z) 
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this problem can be remedied to some extent by bubbling oxygen-free nitrogen through 
the liquid scintillator. 

7.2.3 Plastics 

In nuclear and particle physics, plastic scintillators are probably the most widely used 
of the organic detectors today. Like the organic liquids, plastic scintillators are also so­
lutions of organic scintillators but in a solid plastic solvent. The most common and 
widely used plastics are polyvinyl toluene, polyphenylbenzene and polystyrene. Some 
common primary solutes are PBD, p-Terphenyl and PBO, which are dissolved in con­
centrations typically on the order of 10 gil. Very often a secondary solute such as 
POPOP is also added for its wavelength shifting properties, but in a very much smaller 
proportion. The light emission spectra of several commercial plastics is shown in 
Fig. 7.5. 

Plastics offer an extremely fast signal with a decay constant of about 2 - 3 ns and a 
high light output. Because of this fast decay, the finite rise time cannot be ignored in 
the description of the light pulse as was done in (7.1). The best mathematical descrip­
tion, as shown by Bengston and Moszynski [7.2], appears to be the convolution of a 
Gaussian with an exponential, 

N(t) = Nof(a, t) exp ( ~t ) (7.4) 

wheref(a, t) is a Gaussian with a standard deviation a. Table 7.2 gives some fitted val­
ues of these parameters for a few common plastics. 

Table 7.2. Gaussian and exponential 
parameters for light pulse description 
from several plastic scintillators 
(from Bengston and Moszynski [7.2]) 

Scintillator 

NE102A 
NElll 
Naton 136 

a [ns) 

0.7 
0.2 
0.5 

r [ns) 

2.4 
1.7 
1.87 

One of the major advantages of plastics is their flexibility. They are easily machined 
by normal means and shaped to desired forms. They are produced commercially in a 
wide variety of sizes and forms, ranging from thin films, a few J.lg/cm 2 thick, to large 
sheets, blocks and cylinders, and are relatively cheap. Moreover, various types of plas­
tics are made offering differences in light transmission, speed, etc. 

While they are generally quite rugged, plastics are easily attacked by organic 
solvents such as acetone and other aromatic compounds. They are, however, resistant 
to water pure methylal (dimethoxymethane), silicone grease and lower alcohols. When 
handling unprotected plastic, it is generally advisable to wear cotton or terylene gloves 
as the body acids from one's hands can cause a cracking of the plastic (often referred 
to as craze) after a period of time. 
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7.3 Inorganic Crystals 

The inorganic scintillators are mainly crystals of alkali halides containing a small acti­
vator impurity. By far, the most commonly used material is NaI(Tl), where Thallium 
(TO is the impurity activator. Somewhat less common, but in active use is CsI (Tl), also 
with Tl as an impurity activator. Others crystals include CsFz, CsI(Tl), CsI(Na), 
KI (TO and LiI (Eu). Among the non-alkali materials are Bi4 Oe3 0 12 (bismuth ger­
manate or BOO), BaFz, ZnS(Ag), ZnO(Oa), CaW04 and CdW04 among others (see 
Table 7.1). 

The spectrum of emitted light from some of the more commonly used crystals is 
shown in Fig. 7.6. In general, inorganic scintillators are 2 - 3 orders of magnitude slow­
er ( - 500 ns) in response than organic scintillators due to phosphorescence. (The one 
exception is CsF which has a decay time of 5 ns!) However, the time evolution of emis­
sion is, in most cases, well described by the simple one or two exponential decay forms. 

A major disadvantage of certain inorganic crystals is hygroscopicity. NaI, in partic­
ular, is a prime example. To protect it from moisture in the air, it must be housed in an 
air tight protective enclosure. Other hygroscopic crystals are CsF, LiI (Eu) and KI (Tl). 
BOO and BaFz, on the other hand, are non-hygroscopic and can be handled without 
protection, while CsI(Tl) is only slightly hygroscopic but can generally be handled 
without protection. 
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Fig. 7.6. Light emission spectra for 
different inorganic crystals (from 
Harshaw Catalog [7.3)) 

The advantage of inorganic crystals lies in their greater stopping power due to their 
higher density and higher atomic number. Among all the scintillators, they also have 
some of the highest light outputs, which results in better energy resolution. This makes 
them extremely suitable for the detection of gamma-rays and high-energy electrons and 
positrons. 

While NaI has generally been the standard for these purposes, two new materials 
have recently drawn much attention from high-energy and nuclear physicists. These are 
Bi40e3012 (Bismuth Germanate or BOO) and BaFz (Barium Fluoride). 

BOO is particularly interesting because of its very high-Z and greater efficiency for 
the photoelectric conversion of y-rays. Relative to NaI, for example, it is 3 to 5 times 
more efficient and nonhygroscopic, as well. Its light output is lower than NaI, how­
ever, so that its resolution is about a factor two worse. Moreover, it is still relatively ex­
pensive and difficult to obtain in large quantities. Nevertheless, at very high energies it 
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Fig. 7.7. Electronic band structure of in­
organic crystals. Besides the formation 
of free electrons and holes, loosely 
coupled electron-hole pairs known as 
excitons are formed. Excitons can 
migrate through the crystal and be cap­
tured by impurity centers 

presents an enormous advantage over NaI. BaF2 , on the other hand, has been discov­
ered to have a very fast light component in the ultra-violet region. Decay times on the 
order of 500 ps have been measured in preliminary tests. This would make it twice as 
fast as the fastest plastics. The total light output of this component is low, however, 
and further development is necessary before its real usefulness can be determined. 

Whereas the scintillation mechanism in organic materials is molecular in nature, 
that in inorganic scintillators is clearly characteristic of the electronic band structure 
found in crystals (see Fig. 7.7). When a nuclear particle enters the crystal, two principal 
processes can occur. It can ionize the crystal by exciting an electron from the valence 
band to the conduction band, creating a free electron and a free hole. Or it can create 
an exciton by exciting an electron to a band (the exciton band) located just below the 
conduction band. In this state the electron and hole remain bound together as a pair. 
However, the pair can move freely through the crystal. If the crystal now contains im­
purity atoms, electronic levels in the forbidden energy gap can be locally created. A mi­
grating free hole or a hole from an exciton pair which encounters an impurity center, 
can then ionize the impurity atom. If now a subsequent electron arrives, it can fall into 
the opening left by the hole and make a transition from an excited state to the ground 
state, emitting radiation if such a deexcitation mode is allowed. If the transition is ra­
diationless the impurity center becomes a trap and the energy is lost to other processes. 

7.4 Gaseous Scintillators 

These consist mainly of the noble gases: xenon, krypton, argon and helium, along with 
nitrogen. In these scintillators the atoms are individually excited and returned to their 
ground states within about 1 ns, so that their response is extremely rapid. However, the 
emitted light is generally in the ultraviolet, a wavelength region at which most photo­
multipliers are inefficient. One method of overcoming this difficulty has been to coat 
the walls of the container with a wavelength shifter such as diphenylstilbene (DPS). 
These materials strongly absorb light in the ultraviolet and emit in the blue-green region 
where photomultiplier cathodes are more efficient. In some cases, the PM windows are 
also coated with a thin layer of wavelength shifter as well. 

Gas scintillators have generally been used in experiments with heavy charged parti­
cles or fission fragments. Here, mixtures of several gases (for example, 900,10 3He, 10% 
Xe) under pressures as high as 200 atm have been used to increase detection efficiency. 
In recent years, gas scintillators have been proposed as detectors in space physics as 
well. 

Experiments have also been performed with solid and liquid xenon and liquid heli­
um which have been found to scintillate. 
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7.5 Glasses 

Glass scintillators are cerium activated lithium or boron silicates. However, boron 
glasses have light outputs some ten times lower than lithium so they are not very often 
employed today. Glass detectors are used primarily for neutron detection although they 
are also sensitive to fJ and y radiation. They are most noteworthy for their resistance to 
all organic and inorganic reagents except for hydrofluoric acid. In addition, they have 
high melting points and are extremely resistant. These physical and chemical character­
istics make them especially useful in extreme environmental conditions. 

Their speed of response is between that of plastics and inorganic crystals, typically 
on the order of a few tens of nanoseconds. Light output, however, is low, never reach­
ing more than 25 - 30070 of that for anthracene. 

For low-energy neutron detection, it is also possible to increase sensitivity by enrich­
ing the lithium component with 6Li. Separation of neutron events from y radiation 
events can then be made by using pulse height discrimination techniques. 

7.6 Light Output Response 

The light output of a scintillator refers more specifically to its efficiency for converting 
ionization energy to photons. This is an extremely important quantity, as it determines 
the efficiency and resolution of the scintillator. In general the light output is different 
for different types of particles at the same energy. Moreover, for a given particle type, 
it does not always vary linearly with energy. 

As with ionization of gases, we can define an average energy loss required for the 
creation of a photon. Table 7.3 gives a brief list of this efficiency for several materials 
when electrons are the exciting particles. In general, this efficiency decreases for 
heavier particles. This behavior is seem in Fig. 7.8 for the case of plastic. Traditionally 
the light output of scintillators is referred to anthracene and is given as percent of 
anthracene light output. A more complete list of scintillator light outputs is given in 
Table 7.1. 

It should be kept in mind that when considering the efficiency of a scintillation de­
tector, the efficiency of the photomultiplier must also be taken into account, since they 
are inseparably coupled. A typical efficiency for the latter, as will be seen in the next 
chapter, is about 30%. Thus, assuming that all the emitted photons are collected, only 
30070 of these photons will ever be detected. 

Table 7.3. Average energy loss per 
scintillator photon for electrons 

Material e leV /photonJ 

Anthracene 60 

NaI 25 

Plastic 100 
BOO 300 
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Fig. 7.8a, b. Response of NE 102 plastic scintillator to different particles «a) from Gooding and Pugh [7.6); 
(b) from Craun and Smith [7.7]) 

7.6.1 Linearity 

Up until now, we have assumed that scintillators respond in a linear fashion with re­
spect to the exciting energy, that is the fluorescent light emitted, L, is directly propor­
tional to the energy,LlE, deposited by the ionizing particle, 

LexLlE. (7.5) 

Strictly speaking, this linear relation is not true, although for many applications it 
can be considered as a good approximation. In reality, the response of scintillators is a 
complex function of not only energy but the type of particle and its specific ionization. 

In organic materials, non-linearities are readily observed for electrons at energies 
below 125 keY, although they are small [7.4]. For heavier particles, however, the devia­
tions are more pronounced and become very noticeable at lower energies, with the 
higher ionizing particles showing the larger deviations. For comparison, Fig. 7.8 shows 
the response of NE102A plastic scintillator to a number of different particles. 

The first successful semi-empirical model for this behavior was put forward by 
Birks [7.5] in 1951. Assuming the response of organic scintillators to be ideally linear, 
Birks explained the deviations as being due to quenching interactions between the excit­
ed molecules created along the path of incident particle, i.e., interactions which drain 
energy which would otherwise go into luminescence. Since a higher ionizing power pro­
duces a higher density of excited molecules, more quenching interactions will take place 
for these particles. In this model, the light output per unit length, dLldx, is related to 
the specific ionization 5 by 

dL 

dx 

A dE 
dx 

1 +kB dE 
dx 

(7.6) 

5 The specific ionization is defined as the average number of ion pairs created by the passing particle per unit 
length. If e is the mean energy lost for each ion pair created, then the specific ionization is (dE/dx)/e. 
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Table 7.4. Measured values of kB for NE102 plastic scintillator (from Badhwar et al. [7.8]) 

Particle Energy dEldx kB 
[MeV Inucl.] [MeV/gcm2] [mg/(cm 2 MeV)] 

Compton electrons and recoil protons <4 >97 9.1 ±0.6 
Compton electrons and alpha particles <1.3 >272 9.8±0.8 
Compton electrons and protons 1.2 -14 >34 10± 1 
Recoil protons <2.3 >150 10 
Recoil protons <8.4 >50 2 

3±1 

Protons <100 >7 3.7-7.5 
Protons 28 -148 5.5 - 20 13.2±2.5 
Deuterons 23-60 10- 23 
Nitrogen ions 3-9.5 (1-2)xl03 <10 
Protons to oxygen ions Rigidity 2.0-120 10 

1.5-1.6GV 
Oxygen-iron nuclei Rigidity 120-1300 10 

1.5 -1.6GV C=-5xlO- 6 

Protons 36-220 4.2 -12.3 12.6 ± 2.0 
4He 38 - 220 17 -49 7.2±1.0 
Carbon nuclei 95 265 7.8 
Oxygen nuclei 105 550 C= -7 xl0- 6 

with A: absolute scintillation efficiency; kB: parameter relating the density of ioniza­
tion centers to dEldx. 

In practice, kB is obtained by fitting Birk's formula to experimental data. Some val­
ues of kB for different particles in NE102A plastic are given in Table 7.4. 

While Birk's formula has been relatively successful, deviations have made it neces­
sary to turn to "higher order" formulae in order to better fit the data. Thus, expres­
sions [7.9] such as 

dL 

dx 

or [7.10] 

A dE 
dx 

1 +B dE + C(dE)2 
dx dx 

dL A ( dE) -=-In 1+2B-
dx 2B dx 

(7.7) 

(7.8) 

have been suggested. In all these cases the formulae reduce to a linear relationship for 
small dEldx, 

dL dE 

dx dx 
(7.9) 

as is observed experimentally. However, for large dEldx, the formulae differ in their 
predictions. Birk's formula, for example, implies saturation, i.e., 
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dL A 
-----
dx kB 

(7.10) 

which, if integrated, yields a fluorescent output proportional to the range, R (E) of the 
particle in the scintillator, 

A 
L::::::-R(E) 

kB 
(7.11) 

The higher order formulae predict either a continuing increase of dL/dx with dE/dx 
(7.8) or a passage through a maximum [(7.7), assuming C is positive]. Experimentally, 
however, all these formulae have been shown to be incomplete as some further depen­
dence of dL/dx on the specific particle type in addition to dE/dx is observed. 

In the most detailed analysis so far, Voltz et al. [7.11 - 13] have considered this de­
pendence and have taken into account the kinetics of the fast and slow scintillation 
components. They obtain some relatively complicated expressions for these compo­
nents, which seem to be in agreement with the measured data. However, the situation 
still remains inconclusive because of large variations in the experimental results. More 
information, of course, would be desirable. 

In inorganics, the differential light output, dL/dx, also varies with energy, however 
the dependence is generally weaker so that deviations are small. In NaI, linearity is 
maintained down to an energy of about 400 keY where a distinct deviation occurs. Fig­
ure 7.9 illustrates this nonlinearity. For accurate work in this energy region, therefore, 
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TO Cs '37 
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ENERGY IN kev 
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Fig. 7.9. Response of NaI(TI) and CsI(TI). The pulse height of the 
661 keY gamma ray line from 137Cs is defined as 1.0 (from Aitken 
et al. [7.14]). Note the nonlinearities that appear particularly at 
energies corresponding to the K- and L-edges in Iodine. This is 
because photoelectrons ejected by incident gamma rays just above 
the K energy have very little kinetic energy so that the response 
drops. Just below this energy, however, K-shell ionization is not 
possible and L-shell ionization takes place. Since the binding energy 
is lower, the photoelectrons ejected at this point are more energetic 
which causes a rise in the response. A similar argument applies to 
the L shell, etc. (Picture © 1967 IEEE) 
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this behavior should be taken into account. A similar behavior is also observed in Csl. 
While Birk's formula is only applicable to organic scintillators, some portions of the 
NaI response seem also to be well described by this expression. 

7.6.2 Temperature Dependence 

The light output of most scintillators is also a function of the temperature. This depen­
dence is generally weak at room temperatures, but should be considered if operation at 
temperatures very different from normal is desired. 

In organic scintillators, the light output is practically independent of temperature 
between - 60°C and + 20°C and only drops to 95070 of this value at + 60°C. Inorganic 
crystals, on the hand, are more sensitive as shown in Fig. 7.10. Both CsI (TI) and 
CsI(Na), for example, show relatively strong variations in the normal range of temper­
atures, while NaI appears much less sensitive. BOO light output has also been found to 
exhibit a strong temperature dependence, increasing by about 1070 per degree Celsius as 
the temperature is decreased. As the temperature decreases, the decay time for BOO 
also increases however. 
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7.6.3 Pulse Shape Discrimination (PSD) 

Fig. 7.10. Temperature dependence 
of light output from inorganic crys­
tals (from Harshaw Catalog [7.3]) 

While the light emission of most scintillators is dominated by a single fast decay com­
ponent, some materials, as we have mentioned, exhibit a substantial slow component. 
In general, both of these components depend on dE/dx to some degree or another. In 
scintillators where this dependence is strong, the overall decay time of the emitted light 
pulse will, therefore, vary with the type of exciting radiation. Such scintillators are thus 
capable of pulse shape discrimination, i.e., they are capable of distinguishing between 
different types of incident particles by the shape of the emitted light pulse. Figure 7.11 
illustrates the different decay times, and hence different pulse shapes, exhibited by stil­
bene when excited by different particles. Similar differences are also observed in other 
organics, particularly liquid scintillators, and inorganic crystals. In CsI (TI), for exam­
ple, overall decay times of 0.425 Ils for a-particles, 0.519 Ils for protons and 0.695 Ils 
for electrons are found [7.15]. 

The explanation for this effect lies in the fact that the fast and slow components 
arise from the deexcitation of different states of the scintillator. Depending on the spe-
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Fig. 7.11. Pulse shape of stilbene light for alpha particles, 
neutrons and gamma rays (from Lynch [7.71]; picture © 
1975 IEEE) 

cific energy loss of the particle (dE/dx), these states are populated in different propor­
tions, so that the relative intensities of the two components are different for different 
dE/dx. In alkali halides such as CsI, for example, a high ionization loss produces a 
higher density of free electrons and holes which favors their recombination into loosely 
bound systems known as excitons. These excitons then wander through the crystallat­
tice until they are captured as a whole by impurity centers, exciting the latter to certain 
radiative states (fast component). The singly free electrons and holes, on the other 
hand, are captured successively resulting in the excitation of certain metastable states 
(slow component) not accessible to excitons. At low ionization density, exciton forma­
tion is less likely so that the proportion of excitons relative to free electrons and holes is 
lower. The proportion of radiative to metastable excited states will be different, there­
fore, and hence the pulse shape. 

In organic scintillators, a high dE/dx produces a high density of excited molecules 
which results in increased intermolecular interactions. These reactions hinder the nor­
mal singlet internal degradation process leading to the radiative S* state by draining 
their energy through other channels. The proportion of the fast component emitted rel­
ative to the slow component is thus reduced. In stilbene, for example, the slow compo­
nent was found to account for =:: 35070, 54% and 66% of the total light output for elec­
trons, protons and a-particles respectively [7.17]. A strong difference is also observed 
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Fig. 7.12. Pulse shape differences of NE213 liquid scintillator light for neutrons and gamma rays. The time 
integral of the light pulses is also shown. A discrimination between these radiations may be obtained by 
measuring the time it takes for the integrated pulse to reach a certain fixed level (from Lynch [7.17]; picture 
© 1975 IEEE) 
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in liquid scintillators. Figure 7.12 shows the pulse shape difference between neutrons 
and y-rays in NE213 liquid scintillator and the integrals of these curves. This latter 
graph illustrates a widely used method for picking out the different pulse shapes. Here 
the time difference between the start of the pulse and the point at which the integral of 
the pulse reaches a certain fixed value is measured. From the graph, it is clear that the 
different shapes will give different time measurements. 

It should be noted that the differences in decay time are also sensitive to external 
factors such as impurities in the scintillator, temperature, etc. - so that variations in 
the two components can be expected from counter to counter. Nevertheless, pulse 
shape discrimination is used extensively today, particularly in neutron counting with 
liquid scintillators. (Here the neutron is detected by scattering from protons while the 
y-ray interacts through the usual photoelectric, Compton and pair production pro­
cesses - thereby accounting for the difference.) This technique allows a discrimination 
of y-rays and thus an effective means for suppressing background from these sources. 

7.7 Intrinsic Detection Efficiency for Various Radiations 

In principle, scintillation phosphors will respond to any radiation which can directly or 
indirectly excite the molecules or atoms of the phosphor. However, for a given type of 
radiation with a given scintillator, one will not always find that a usable signal is effi­
ciently produced. Indeed, one must consider the mechanisms by which the radiation in­
teracts with the molecules of that particular scintillator material, the probability of 
these interactions occurring in the scintillator volume and the response in light output. 
The latter quantity is governed by the luminescence mechanisms in the scintillator and 
is discussed in the preceding sections. The second quantity is given by the mean free 
path of the radiation in the scintillator material. For a not too high energy charged par­
ticle in normal matter, this distance is generally on the microscopic level, so that the 
probability of it losing some energy in any scintillator of normal dimensions is almost 
100010. For neutral particles, however, the mean free path in some materials can be 
quite large, so that a prohibitively large detector might be required in order to assure a 
reasonable efficiency. In addition, one must also consider if energy information is de­
sired. In such a case, the requirements become even stronger since the particle must 
now deposit all of its energy rather than just part of it. In this section, we consider the 
several types of radiation most commonly encountered in nuclear physics, discuss the 
problems involved and the most suitable types of scintillator detector for each radia­
tion. 

7.7.1 Heavy Ions 

While the heavy ions are capable of ionizing any of the phosphors discussed above, 
scintillators are generally not very suitable for these particles due to a reduced light out­
put. This is due to the very high ionizing power of these particles which, as we have 
seen, induces quenching effects. For a's in organic scintillators, for example, the light 
output is only about 1110 of that for electrons of the same energy. Strong non-lineari­
ties in the pulse response are also found. In the inorganic materials, the output intensity 
is also reduced, but remains higher than the organics, varying from 50 to 70% of that 
for electrons. Better linearity is found as well. 
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Consequently, where scintillators are desired, the inorganic crystals such as NaI 
have been traditionally used for the detection of these particles, their higher light out­
put and high stopping power providing better energy resolution. For a's, ZnS is still 
employed also, although it has a poorer energy resolution and is only suitable for low 
count rates because of a long decay time. 

7.7.2 Electrons 

The efficiency of most scintillators for electrons is almost 1000,10 in the sense that very 
few entering electrons will fail to produce a detectable signal. However, because of its 
small mass, the electron is susceptible to large angle scatterings in matter. This can 
cause an incident electron to be back scattered (or sidescattered) out of the detector be­
fore its full energy has been deposited. Obtaining a satisfactory energy measurement 
under these conditions, then, can be quite difficult. 

The backscattering effect depends strongly on the atomic number of the material, 
however, and increases rapidly with increasing Z. Since the organic scintillators have 
the lowest effective Z, they in fact have proved to be the more advantageous. Indeed, in 
a set-up with a fJ-source held at a small distance from a flat NaI (high Z!) crystal, for 
example, between 80 to 900,10 of the incident electrons will be backscattered, whereas 
only about 80,10 are reflected with a plastic scintillator [7.18]. These percentages can be 
reduced somewhat by collimating the source so that the electrons are incident at angles 
closer to the perpendicular, for example, or eliminated altogether by completely en­
veloping the source with the detector in a 411: geometry. With the source external to the 
detector, however, the organic scintillators are clearly superior. 

At very high electron energies the use of inorganics no longer becomes disadvan­
tageous. Here electron energy loss is mainly through the production of bremsstrahlung 
and the subsequent electron showers which it produces, so that, a high-Z material is 
needed in order to facilitate shower production (see Sect. 2.4.2). Having the highest 
density and atomic number, the inorganics in fact become the more preferable. 

7.7.3 Gamma Rays 

In contrast to electrons, y-rays are more efficiently detected by high Z materials. This 
difference can be understood by recalling the three basic interactions by which photons 
react with matter: the photoelectric effect, Compton scattering and pair production. In 
the photoelectric effect and pair production processes, the y-ray is completely ab­
sorbed, being transformed into a charged particle or particles. In the Compton process, 
however, the y retains its identity transferring only a part of its energy to a recoil elec­
tron. If the scattered y-ray does not suffer another interaction in the scintillator materi­
al, it is possible for it to escape so that only a part of its energy is deposited. To make an 
efficient y-ray detector, therefore, one must use a material in which the photoelectric 
and pair production cross sections are large compared to the Compton scattering cross 
section. 

Fortunately, the former two cross sections are much more strongly dependent on Z, 
going roughly as Z5 and Z2 respectively, while the Compton process only varies linearly 
with Z. The high Z inorganic phosphors are thus the more favored for y detection. Fig­
ure 7.13 illustrates the difference in the three cross sections for y-rays in NaI and 
NE102A plastic. While the Compton cross sections in both materials are comparable, 
the photoelectric and pair cross sections are several orders of magnitude higher in the 
Nal. The probability of absorption versus scattering is thus much greater. 
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Fig. 7.13. Gamma-ray absorption coefficients for NaI 
and NEI02A plastic scintillator. Note the difference in 
the relative magnitudes of the photoelectric and 
Compton cross sections 

Like y-rays, the detection of neutrons requires a transfer of all or part of its energy to a 
particle capable of ionizing and exciting the scintillator material. 

For fast and higher energy neutrons, detection relies mainly on detecting the recoil 
proton in (n, p) scattering processes. Plastic and other organics are particularly conve­
nient here, since they contain large amounts of hydrogenous material. The standard 
scintillator in neutron spectroscopy is liquid organic scintillator (e.g. NE213). This ma­
terial offers excellent pulse shape discrimination properties and allows a rejection of 
the y-ray background which usually accompanies neutron reactions. As well it is easily 
handled and can be adapted to a wide variety of geometries. 

For thermal neutrons, detection is most efficiently done using the (n, y) or (n, a) 
nuclear reactions. Scintillators which contain elements with high cross sections for 
these reactions, e.g. 6Li or len, or are capable of being loaded with these elements are 
therefore the most convenient. LiI (Eu), for example, is a particularly good thermal 
neutron detector. Indeed, a 2 cm thick crystal is almost 90070 efficient for thermal neu­
trons. It, unfortunately, is also sensitive to y radiation, which is a major source of 
background. The advantages of LiI (Eu) are therefore somewhat diminished. More ef­
fective are the glass scintillators which are particularly well suited since they can be 
made with either enriched 6Li or lOB. They are also sensitive to p and y radiation, al­
though some glasses offer the possibility of pulse shape discrimination. Liq.uid scintilla­
tor is again, however, the most effective here since it can also be loaded with elements 
such as 6Li or lOB, in addition to offering pulse shape discrimination. 
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Photomultipliers (PM's) are electron tube devices which convert light into a measur­
able electric current. They are extremely sensitive and, in nuclear and high-energy 
physics, are most often associated with scintillation detectors, although their uses are 
quite varied. It is nevertheless in this context that we will discuss the basic design and 
properties of photomultipliers, their characteristics under operation and some special 
techniques. 

8.1 Basic Construction and Operation 

Figure 8.1 shows a schematic diagram of a typical photomultiplier. It consists of a cath­
ode made of photosensitive material followed by an electron collection system, an elec­
tron multiplier section (or dynode string as it is usually called) and finally an anode 
from which the final signal can be taken. 1 All parts are usually housed in an evacuated 
glass tube so that the whole photomultiplier has the appearance of an old-fashion elec­
tron tube. 

During operation a high voltage is applied to the cathode, dynodes and anode such 
that a potential "ladder" is set up along the length of the cathode - dynode - anode 
structure. When an incident photon (from a scintillator for example) impinges upon the 
photocathode, an electron is emitted via the photoelectric effect. Because of the applied 
voltage, the electron is then directed and accelerated toward the first dynode, where 
upon striking, it transfers some of its energy to the electrons in the dynode. This causes 
secondary electrons to be emitted, which in turn, are accelerated towards the next 
dynode where more electrons are released and further accelerated. An electron cascade 
down the dynode string is thus created. At the anode, this cascade is collected to give a 
current which can be amplified and analyzed. 

Photomultipliers may be operated in continuous mode, i.e., under a constant il­
lumination, or in pulsed mode as is the case in scintillation counting. In either mode, if 
the cathode and dynode systems are assumed to be linear, the current at the output of 
the PM will be directly proportional to the number of incident photons. A radiation de­
tector produced by coupling a scintillator to a PM (the scintillator produces photons in 
proportion to the energy deposited in the scintillator) would thus be capable of provid­
ing not only information on the particle's presence but also the energy it has left in the 
scintillator. 

Let us now turn to a more detailed look at the various parts of the photomultiplier. 

1 An alternative structure rarely used with scintillation counters is the side-on PM. Here the photocathode is 
oriented so as to face the side of the tube rather than the end window. The dynode chain is then usually ar­
ranged in a circular fashion around the axis of the tube rather than linearly along it. The basic operating prin­
ciple remains exactly the same, however. 
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Fig. 8.1. Schematic diagram of a 
photomultiplier tube (from 
Schonkeren [9.1]) 
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8.2 The Photocathode 

As we have seen, the photocathode converts incident light into a current of electrons by 
the photoelectric effect. To facilitate the passage of this light, the photosensitive mate­
rial is deposited in a thin layer on the inside of the PM window which is usually made of 
glass or quartz. From Einstein's well-known formula, 

E=hv-</J, (8.1) 

where E is the kinetic energy of emitted electron, v the frequency of incident light and 
¢ the work function, it is clear that a certain minimum frequency is required before 
the photoelectric effect may take place. Above this threshold, however, the probability 
for this effect is far from being unity. Indeed, the efficiency for photoelectric conver­
sion varies strongly with the frequency of the incident light and the structure of the ma­
terial. This overall spectral response is expressed by the quantum efficiency, lI(A), 

(A) = number of photoelectrons released 
11 number of incident photons on cathode (A) , 

(8.2) 

where A is the wavelength of the incident light. An equivalent quantity is the radiant 
cathode sensitivity which is defined as 

S(A)=~ , 
P(A) 

(8.3) 

where h is the photoelectric emission current from the cathode and P(A) is the incident 
radiant power. The radiant cathode sensitivity is usually given in units of ampere/watts 
and is related to the quantum efficiency by 

e 
S(A) = AlI(A) - . 

hc 

For S in [A/W] and A in nanometers 

S (A) = AI7(A) [A/W] . 
1240 

(8.4) 

(8.5) 

A third unit is the luminous cathode sensitivity which is defined as the current per 
lumen of incident light flux. Since the lumen is essentially a physiological unit defined 
relative to the response of the human eye, the luminous sensitivity is not a unit to be 
recommended. 

Figure 8.2 shows a graph of quantum efficiency vs A for some of the more common 
photoelectric materials used in photomultipliers today. In general, the spectral re­
sponse of these materials is such that only a certain band of wavelengths is efficiently 
converted. When choosing a PM, therefore, the primary consideration should be its 
sensitivity to the wavelength of the incident light. For the photocathodes shown in Fig. 
8.2, the efficiency peaks near ",,400 nm, thereby making them quite suitable for use 
with scintillators. More than 50 other types of materials are in use, however, with spec­
tral sensitivities varying from the infra-red to the ultraviolet. A brief list of the most 
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Table 8.1. Photocathode characteristics (from RTC catalog [8.3)) 

Cathode type Composition A at peak 
response [nmJ 

S1 (C) Ag-O-Cs 800 
S4 SbCs 400 
S11 (A) SbCs 440 
Super A SbCs 440 
S13 (U) SbCs 440 
S20 (T) SbNa-KCs 420 
S20R SbNa-KCs 550 
TU SbNa-KCs 420 
Bialkali SbRb-Cs 420 
Bialkali D Sb-K-Cs 400 
Bialkali DU Sb-K-Cs 400 
SB Cs-Te 235 
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Fig. 8.2. Quantum efficiency of 
various photocathode materials 
(from EM! Catalog [8.2]) 
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common types of photocathode is given in Table 8.1 along with their characteristics. 
Note that the different materials have been given standard type and code designations, 
an indication of their high frequency of use today. 

Most of the photocathodes employed today are made of semiconductor materials 
formed from antimony plus one or more alkali metals. The choice of semiconductors 
rather than metals or other photoelectric substances lies in their much greater quantum 
efficiency for converting a photon to a usable electron. Indeed, in most metals, the 
quantum efficiency is not greater than 0.1070 which means that an average of 1000 pho­
tons is needed to release one photoelectron. In contrast semiconductors have quantum 
efficiencies of the order of 10 to 30%, some two orders of magnitude higher! This dif­
ference is explained by their different intrinsic structures. Suppose, for example, an 
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electron absorbs a photon at some depth x in the material. In traveling to the surface, 
this electron will suffer an energy loss, L1E =:: x (dEldx) , due to collisions with the 
atomic electrons along its path. In metals, these atomic electrons are essentially free so 
that large energy transfers result, i.e., the dEldx is high. The probability of it reaching 
the surface with enough energy to overcome the potential barrier is therefore greatly re­
duced. This essentially restricts the usuable volume of the material to a very thin layer 
near the surface. The thickness of this layer is known as the escape depth. In contrast, 
semiconductors have an energy band structure with only a few electrons, those in the 
conduction and valence bands, being approximately free. The rest are tightly bound to 
the atoms. A photoelectron ejected from the conduction or valence band thus encoun­
ters less free electrons before reaching the surface. The only other possible collisions 
are with electrons bound to the lattice atoms. But due to the larger mass of the latter, 
little energy is transferred in these collisions. The photoelectron, therefore, is much 
more likely to reach the surface with a sufficient amount of energy to escape. The 
escape depth is thus much greater and the conversion efficiency higher. 

A recent development in the construction of photocathodes has been the use of 
negative electron affinity materials such as gallium phosphide (GaP) heavily doped with 
zinc and a small quantity of cesium. ,In these materials the band structure near the sur­
face is bent so that the bottom energy level of the conduction band is actually above the 
potential of the vacuum. The work function is thus negative. Without a potential bar­
rier, then, an electron need only have enough energy to reach the surface in order to es­
cape. Such materials, therefore, have greatly improved quantum efficiencies reaching 
as high as 80OJo! Unfortunately a number of problems still remain in constructing them 
as photocathodes so that only limited use has been made of them so far. 

8.3 The Electron-Optical Input System 

After emission from the photocathode, the electrons in the PM must be collected and 
focused onto the first stage of the electron multiplier section. This task is performed by 
the electron-optical input system. In most PM's, collection and focusing is accom­
plished through the application of an electric field in a suitable configuration. Magnetic 
fields or a combination of electric and magnetic fields may also be employed in princi­
ple, but their use is extremely rare. Figure 8.3 gives a schematic diagram of a typical 
electron-optical input system. Here an accelerating electrode at the same potential as 
the first dynode of the electron multiplier is used in conjunction with a focusing elec­
trode placed on the side of the glass housing. Some lines of equipotential are shown 
along with some possible electron paths. 

Regardless of the design, two important requirements must be met: 

1) Collection must be as efficient as possible, i.e. as many emitted electrons as possible 
must reach the electron-multiplier section regardless of their point of origin on the 
cathode. 

2) The time it takes for an emitted electron to travel from the cathode to the first dy­
node must be as independent as possible of the point of emission. 

The second requirement is particularly important for fast photomultipliers which 
are used in timing experiments since it determines the time resolution of the detector. 
This is discussed further in Sect. 8.6. 
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Fig. 8.3. Electron-optical input system of a 
typical PM (from Schonkeren [8.1]) 

The electron-multiplier system amplifies the weak primary photocurrent by using a se­
ries of secondary emission electrodes or dynodes to produce a measurable current at the 
anode of the photomultiplier. The gain of each electrode is known as the secondary 
emissionjactor, <5. The theory of secondary electron emission is very similar to that de­
scribed for photoelectric emission except that the photon is now replaced by an elec­
tron. On impact, energy is transferred directly to the electrons in the dynode material 
allowing a number of secondary electrons to escape. Since the conducting electrons in 
metals hinder this escape, as we have seen, it is not surprising that insulators and semi­
conductors" are also used here as well. 

One difference exists, however, in that a constant electric field must be maintained 
between the dynodes to accelerate and guide the electrons along the multiplier. Thus 
the secondary emission material must be deposited on a conducting material. A com­
mon procedure used today is to form an alloy of an alkali or alkaline earth metal with 
a more noble metal. During the mixing process, only the alkaline metal oxidizes, so 
that a thin insulating coating is formed on a conducting support. Materials in common 
use today are Ag - Mg, Cu - Be and Cs - Sb. These have varying advantages but all 
meet the requirements of a good dynode material: 

1) high secondary emission factor, <5, i.e., the average number of secondary electrons 
emitted per primary electron; 

2) stability of secondary emission effect under high currents; 
3) low thermionic emission, i.e., low noise. 

Most conventional PM's contain 10 to 14 stages, with total overall gains of up to 107 

being obtained. 
Like the photocathode, use has also been made of negative affinity materials as dy­

nodes, in particular GaP. With this material the individual gain of each dynode is 
greatly increased so that the number of stages in a PM can be reduced. A 5-stage PM 
made of GaP dynodes, for example, would provide the same overall gain as a 14-stage 
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conventional PM. This reduction, as well, would diminish fluctuations in time as the 
path through which the cascade electrons must travel would also be much shorter. 

8.4.1 Dynode Configurations 

Dynode strings can be constructed in many ways and depending on the configuration, 
affect the response time and range of linearity of a photomultiplier. At present, five 
types of configurations are in use: 

1) Venetian blind 
2) Box and Grid 
3) Linear focused 
4) Circular focused (used in side-on PM's) 
5) Microchannel plate. 

The first four types are the more conventional structures and are illustrated in Fig. 
8.4. In the Venetian blind configuration, the dynodes are wide strips of material placed 
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Fig. 8.5. Linearity of different dynode configurations: (a) box and 
grid, (b) venetian blind with standard voltage divider, (c) venetian 
blind with high current voltage divider, (d) linear focused with very 
high current divider (from EM! Catalog [8.2]) 

Light 

Photocathode ... Fig. 8.4a - d. Various dynode configurations for PM's (from EM! Catalog [8.2]): 
(a) venetian blind, (b) box and grid, (e) linear focused, (d) side-on configuration 
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at an angle of 45 degrees with respect to the electron cascade axis. This is a simple sys­
tem which offers a large input area to the incident primary electrons. The dynodes are 
easily placed in line and the dimensions are not critical. The disadvantage, however, is 
that it is impossible to prevent a fraction of the primary electrons from passing straight 
through. This results in a low gain and large variations in transit time. This is avoided 
in the box and grid, linear focused and circular types which reflect the electrons from 
one dynode to the next. Other inherent advantages of these latter types are that: (1) 
space is efficiently used, so that many dynodes can be used, and (2) the cathode and an­
ode are well isolated, so that there is no risk of feedback. 

The response linearity of the various types are compared in Fig. 8.5. From the point 
of view of overall performance, it is clear that the linear focused type is the more favor­
able of the four. However, the specific application must be considered. If linearity over 
a modest current range is desired, for example, a Venetian blind configuration would 
do just as well as a linear focused type and for a lower cost. 

In recent years a new design has appeared which uses microchannel plate multipli­
ers. This device, originally invented for use in image intensifiers, consists of a lead glass 
plate perforated by an array of microscopic channels (typically 10 -100 !lm in diame­
ter) oriented parallel to each other (see Fig. 8.6). The inner surfaces of the channels are 
treated with a semiconductor material so as to act as secondary electron emitters while 
the flat end surfaces of the plate are coated with a metallic alloy so as to allow a poten­
tial difference to be applied along the length of the holes. Electrons entering a channel 
are thus accelerated along the hole until they eventually strike the wall to release further 
electrons which, in turn, are accelerated and so on. Each channel thus acts as a continu­
ous dynode. 

Typical microchannel plates have from 104 -107 holes and can provide multiplica­
tion factors of 103 -104. Two or three plates may also be cascaded to provide a higher 
overall gain. A common geometry is the chevron configuration shown in Fig. 8.7. Here 

Secondary 

Nichrome contact ~~ 
Primary 
radiation 

Output 
electrons 

Fig. 8.6. Schematic diagram of a microchannel plate. The many chan­
nels act as continuous dynodes (from Dhawan [S.4); picture © 1975 
IEEE) 

Fig. 8.7. Chevron configuration in a microchannel plate photomulti­
plier (after Dhawan [S.4]). A further increase in gain may be obtained 
by adding a third plate to form a "z" configuration (picture © 1975 
IEEE) 
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the channels are oriented at an angle with respect to the plate surfaces and to each other 
so as to avoid troublesome feedback from positive ions which occasionally form in the 
channels and drift backwards along the hole. The gain of the chevron configuration 
ranges from 105 to 107, which is comparable to the more conventional dynode struc­
tures. The advantage, however, is in the much improved timing properties due to the 
smaller dimensions of the microchannel plates. Transit times are only a few nanosec­
onds compared to a few tens of nanoseconds for the conventional types. This results in 
timing resolutions of ::; 100 ps [8.4]. As well this smaller size makes microchannel plate 
PM's much less sensitive to magnetic fields. Tests, in fact, have shown, the immunity 
of these PM's to fields as high as 2 kG [8.4]. The disadvantages are high cost and their 
yet to be proven reliability. One particular problem which arises is that a cascade in one 
channel drains the neighboring channels for several Jlseconds [8.5] leading to non­
linearities for count rates above a few thousand per second. 

8.4.2 Multiplier Response: The Single-Electron Spectrum 

Ideally, the electron-multiplier system should provide a constant gain for all fixed ener­
gy electrons which enter the dynode system. In practice, this is not possible because of 
the statistical nature of the secondary emission process. Single electrons of the same en­
ergy entering the system will thus produce different numbers of secondary electrons, re­
sulting in fluctuations in gain. This may be further amplified by variations in the sec­
ondary emission factor over the surface of the dynodes, differences in transit time, etc. 
A good measure of the extent of the fluctuations in a given mUltiplier chain is the single 
electron spectrum. This is the spectrum of PM output pulses resulting from the entry of 
single electrons only into the multiplier system. This distribution essentially gives the 
response of the electron-multiplier and can be measured by illuminating the PM with a 
very weak light source such that the probability of more than one single electron enter­
ing the multiplier at the same time is small. A more detailed description of the tech­
nique is given in the paper by Hyman et al. [8.6]. Because of the previously mentioned 
effects, the output pulse shapes will generally be different for each single-electron 
event. By integrating each current pulse, however, a new pulse whose amplitude is pro-
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Fig. 8.8. Single-electron spectra for (a) linear-focused PM, (b) venetian blind PM (from Schonkeren [8.1]) 
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portional to the total charge is obtained and thereby the gain for each event. Plotting 
each event versus gain then gives the response to the multiplier and thus the inherent 
gain fluctuations. 

Figure 8.8 illustrates some measured single-electron distributions for a linear-fo­
cused PM and a Venetian blind PM. Analytically, these spectra are best described by a 
Polya distribution (also called a negative-binomial distribution or compound-Poisson 
distribution). These are also shown in Fig. 8.8. The parameter b shown in Fig. 8.8 is the 
RMS deviation from perfect uniformity of the secondary emission factor over the sur­
face of the dynode. As can be seen, the Venetian blind configuration is generally sub­
ject to more gain fluctuations than is the linear-focused type. This is due to better 
focused electrons in the latter which minimizes the effect of dynode nonuniformities. 

8.S Operating Parameters 

8.5.1 Gain and Voltage Supply 

The overall amplication factor or gain of a PM depends on the number of dynodes in 
the multiplier section and the secondary emission factor 0, which is a function of the 
energy of the primary electron. Figure 8.9 shows this dependence for several materials. 
In the multiplier chain, the energy of the electrons incident on each dynode is clearly 
a function of the potential difference, Vd , between the dynodes so that we can write 

(8.6) 

where K is a proportionality constant. Assuming the applied voltage is equally divided 
among the dynodes, the overall gain of the PM is then 

(8.7) 

From (8.7) it is interesting to calculate the number of stages n, required for a fixed 
gain G with a minimum supply voltage Vb. Thus 
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n !In 
Vb= nVd =-G 

K 

Minimizing, we find, 

(8.8) 

for operation at a minimum Vb. Apart from practical reasons, operating at the mini­
mum voltage is desirable from the point of view of noise, etc. However, this comes into 
conflict with transit time spread and other factors (the number of pins, for example) 
which often results in the use of higher voltages. 

An important relation which should be noted is the variation in gain with respect to 
supply voltage. From (8.7), we calculate 

dG dVd dVb 
--=n--=n--

G Vd Vb 
(8.9) 

which for n = 10 implies a 10010 variation in gain for a 1 % change in Vb! Thus, to main­
tain a gain stability of 1 %, the voltage supply must be regulated to within 0.1 %! Mod­
ern supply voltages are regulated to better than 0.05%. 

8.5.2 Voltage Dividers 

In the previous section we saw how crucial it is to have a well regulated voltage applied 
to the dynodes. Ideally, batteries would be the best stabilized voltage source, however 
the required number makes such a scheme impractical. The most common method is to 
use a stabilized high voltage supply in conjunction with a voltage divider (see Fig. 8.10). 
This system consists of a chain of resistances chosen such as to provide the desired volt­
age to each of the dynodes. Variable resistances can also be placed, for example, be­
tween the cathode and accelerating electrode, so as to allow a fine adjustment. 

In designing such a divider, however, it is important to prevent the occurrence of 
large potential variations between the dynodes due to the changing currents in the tube. 
Such variations would cause changes in the overall gain and linearity of the PM. For 
this reason, it is important that the current in the resistance chain, known as the bleeder 
current, be large compared to the tube current. A calculation shows, in fact, that the 
variation in gain with anode current is 

LI G = Ian n(l- J) + 1 

G hI (n+ 1)(1- J) 
(8.10) 

with Ian: average anode current; hI: bleeder current; n: number of stages; J: secondary 
emission factor. 

To maintain a 1 % linearity then, a bleeder current of about 100 times the average 
anode current would be necessary. In pulse mode operation, however, peak currents 
much larger than this current can still occur, particularly in the last few stages. To 
avoid momentary potential drops due to these peaks, the last stages can be maintained 
at a fixed potential by the addition of decoupling capacitors which provide the neces­
sary charge during the peak period (see Fig. 8.10). These capacitors are then recharged 
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Fig. S.10a-c. Examples of PM voltage divider networks (after examples from Philips Catalog [8.7): (a) 
divider network using positive high voltage; note the AC coupling capacitor at the anode, (b) a network using 
negative high voltage and decoupling capacitors for maintaining the voltages between the last few dynodes, 
(c) example of the use of zener diodes to maintain voltages on the last few dynodes 

during the non-peak periods. An alternate solution is to use Zener diodes in place of the 
resistances. These elements maintain a constant voltage for currents above a minimum 
threshold. In very high current applications, it may even be necessary to use a second 
external voltage supply to maintain the voltages on these last stages. Examples of the 
use of decoupling capacitors are shown in Fig. 8.10 (b) and (c). 

The photomultiplier may be operated with either a positive or negative high voltage, 
as long as the potential of the dynodes is negative relative to the photocathode. If a pos-
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itive high voltage is used, the photocathode should be kept at ground potential in order 
to avoid spurious discharges which might occur between the photocathode and the scin­
tillator or outer envelope of the detector. Grounding the photocathode will also mini­
mize noise from this component as well, an asset when doing pulse height spectroscopy. 
This advantage is somewhat offset, however, by the fact that the anode will be at con­
stant positive potential. This requires that it be ac coupled through a capacitor in order 
to allow the pulse signal to pass at 0 dc level [see Fig. 8.10 (a)]. This is avoided if nega­
tive high voltage is used. The anode can then be kept at ground which allows it to be di­
rectly coupled to the detector electronics. For timing applications, this is particularly 
advantageous as the signal can be taken directly from the PM without suffering a re­
shaping (and thus loss of timing information) due to a coupling capacitor. The disad­
vantage, however, is that the cathode is now at a high negative potential. It thus be­
comes important to keep the glass well insulated so as to avoid leakage currents from 
the PM to the grounded material surrounding it. 

8.5.3 Electrode Current. Linearity 

The linearity of a PM depends strongly on the type of dynode configuration and the 
current in the tube. In general, photomultiplier linearity requires that the current at 
each stage be entirely collected by the following stage, so that a strict proportionality 
with the initial cathode current is maintained. Current collection, of course, depends 
on the voltage difference applied between stages. Figure 8.11, for example, shows the 
functional dependence of the cathode and anode currents on the applied voltages for 
various illuminations at the photocathode. These might be recognized as the Child­
Langmuir characteristics for thermionic valves. At a given initial current, the current 
increases with applied voltage until a saturation level is reached where all the current is 
collected. The initial dependence on voltage is due to the formation of a space charge 
around the emitting electrode. This cloud of electrons tends to nullify the electric field 
in this region and prevents the acceleration of subsequently emitted electrons towards 
the receiving electrode. 2 As the voltage is increased, however, this space charge is swept 

2 This phenomena is referred to by some authors as space charge saturation which is often abbreviated to 
plain saturation. This should not be confused with the saturation of the Child-Langmuir characteristics! 
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Fig. 8.11. Current-voltage characteristics of the PM cathode and anode under different illuminating light 
intensities (from Schonkeren [8.1)) 
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away and all of the emitted current is collected. As a general rule, therefore, the cath­
ode, dynode and anode currents should always be in the flat, saturated portion of the 
characteristic curve. 

Maintaining these voltages during operation, however, requires more attention be­
cause of their dependence on the tube current. The resistivity of the photocathode, for 
example, is an important factor. This resistance is normally quite high, on the order of 
a few tenths of a MQ or so. The emission of relatively small currents of photoelectrons 
can thus cause large changes in the potential of the photoemissive layer and a drop in its 
potential relative to the first dynode. This will, in turn, alter the collection efficiency. It 
is important, therefore, to work at a sufficiently high voltage so as to ensure staying on 
the flat part of the characteristic. This is also true for the dynodes, particularly the later 
stages where the current is high and the probability of space charge build-up is greater. 
To ensure linear operation, the distribution of voltage to these latter stages is generally 
increased over that of the earlier stages in most voltage dividers. 

In the case of the anode, a similar effect occurs. Because it is connected in series to a 
load resistance (see Fig. 8.10), the anode voltage will fall as the anode current increases. 
Thus a change in the potential difference between the anode and the last dynode will 
occur. Since, the entire chain is kept at a constant voltage Va, the potential differences 
between the earlier dynode stages will increase causing a change in gain and a loss of 
linearity. In order to stay on the saturated part of the characteristic, therefore, the cur­
rent must be kept to within certain limiting values. 

8.5.4 Pulse Shape 

As we have seen, the output signal at the anode is a current or charge pulse whose total 
charge is proportional to the initial number of electrons emitted by the photocathode. 
In fact, more than any other device, the photomultiplier satisfies the requirements of 
an ideal current generator. As a circuit element, therefore, the PM may be equivalently 
represented [8.8] as a current generator in parallel with a resistance and capacitance 
(see Fig. 8.12). The resistance, R and the capacitance, C, here, represent the intrinsic 
resistance and capacitance of the anode plus those of any other elements which may be 
in the output circuit, e.g., the anode load resistor, cables, etc. 

Let us examine the behavior of the signal at the circuit output. Assuming that the 
input is scintillator light described by an exponential decay, the current at the anode 
will be given by 

GNe (-t) /(t) =--exp - , 
is is 

(8.11) 

with G: gain of PM; N: the number of photoelectrons emitted by the cathode; e: 
charge of the electron; is: decay constant of scintillator. 

We then have an equation of the form, 

V dV 
/(t) =-+ C-

R dt 

which has the solution 

(8.12) 

T 
V 

'------'--'----0 1 
Fig. 8.12. Equivalent circuit for a 
photomultiplier. The PMT may 
be considered as an ideal current 
generator in parallel with a cer­
tain resistance and capacitance 



190 

S -10 > . 

-1.5 

Time ens] 

20 40 

t= 30ns 

t =co 

8. Photomultipliers 

Fig. 8.13. Output signals for various time con­
stants T (after Wright [8.8]) 

(8.13) 

where. = RC. Taking some typical values: G = 106, N = 100, C = 10 pF and 's = 5 ns, 
Fig. 8.13 shows this expression evaluated for different values of •. 

For. <!Ii 's' the signal is small but faithfully reproduces the decay time of the initial 
signal. The rise time is rapid and is essentially given by the. of the output circuit. This 
is known as the current mode of operation, since V(t) is essentially given by the current 
through the resistance R. For • ~ 's' the signal amplitude becomes larger but so does 
the decay time which is now essentially determined by the • of the output circuit. In 
return, however, the rise time is approximately given by 's' This is known as the voltage 
mode of operation as V(t) is now given by the voltage across the capacitance C. In this 
mode the current is essentially integrated by C. 

As a general rule, the voltage mode is preferred since it gives a large signal which is 
free from fluctuations due to the integration by C. However, the longer decay time of 
the signal limits counting rates to :::::: 1 IT, after which signal pile-up occurs. Operating in 
current mode would allow higher counting rates but the output signal would be small 
and much more sensitive to small fluctuations which occur at the photocathode. For 
optimum performance, PM output circuits must be tailored to the scintillator which is 
to be used. This usually involves altering the anode resistance so as to obtain a suitable 
•. The capacitance C is usually kept as small as possible in order to maximize the ampli­
tude. 

8.6 Time Response and Resolution 

Two principal factors affect the time resolution of photomultipliers: 

1) Variations in the transit time of the electrons through the PM, 
2) Fluctuations due to statistical noise. 
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Fig. 8.14. Transit time difference (from 
Schonkeren [S.l]) 

Transit time variations may arise because of differences in the path length traveled 
by the electrons and in the energy with which they are emitted by the photocathode. 
Figure 8.14 illustrates the first effect for a conventional PM by showing the differences 
in distance traveled in a given period of time for electrons emitted from various points 
of the cathode. During the time it takes for the electrons on axis to travel to the first dy­
node, electrons emitted near the edge have only travelled"" 1/3 of the way. This differ­
ence is even further increased by the asymmetry of the dynode. Clearly the electrons 
emitted at the lower edge have a longer distance to travel than those from the upper 
edge of the figure. This effect is known as transit time difference and is associated with 
the geometry of the system. An obvious change is to use a spherical cathode, so as to 
better equalize the distances. A more effective way, however, is to grade the electric 
field in such a way that the electrons at the edge are accelerated more than those on the 
axis. 

Apart from geometrical effects, there will also be variations which depend on the 
energy and direction of the emitted electrons. Clearly electrons emitted with a high en­
ergy will reach the dynode faster than those at lower energies. Similarly, electrons emit­
ted in a direction closer to the normal of the cathode will arrive before those emitted in 
a direction more parallel to the surface. This effect is called transit time spread and 
is independent of the point at which the electron leaves the cathode. If we express the 
initial velocity of a photoelectron as a sum of its components in the direction 
perpendicular and parallel to the photocathode, i.e., 

the transit time spread can be approximated by the formula 

(8.14) 

with me: electron mass, 9.1 X 10-28 g; e: charge of electron, 1.6 x 10- 19 C; E: electric 
field strength [V 1m]; W: energy component normal to cathode, i.e., vi 12 me. 

For some typical values, E = 4 kV 1m, W = 0.4 eV, L1 t is about 0.5 ns. In modern 
fast PM's, the transit time is on the order of 0.2 to 0.5 ns which underlines the impor-
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Fig. 8.15. Equipotential lines in the elec­
tron-optical input system of a fast photo­
multiplier (from Hull [8.9]) 

tance of this effect. To reduce the spread, the electric field must be increased as seen in 
(8.14). 

The input system of a fast PM is shown in Fig. 8.15 and should be compared to the 
classic configuration in Fig. 8.3. In most modern fast PM's, the voltages on the 
focusing and accelerating electrodes are adjustable. Usually, the best values are found 
by trial and error. 

The second source of timing jitter in PM's is due to natural fluctuations in the PM 
current because of the statistical nature of the photoelectric effect and secondary emis­
sion processes. This is known as statistical noise and constitutes a fundamental limitation 
to the time resolution of the PM. This phenomenon is discussed in more detail below. 

8.7 Noise 

8.7.1 Dark Current and Afterpulsing 

Even when a photomultiplier is not illuminated, a small current still flows. This current 
is called the dark current and arises from several sources: 

1) thermionic emission from the cathode and dynodes 
2) leakage currents 
3) radioactive contamination 
4) ionization phenomena 
5) light phenomena 

with thermal noise being the principal component. This contribution is described by 
Richardson's equation 
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I = A r2 exp ( ~i) , (8.15) 

where A is a constant, rjJ the work function, r the temperature [K] and k Boltzmann's 
constant. Clearly, a lowering of temperature reduces this component of noise. 

Leakage currents going through the electrode supports and the pins at the base also 
contribute a large component to the dark current. Reduction of this noise by insulation 
of the supports is difficult because of the small magnitude of the currents involved. Op­
eration of the PM in a reduced atmosphere will, however, reduce leakage through the 
pins by lowering the breakdown voltage. 

Radioactive materials in the glass housing or support materials can also cause elec­
tron emission from the photocathode or dynodes. The radiation from these contami­
nants can either directly strike the electrodes or cause fluorescence in the glass housing 
itself. In each case, a small current results. 

In a similar manner, residual gases left or formed in the PM can also cause a detect­
able current. These gas atoms can be ionized by the electrons and since they are of the 
opposite charge, will accelerate back towards the cathode or dynodes where they can 
release further electrons. This often results in afterpulses occurring in a time equal to 
the time needed for the ions to transit the tube. This may be from a few hundred nano­
seconds to microseconds. Under high current, afterpulses may also be caused by elec­
trode glow, i.e., light emitted by the last few dynodes which travels to the photocath­
ode. In such cases, afterpulses occurring between 30 to 60 ns after the true pulse are 
often seen. Since these are usually one-electron events, their amplitudes are generally 
small. A good discussion of afterpulsing is given by Candy [8.11]. 

In general, dark currents should be very small and in most PM's not more than a 
few nanoamperes. 

8.7.2 Statistical Noise 

Statistical noise is a direct result of the statistical nature of the photoemission and sec­
ondary emission processes. For a constant intensity of light, the number of photoelec­
trons emitted as well as the number of secondary electrons emitted will fluctuate with 
time. The current at the anode will thus fluctuate about some mean in the manner 
shown in Fig. 8.16. This noise is usually referred to as shot noise or the Schottky Effect 
and is measured by the variance of the fluctuations about the mean anode current. 

Statistical fluctuations in a PM have two origins: (1) the photocathode, and (2) elec­
tron multiplier system. The first source arises from the statistical nature of the photo­
electric effect and is the result of a fundamental physical limit. For a PM under con­
stant illumination, these fluctuations can be calculated by assuming a Poisson distribu­
tion for the number of photons incident on the photocathode in a time period T and a 

--t~ 
time 

Fig. 8.16. Statistical noise from a PM (from 
Philips Catalog [8.7]) 
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binomial distributed probability for the number of photoelectrons released. One then 
finds the rms deviation given by 

(8.16) 

with I: cathode current; e: electric charge of electron. 
Added to this noise are fluctuations from the electron-multiplier system. These arise 

not only from the statistical nature of secondary emission, but from differences in elec­
tron transit times, nonuniformities in the secondary emission factor over the dynodes, 
and other factors. The extent of these fluctuations are probably best judged from the 
single-electron spectrum, discussed in the previous section. In general, however, mul­
tiplier noise accounts for not more than about 10070 of the total statistical noise. 

8.8 Environmental Factors 

8.8.1 Exposure to Ambient Light 

Since photomultipliers are extremely photosensitive, it is clear that care must be taken 
not to expose the PM to ambient light while it is under voltage. In such a case, the re­
sulting high currents in the tube can give rise to instability (fatigue) effects or even de­
stroy the PM entirely. In some cases, a tube can be recovered after a long period in 
darkness; however, there will most likely be a marked increase in the dark current. 
Even when not under voltage, it is best not to expose the photomultiplier to excessive il­
lumination. The result is a higher dark current which, however, decays after a certain 
time. This recovery time depends on the intensity of illumination. 
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Fig. 8.17. Effect of magnetic fields on the anode current of an unscreened PM for different field orientations 
(from Schonkeren [8.1]) 
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8.8.2 Magnetic Fields 

Magnetic fields are one of the more important influences on the operation of PM's. It 
is easy to see, in fact, that a small magnetic field is enough to deviate the electron 
cascade from its optimum trajectory in a PM and thereby affect its efficiency. By far 
the most sensitive part of the PM to magnetic fields is the electron collection system. 
Here electrons may be so deviated that they may never reach the first dynode at all. As 
well, the orientation of the tube with respect to the field is clearly a determining factor 
as well as its symmetry with respect to its axis. Figure 8.17 illustrates the effect of a 
magnetic field on a PM oriented along three orthogonal axes. In general, the following 
conclusions can be made: 

1) the anode current decreases as magnetic flux increases, 
2) the influence of the field is least when oriented along the axis of the PM. 

It is common practice to shield PM's with a mu-metal screen which fits around the 
PM tube. These are available commercially or can be made easily. Generally it is suffi­
cient to shield only the area around the tube; however tests have shown that better re­
sults are obtained if the screen is extended pass the tube somewhat. Figure 8.18 shows 
this difference by comparing the effects of a magnetic field versus the positions and 
lengths of the mu-metal screen. For strong magnetic fields, it may also be necessary to 
use a further soft iron shield about the mu-metal. In such cases, care should be taken 
that parts of the PM do not become magnetized as well. More recently, new designs us­
ing a close proximity focusing scheme [8.12] have made their appearance on the com-
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Fig. 8.18. Shielding effect of different mu-metal configurations (from Schonkeren [S.l]) 
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mercial market. The distance between the photocathode and the first dynode is greatly 
reduced in these PM's making them much less sensitive to magnetic fields. Other types 
of phototubes resistant to magnetic fields are discussed in [S.13]. 

8.8.3 Temperature Effects 

For most normal PM's, temperature effects are generally small compared to other fac­
tors. They can playa role, however, depending on the application. The dark noise, as 
given by Richardson's equation, for example, is obviously a function of T and should 
therefore be expected to vary. Figure S.19 gives the variation measured for several 
photocathode materials. 

The spectral sensitivity of the cathode also displays a dependence on temperature, 
although this effect varies with the type of cathode. Physically, it can be easily seen that 
the band structure and thus the Fermi level and resistance of the cathode will change; 
however, the exact effect of these changes is difficult to predict. Generally speaking, in 
the range between 25° to 50 0 e, a variation of "= - 0.50J0/oe with rising temperature is 
noted. 

The variation of the gain of the PM with temperature has also been studied al­
though the results are less conclusive due to large variations from one experiment to the 
other. In principle, the secondary emission factor does not depend directly on the tem­
perature, however, it may be indirectly affected by temperature-related changes in the 
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Fig. 8.19. Dark noise vs. temperature for various photocathodes (from 
Wardle [S.10]) 

Fig. 8.20. Variation of PM gain, cathode current and anode current for 
three different temperatures (from Schonkeren [8.1]) 
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surface properties of the dynodes, etc. Figure 8.20 shows plots of the measured gain 
variation with respect to temperature for a typical photomultiplier. Here, the variation 
is on the order of a few tenths of a percent per deg-K, however, it should be pointed out 
that this ratio not only seems to vary from one PM type to the other, but also among 
tubes of the same type, as well. Thus, the values shown should only be taken as order of 
magnitude estimates. 

8.9 Gain Stability, Count Rate Shift 

As we have seen, the gain stability of a PM is one of its most crucial characteristics and 
can be influenced by different factors. In general, variations in gain (fatigue effects) are 
most likely due to changes somewhere in the multiplier system. Two types of change 
can be distinguished: 

1) drift - which is a variation in time under a constant level of illumination, 
2) shift - a sudden change in the gain after the current has changed. In nuclear count­

ing applications, this is sometimes known as count-rate shift, i.e., a shift in gain af­
ter the average counting rate is suddenly changed. 

Figure 8.21 illustrates these two effects. While the causes are varied, their effects can be 
extremely important. A further discussion of these effects is given by Yamashita [8.15]. 
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Fig. 8.21. PM gain drift and shift 
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To test a PM for stability, the following procedure can be used. Mount the PM in a 
scintillation counter and using a multichannel analyzer, observe the pulse height distri­
bution from a 137CS source. In particular, note the position of the 662 keY peak. 

Drift. To measure drift: 

1) Adjust the source distance so that the count rate is == 1000 S -1; 

2) let the PM operate for 3 hours at this count rate; 
3) then once every hour for about 20 hours, determine the position of the peak. 

The drift is then given by 

DRIFT=---- (8.17) 
nP 
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with Pi: ith measurement of the peak; n: number of measurements; P: average of Pi 
over all n measurements. For an acceptable PM, the drift should not be more than 10,10. 

Shift. To measure shift: 

1) Immediately after the measurement of drift, reduce the distance between PM and 
source so as to obtain a count rate of =:: 10000 S -1; 

2) record the peak position every 10 minutes for 4 or 5 measurements. 

The shift is then 

(8.18) 

with Pn : the last measurement made for drift at 1000 counts/s; Pi: ith measurement 
made for shift; m: number of measurements. The value should not exceed 1 % for an 
acceptable tube. 

After long periods of inactivity PM's also show gain changes when anode currents 
of a few tens nA or more are induced. However, after a settling down period of a few 
hours, this drift stabilizes [8.16]. A long term gradual drop in gain is also noticed [8.17] 
- which appears related to the total charge collected by the anode. 



9. Scintillation Detector Mounting and Operation 

In the previous chapters, we considered the two basic components of the scintillation 
detector: the scintillator material and the photomultiplier, describing their intrinsic 
capabilities and limitations. In this present chapter, we will discuss the problem of cou­
pling these two components to make an efficient detector and of putting it into opera­
tion. 

The two most crucial points to consider when mounting a detector are those of light 
collection and transport. Indeed even with the highest quality scintillators and PM's, a 
detector is of no use, if none or only a small fraction of the scintillation photons emit­
ted are transmitted to the PM. It is very important therefore to collect as many of the 
emitted photons as possible and to efficiently transport them to the PM photocathode. 

9.1 Light Collection 

The loss of light from a scintillator can occur in two basic ways: one is escape through 
the scintillator boundaries and the other is through absorption by the scintillator mate­
rial. For small detectors, the latter effect is negligible. Only when the dimensions of the 
counter are such that the total path lengths traveled by the photons are comparable to 
the attenuation length will absorption begin to playa role. This parameter is defined as 
that length after which the light intensity is reduced by a factor e -1. The light intensity 
as a function of length is then 

L(X)=LaeXP(-IX ) , (9.1) 

where I is the attenuation length, x the path length travelled by the light and La, the ini­
tiallight intensity. Since a typical attenuation length is on the order of :::: 1 m or more, it 
is clear that only very large detectors are affected. 

By far, the most important loss is by transmission through the scintillator bound­
aries. This effect is perhaps best illustrated by referring to Fig. 9.1 which shows a sim­
ple detector arrangement. Light emitted at any given point in the scintillator travels in 
all directions and only a fraction of it directly reaches the PM, the remainder travels to­
ward the scintillator boundaries where, depending on the angle of incidence, two things 
can happen. For light impinging at an angle greater than the Brewster angle, OB where 

O . - 1 ( n out ) B=sm --
nscint 

(9.2) 

with nscint being the index of refraction of the scintillator and nOU! that of the surround­
ing medium, total internal reflection occurs so that this light is turned back into the 
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Fig. 9.1. Light collection in a typical scintillator 

scintillator. At angles less than OB, partial reflection occurs and the remainder trans­
mitted. 

This loss, of course, reduces the efficiency and energy resolution of the detector. 
However, a second problem also arises: a non-uniformity in pulse height response over 
the volume of the detector - for depending on the point of emission, different frac­
tions of the total light output will reach the photocathode. In practice, this non-uni­
formity is usually negligible for the type of small counters used in the nuclear physics 
lab. However, with larger detectors and with certain scintillator geometries, this non­
uniformity can pose some serious problems. 

To increase the efficiency of light collection, several methods can be employed. 

9.1.1 Reflection 

The simplest and most common practice is to redirect escaping light by external and/or 
internal reflection. This is illustrated in Fig. 9.2 which shows the counter from Fig. 9.1 
now surrounded by an external reflector. 

The light which was previously transmitted is now also directed back towards the 
PM by making one or more reflections. Of course, with each reflection some degrada­
tion occurs so that this method would not be satisfactory where large numbers of re­
flections occur. 

The reflecting surface here may be specular (as shown in Fig. 9.2) or diffuse. With a 
specular surface, the reflections are mirror-like in the sense that the angle of reflection 
equals the angle of incidence. With a diffuse reflector, on the other hand, the reflec­
tions are essentially independent of the angle of incidence and follow Lambert's cosine 
law instead, 

dIldO ex cos 0 (9.3) 

with I: intensity of reflected light; 0: angle of reflection with respect to normal. 
As a specular reflector simple aluminium foil has been found to be very satisfactory 

and is the most widely used. Of the diffuse reflectors, the most common are MgO, Ti02 

and aluminium oxide. These are usually found in the form of a powder or as a white 
paint. An important point to note is the reflectivity of these materials versus wave­
length. This is shown in Fig. 9.3. While aluminium foil and MgO retain a relatively 
high reflectivity down to low wavelengths, Ti02 drops off sharply at ==:400 nm where it 
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Fig. 9.3. Reflectivity of various materials (from Matt and 
Sutton [9.1]) 

becomes a poor reflector. Diffuse reflectors are generally considered to be slightly more 
efficient; however, the difference is small and varies according to the geometry of the 
detector. 

While a good efficiency is generally obtained with the external reflector alone, stud­
ies have shown that the best results are obtained by also maximizing internal reflection 
at the same time. The medium surrounding the scintillator should therefore have an in­
dex of refraction which is as small as possible in order to minimize 0B (9.2). Air, obvi­
ously, is the best and most convenient medium. Assuming nscint is typically =:::1.5, this 
implies a 0B =::: 42°. Therefore, a layer of air should be left between the reflector and the 
scintillator. 

With plastic scintillators, internal reflection is facilitated by polishing the surfaces 
of the plastic. A common procedure for small detectors is to wrap the scintillator in 
aluminium foil and to follow this with a light-tight layer of black tape. To maximize in­
ternal reflection, the foil should be loosely applied so as to ensure a layer of air in con­
tact with the scintillator. This type of mounting is illustrated in the next section. 

With other scintillators different mountings are generally necessary because of their 
particular physical characteristics. NaI, for example, is hygroscopic and therefore re­
quires special protection from air. Commercially, these crystals are usually found her­
metically sealed in a metallic container with a lining of dry MgO powder along the 
walls. One end is sealed by a glass or quartz window to allow coupling to the PM and 
the other by a thin metal window to allow passage of radiations. Similar complications 
also arise for liquid and gas scintillators which must necessarily be sealed in containers. 

9.2 Coupling to the PM 

In contrast to the internal reflection requirement discussed above, the coupling between 
the scintillator and the PM must be made so as to allow a maximum of light transmis­
sion. Leaving air here would result in the total trapping of portions of the light in the 
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scintillator. Optical contact between the two media should therefore be made with a 
material whose index of refraction is as close as possible to that of the scintillator and 
the PM window. The most common agent is silicone grease or oil. For organic scintilla­
tors, the optical coupling with silicone is almost perfect since the refractive indices of 
the scintillator, grease and PM window are almost identical. For inorganics, however, 
the match is not as good so that some trapping does occur. 

9.3 Multiple Photomultipliers 

Instead of the reflecting method described above, light collection could also have been 
increased by placing a second PM onto the other face of the scintillator (assuming our 
application allows the placement of another PM at this point!). Light escaping from 
this end would then be detected by this PM and its signal could be summed with the 
other to give the total pulse height. Such an arrangement, of course, involves added 
electronics and thus increased complexity and cost. For small detectors, such a solution 
would be somewhat extravagant as the simpler reflection technique provides excellent 
results. However, for large counters where many reflections would occur and/or where 
the attenuation of light becomes a factor, the use of multiple PM's may be the only way 
to obtain efficient light recovery and uniform response (Fig. 9.4). 

Scintillator 

9.4 Light Guides 

Fig. 9.4. A large scintillator viewed by multiple 
PM's for better light collection efficiency 

Often in many experiments, it is impossible or not desirable to couple the PM directly 
to the scintillator. This may be because of a lack of space, the presence of magnetic 
fields, an inconvenient scintillator shape or any number of other reasons. In such a sit­
uation, the scintillator light may be conducted to the PM via a light guide (or light pipe) 
as illustrated in Fig. 9.5. Such guides are usually made of optical quality plexiglass, 
lucite or perspex and work on the principle of internal reflection, that is, light entering 
from one end is "guided" along the pipe by internally reflecting it back and forth be­
tween the interior walls. Like plastic scintillators, the walls are usually polished for this 
purpose. Of course, only that fraction of the light incident at angles greater than the 
Brewster angle can be transferred in this way. 

The light guide may be made in any variety of shapes and lengths to conform to the 
geometry desired. Thus, a counter which" turns arounds a corner" may be constructed, 
for example, or one which bends at a certain angle relative to the PM, etc. It is also par-
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Light guide 

Scintillator PMT 

=====! ====-.----1 -------,-,I~ Light guide 

Fig. 9.6. Adapting a flat scintillator sheet to the circular face of a PM 
with a light guide 

Fig. 9.7. The twisted light guide. Many strips of light guide material are 
glued on to the edge of the scintillator and then twisted 90° so as to fit 
onto the PM face 

ticularly useful for adapting inconvenient scintillator shapes to the circular face of the 
PM. A common example is the case of a flat scintillator plate or sheet which must be 
viewed on edge. This situation is illustrated in Fig. 9.6. 

One common solution is the "fish tail" light guide shown in Fig. 9.6, which slowly 
changes form from the long rectangular geometry of the scintillator edge to the round 
circular form of the PM. An alternate solution is the twisted light guide (Fig. 9.7), 
which consists of separate strips of lucite attached to the scintillator edge and twisted 
around so that they converge at the PM photocathode. This geometry is somewhat 
more complicated, but results in a better light collection. 

Many studies have been made as to the most efficient light collecting design for a 
light guide. Garwin [9.2], in particular, has used phase space arguments to show that 
the flux density of photons in a light guide is "incompressible", that is, a given flux of 
light at the input can never be concentrated into a smaller cross-sectional area at the 
output. In fact, if the cross-sectional area at the input of the light pipe is A i and the area 
at the output is A o, whereAo < Ai, then at best, only a fraction, Ao / Ai, of the light can 
be transferred. This best case is for a so-called adiabatic light guide which changes its 
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shape gradually without sharp bends or kinks. The quantity of light transferred then 
depends only on the cross-sectional area and not on the shape. An adiabatic light guide 
which keeps the same cross-sectional area throughout will therefore conduct all the 
light down the guide. Keil [9.3] has also examined some of the geometrical aspects of 
internal reflection. Other studies concerning light pipe design are given in [9.4]. 

The use of enveloping external reflectors with light guides has also been investigated 
and the conclusions are much the same as with scintillators: the best performance seems 
to be with loosely wrapped aluminium reflector allowing a maximum of internal reflec­
tion. Results from Kilvington et al. [9.5] are shown in Fig. 9.8 above. 

In addition to plexiglass and lucite, a relatively new development for light guides is 
the use of optical fibers. These fibers, of course, work on the same principle, however, 
their use allows a flexible connection between the scintillator and the PM. They are 
generally used for small counters. 

9.5 Fluorescent Radiation Converters 

While light guides provide a good deal of flexibility, they can become impractical when 
applied to very large detectors such as high energy physics calorimeters or hodoscopes. 
Indeed, since the photons in a light pipe cannot be "compressed", one must use many 
PM's to cover the available area. This becomes space-consuming (assuming that space 
is available) and expensive. On the other hand, reducing the number of PM's so that 
only a fraction of the light is collected engenders a loss in efficiency and resolution. An 
alternative method of light collection in such cases is the use of fluorescent radiation 
converters [9.3,6]. These are essentially light guides doped with a highly efficient, fluo­
rescent wavelength-shifting material. The scintillator is coupled to this converter either 
through an air gap or through direct contact with a layer of oil. Scintillator light enter­
ing the converter is absorbed by the fluorescent material, reemitted at another wave­
length, and that fraction of light which is trapped transmitted down the guide by inter­
nal reflection to the PM. Figure 9.9 illustrates an example of such a set-up. The role of 
the wavelength shifter is very important here, since it prevents the light from being re­
absorbed. It must absorb light in the frequency range emitted by the scintillator and re­
emit it at a frequency compatible with the spectral sensitivity of the PM photocathode. 
At present, the most widely used converter is BBQ which absorbs in the blue and emits 
in the green. While this is not quite optimum, there is sufficient overlap with the spec­
tral sensitivity of most PM's to give a usable signal. 

ScintiUators 

Second stage converter 

PM 

First stage converter Fig. 9.9. Fluorescent converter set-up 
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Per unit area, the light collection efficiency of this method is greatly reduced when 
compared to light pipes. However, a number of advantages are gained. In particular, 
the fundamental constraint of "incompressibility" is no longer applicable so that light 
from the entire area of the detector may be collected and concentrated onto one or two 
PM's. The total light collected, therefore, is greater than that which would be collected 
by the same number of light pipes. In addition, since the light transferred originates in 
the converter itself, the converter may be made in highly symmetric forms, such as cyl­
inders or rectangular bars, so as to maximize internal reflection. Moreover, several 
scintillators may be coupled to the same converter to form a compact, inexpensive sys­
tem. 

9.6 Mounting a Scintillation Detector: An Example 

To illustrate the principles and ideas outlined in the previous sections, we present here a 
practical example of how to mount a simple plastic scintillation counter for use in the 
laboratory. For a more durable construction there are, of course, more elaborate ways 
than shown here, however, the basic technique is the same. 

Step 1 

Assemble the necessary materials. These include, silicone grease, aluminium foil, black 
tape, the scintillator, the PM, its base and shield (Fig. 9.10). 

Step 2 

Fig. 9.10. Materials for mount­
ing the scintillation detector 

Clean the scintillator and PM faces of any old grease or dirt. Alcohol may be used on 
the PM but not on the plastic scintillator. Dab a bit of silicone grease onto the center of 
the PM and press on the scintillator so that the grease spreads out radially to form a 
smooth, thin layer coupling the entire surface of the scintillator to the PM (Fig. 9.11). 
If some excess grease spills out over the edges, this is acceptable. Do not spread on the 
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Fig. 9.11. Couple the scintillator to the PM with 
optical grease 

grease with your fingers and then press on the scintillator. Such a method risks trapping 
air bubbles between the scintillator and the PM and thus producing an inefficient opti­
cal coupling. Handling the plastic scintillator with bare hands should also be avoided as 
explained in Chap. 7. 

Step 3 

Wrap the scintillator and PM loosely in aluminium foil so as to assure a layer of air in 
contact with the scintillator (Fig. 9.12). While aluminium foil is the most convenient re-

Fig. 9.12. Wrap scintillator loosely in aluminium foil 
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flector, other materials may, of course, be used. In either case, however, it is important 
to consider the energy loss and absorption effects of this covering on the scintillator. If 
high energy particles or gamma rays are to be detected, this is usually negligible. How­
ever, if low energy p-particles are to be detected, energy loss may play an important 
role. In such a case, a thinner covering may be required on the detecting surface. This, 
of course, is more difficult as light tightness must also be maintained. 

Step 4 

Wrap the PM and detector neatly in black tape along its entire length so as to ensure 
light tightness (Fig. 9.13). Special attention should be paid to corners and sharp bends 
where light leaks will most likely occur. As above, the absorption effects of the tape on 
the detecting surface must also be considered. 

Step 5 

Mount the PM in its base along with its magnetic shielding (not visible) and outer pro­
tective shell (Fig. 9.14). The counter is now ready to be tested (see next section). 

Fig. 9.14. Assembled scintil· 
lation detector 

Fig. 9.13. Wrap in black electrical 
tape 
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9.7 Scintillation Counter Operation 

9.7.1 Testing the Counter 

Newly mounted counters or counters whose working status is unsure may be tested by 
placing a suitable radioactive source in front of the counter and viewing the resulting 
signal directly with an oscilloscope (Fig. 9.15). 

Applying the recommended PM voltage, a good, well formed signal should be ob­
served. Figure 9.16 shows the signal from the plastic scintillation detector that was 
mounted in the previous section. For comparison, the signal from a slow NaI detector is 
also shown. A 207Bi internal conversion source was used in the former case and a I37Cs y­
source in the latter. For the plastic scintillator, ringing, i.e., small secondary pulses, ap­
pears on the tail of the signal. These may be tolerated as long as their amplitude remains 
smaller than the threshold value of the discriminator which will be used with the counter. 
Otherwise, they may cause multiple triggering of the discriminator. In contrast, the NaI 
signal shows a perfectly smooth exponential decay. As explained in Chap. 14, such long 
tail pulses should, in general, be reshaped by an amplifier before further processing. 

Depending on the PM base, one or more potentiometers may be present to allow an 
adjustment of the electron optical input stage of the PM. This should be adjusted to 
give the maximum signal height, if this is not already the case. If no signal or a weak or 
distorted signal is obtained, this could be due to any number of other problems, includ­
ing a malfunctioning base or PM, a bad optical coupling to the scintillator, etc. 

By removing the source, the noise from the counter can be seen. This should gener­
ally be weak and much smaller than the signal. In a good tube, the noise should not be 
more than = 50 m V in the recommended PM voltage range. 

Plastic 

Vert. scale: 0.2 V fcm 
Hor. seale : 10 nsf em 
Source : 207 Bi lO~Ci 

Nol 

Vert. scale: 0.2 V fcm 
Hor: scale : SJ.!sfcm 
Source : I37CS lOJ.!Ci 

Fig. 9.16. Anode signals from plastic (a) and NaI (b) scintillation counters 



9.7 Scintillation Counter Operation 209 

If the signal appears unusually intense and noisy, check for light leaks in the wrap­
pings of the counter. This can be done by covering the counter with a black cloth or 
darkening the room. If there is a sharp change in the signal, this is most likely the prob­
lem. Check especially corners and edges where wrapping is difficult. The leak may 
sometimes be spotted by simply running the hands along the counter, while observing 
the signal for changes. 

From the oscilloscope signal, a rough idea of the resolution can also be obtained. In 
Fig. 9.16, for example, two intensified lines can be readily distinguished in the plastic 
scintillator signal. These correspond to the 0.48 MeV and 0.97 MeV internal conversion 
electrons from 2D7Bi. The fact that they are distinct indicates that the detector is produc­
ing well-defined pulse heights in response to these electrons. Similarly, the NaI signal 
shows a well-defined line corresponding to the 0.662 MeV y-ray from 137CS. Moreover, 
the valley between the peak and the Compton plateau can easily be made out as well. 
For NaI or other y-ray detectors, a good simple test is to use a 6DCO source which emits 
y's of 1.17 MeV and 1.33 MeV. If these two lines can be distinguished visually on the 
oscilloscope, then clearly the resolution is =::: 12070 or better at these energies. More de­
tailed measurements of detector resolution, however, require a multichannel analyzer. 
Spectrum measurements using known calibration sources can then be effectuated and 
the resolution determined precisely. 

9.7.2 Adjusting the PM Voltage 

As we saw in the last chapter, the voltage applied to the PM determines its overall gain 
and thus the pulse height of the output signals. In general, however, PM's have a wide 
range of possible working voltages extending over a 1000 V or more before the maxi­
mum rating is reached. For most applications, it is generally best to stay near the volt­
age recommended by the manufacturer. This may not always be possible, however, be­
cause the gain is too high or too low for the application desired. In such cases, a lower 
or higher voltage must be used which requires paying some attention to possible satura­
tion or high current effects. 

9.7.3 The Scintillation Counter Plateau 

In counting applications, where the PM signal is analyzed by a discriminator, a simple 
procedure for finding the working voltage is to make a so-called plateau measurement. 
This is similar to the plateau curve for Geiger counters and involves measuring the total 
count rate from the counter-discriminator as a function of the applied PM voltage. The 
set-up for such a measurement is diagrammed in Fig. 9.17 and an example of a plateau 
curve, found for the plastic counter in Fig. 9.16, shown in Fig. 9.18. 

Starting at the low voltage end, we see that very few counts are registered as the 
pulse heights are too small to pass through the discriminator. As the voltage increases, 
however, the curve rises sharply but then becomes flatter over a certain range of volt­
ages. Above this range, however, the curve rises sharply once again. This latter rise 
marks the onset of regeneration effects in the PM, i.e., afterpulsing, discharges, etc., in 
analogy with the Geiger counter. Similarly, the flat part is known as the plateau and re­
Ipresents a region in which the counting rate is the least sensitive to changes in the ap­
:plied voltage. Fixing the voltage on this plateau (usually in the middle), then, ensures a 
minimum of counting variations due to drifts in the PM gain or voltage supply. (With 
modern day regulated voltage supplies, the latter is not usually a problem, however). 
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Despite its very strong similarity to the Geiger counter plateau, the origin and sig­
nificance of the scintillator plateau are completely different. Indeed, whereas the Gei­
ger plateau is the result of signal saturation, which depends entirely on the intrinsic 
characteristics of the Geiger counter, the scintillator plateau depends on both intrinsic 
and extrinsic factors, in particular, 

1) the spectrum of the incident radiation and the response of the counter, 
2) the gain-voltage relationship of the PM, 
3) the threshold value of the discriminator. 

Indeed, depending on the type of source used or scintillator crystal used, the same PM 
may give plateaux of differing flatness, width, etc. 

Let us look more closely at how the plateau arises [9.7]. Figure 9.19 shows the spec­
trum of pulse heights from the scintillator in our example with the 207Bi source. As we 
have seen, at very low gain this spectrum is entirely contained in a region below the 
threshold value of the discriminator so that there are no counts recorded. As the volt­
age is raised, however, this spectrum gets stretched proportionately to the right so that 
more and more of the spectrum passes over the threshold and is counted. (This, of 
course, is unlike the Geiger counter, where all the pulse heights progressively approach 
a fixed saturated value as voltage is increased.) This is illustrated in Fig. 9.20. At each 
voltage on the plateau curve, therefore, the count recorded is the integral of the spec­
trum from where it crosses the threshold to its uppermost value, the amount of the 
spectrum above the threshold being determined by the voltage. 

Let us derive the plateau curve mathematically by first calculating the integral 
counting curve from the differential spectrum in Fig. 9.19, i.e., 

[(Po) = J Sp(x)dx , (9.4) 
Po 

where Po is the lower limit and Sp(x) is the pulse height spectrum in Fig. 9.19. The re­
sult is shown in Fig. 9.21 where Po is given in arbitrary units. As can be seen, two pla­
teaux arise as the lower limit of integration passes over each peak in the differential 
spectrum and into the following valley. This is to be expected (consider, for example, 
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Fig. 9.19. Pulse height spectrum of 207Bi observed 
with the detector in Fig. 9.16 
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counting-voltage plateau. 
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Fig. 9.23. Gain versus supply voltage on PM 

Fig. 9.24. Calculated plateau curve vs. measured 
plateau 

(9.5) 

where K is a simple conversion constant. The required gain is then proportional to the 
inverse of Po 

. 1 
gam = const- (9.6) 

Po 

If we now transform our integral curve into units of gain, we find the form in Fig. 
9.22. 

To obtain the voltage plateau now, we must further convert the horizontal scale 
to applied voltage. Figure 9.23 shows the relationship between gain and supply voltage 
for this PM. With the appropriate conversion factors, we thus find the derived plateau 
curve in Fig. 9.24. The measured plateau curve is also included for comparison. As can 
be seen, much of the plateau is reasonably well reproduced. This could have been ex-
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tended further, of course, had we gone lower in our measurement of the integral count­
ing curve, However, the high voltage rise due to regeneration effects would not have 
been reproduced as the integral spectrum was measured at a PM voltage where such ef­
fects did not occur. 

From this analysis, we can discern several important points. Indeed, as can already 
be seen in Fig. 9.22, the plateau corresponds to the very low end of the integral count­
ing curve, i.e., small pulse heights and not the peak-valley plateaux (these are com­
pressed into the two knee-like structures in Fig. 9.22). This is due to the change in scale 
coming from the po-gain-voltage relationship which stretches out the lower part of the 
integral curve. The flatness of the plateau, then, depends on the slope of the integral 
curve in this region and, therefore, the differential energy spectrum. Had we used a dif­
ferent radioactive source with a different spectrum, for example, a p-source, a different 
plateau shape would have been found, perhaps less flat. Similarly changing the crystal 
geometry or surrounding materials may also alter the spectrum and thus the plateau. 
And quite obviously, varying the threshold will displace the plateau. 

It becomes obvious, then, that plateau measurements for a counter should be made 
with the same source of radiation as will be used during the experiment, if possible. As 
well, the discriminator thresholds should also be the same as will be used during the 
actual experiment. It is clear, also, that comparisons of different PM's through their 
plateaux should be made with care, because of differences in the gain-voltage relation. 
A more reliable way is to make pulse height resolution measurements with a multichan­
nel analyzer. 

9.7.4 Maintaining PM Gain 

Before using the counter for measurements, a certain settling time should be allowed in 
order to stabilize the PM. Once the correct gain is set, of course, it must be maintained 
for all measurements; because of drifts and changes which occur in the PM with time, 
use and other factors, noting the voltage is not sufficient. It is not rare, in fact, to find 
that the same gain is not reproduced by returning to the same voltage, although a very 
large difference should not be observed. Thus, it is important to fix a standard to which 
the gain can always be referred and not simply note down the PM voltage. The best 
method is to choose a radioactive source with a distinguishable feature (e.g. a peak or 
eventually a Compton edge) in or near the energy region of interest and to require it to 
fall into a certain channel in a multichannel analyzer. A fixed, calibrated light source, 
such as an light-emitting diode (LED) arranged so as to shine on the PM or scintillator, 
may also be used. In this manner, the same gain (within the resoluti'on of the multi­
channel analyzer) will always be reproduced. If it does not disturb the measurement, 
the source or light can be left permanently in front of the counter to allow a continuous 
check of the gain. Otherwise, periodic checks may be performed. 



10. Semiconductor Detectors 

Semiconductor detectors, as their name implies, are based on crystalline semiconductor 
materials, most notably silicon and germanium. These detectors are also referred to as 
solid-state detectors, which is a somewhat older term recalling the era when solid-state 
devices first began appearing in electronic circuits. While work on crystal detectors was 
performed as early as the 1930's [10.1], real development of these instruments first be­
gan in the late 1950's. The first prototypes quickly progressed to working status and 
commercial availability in the 1960's. These devices provided the first high-resolution 
detectors for energy measurement and were quickly adopted in nuclear physics research 
for charged particle detection and gamma spectroscopy. In more recent years, how­
ever, semiconductor devices have also gained a good deal of attention in the high ener­
gy physics domain as possible high-resolution particle track detectors. Much work is 
being put into developing these instruments [10.2, 3], along with gas detectors, as the 
detectors for the next generation of high energy experiments. 

The basic operating principle of semiconductor detectors is analogous to gas ioniza­
tion devices. Instead of a gas, however, the medium is now a solid semiconductor mate­
rial. The passage of ionizing radiation creates electron-hole pairs (instead of electron­
ion pairs) which are then collected by an electric field. The advantage of the semicon­
ductor, however, is that the average energy required to create an electron-hole pair is 
some 10 times smaller than that required for gas ionization. Thus the amount of ioniza­
tion produced for a given energy is an order of magnitude greater resulting in increased 
energy resolution. Moreover, because of their greater density, they have a greater 
stopping power than gas detectors. They are compact in size and can have very fast 
response times. Except for silicon, however, semiconductors generally require cooling 
to low temperatures before they can be operated. This, of course, implies an additional 
cryogenic system which adds to detector overhead. One of the problems in current 
semiconductor detector research, in fact, is to find and develop new materials which 
can be operated at room temperature. Being crystalline materials, they also have a 
greater sensitivity to radiation damage which limits their long term use. 

We will survey, in this chapter, the different types of semiconductor detectors and 
their operation. Since an understanding of these detectors requires some knowledge of 
solid-state physics, however, we shall also review some of the basic physics aspects of 
semiconductors and in particular semiconductor junctions. A more thorough discus­
sion can be found in some of the standard texts on solid state physics given in the bibli­
ography. 

10.1 Basic Semiconductor Properties 

In this section, we will briefly review the basic properties of semiconductor materials 
and those electrical characteristics which are important for their use as radiation detec-
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tors. Our discussion here will be concerned with pure semiconductors which are also 
known as intrinsic semiconductors. The term "pure" here is relative, since in reality, no 
semiconductor is ever completely free of impurities in the lattice. For discussion pur­
poses, however, we will assume that this is the case. Impurities, nevertheless, play an 
important role and may limit or enhance the characteristics of the material. Their 
effects will be discussed in a later section. 

10.1.1 Energy Band Structure 

Semiconductors are crystalline materials whose outer shell atomic levels exhibit an en­
ergy band structure. Figure 10.1 schematically illustrates this basic structure consisting 
of a valence band, a "forbidden" energy gap and a conduction band. The band con­
figuration for conductors and insulators are also shown for comparison. 

~~§'"d Conduction i~!lt 
band Free 

electrons 

Insulator 

Energy 
gap 

Valence 
band 

~~-.~ 

Semiconductor Metal 

Fig. 10.1. Energy band structure of conductors, insulators and semiconductors 

The energy bands are actually regions of many discrete levels which are so closely 
spaced that they may be considered as a continuum, while the "forbidden" energy gap 
is a region in which there are no available energy levels at all. This band structure arises 
because of the close, periodic arrangement of the atoms in the crystal which causes an 
overlapping of the electron wavefunctions. Since the Pauli principle forbids more than 
one electron in the same state, the degeneracy in the outer atomic shell energy levels 
breaks to form many discrete levels only slightly separated from each other. As two 
electrons of opposite spin may reside in the same level, there are as many levels as there 
are pairs of electrons in the crystal. This degeneracy breaking does not affect the inner 
atomic levels, however, which are more tightly bound. 

The highest energy band is the conduction band. Electrons in this region are de­
tached from their parent atoms and are free to roam about the entire crystal. The elec­
trons in the valence band levels, however, are more tightly bound and remain associat­
ed to their respective lattice atoms. 

The width of the gap and bands is determined by the lattice spacing between the 
atoms. These parameters are thus dependent on the temperature and the pressure. In 
conductors, the energy gap is nonexistent, while in insulators the gap is large. At nor­
mal temperatures, the electrons in an insulator are normally all in the valence band, 
thermal energy being insufficient to excite electrons across this gap. When an external 
electric field is applied, therefore, there is no movement of electrons through the crystal 
and thus no current. For a conductor, on the other hand, the absence of a gap makes it 
very easy for thermally excited electrons to jump into the conduction band where they 
are free to move about the crystal. A current will then flow when an electric field is ap-
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plied. In a semiconductor, the energy gap is intermediate in size such that only a few 
electrons are excited into the conduction band by thermal energy. When an electric 
field is applied, therefore, a small current is observed. If the semiconductor is cooled, 
however, almost all the electrons will fall into the valence band and the conductivity of 
the semiconductor will decrease. 

10.1.2 Charge Carriers in Semiconductors 

At 0 K, in the lowest energy state of the semiconductor, the electrons in the valence 
band all participate in covalent bonding between the lattice atoms. This is illustrated in 
Fig. 10.2 for silicon and germanium. Both silicon and germanium have four valence 
electrons so that four covalent bonds are formed. At normal temperatures, however, 
the action of thermal energy can excite a valence electron into the conduction band 
leaving a hole in its original position. In this state, it is easy for a neighboring valence 
electron to jump from its bond to fill the hole. This now leaves a hole in the neighbor­
ing position. If now the next neighboring electron repeats the sequence and so on, the 
hole appears to move through the crystal. Since the hole is positive relative to the sea of 
negative electrons in the valence band, the hole acts like a positive charge carrier and its 
movement through the crystal also constitutes an electric current. In a semiconductor, 
the electric current thus arises from two sources: the movement of free electrons in the 
conduction band and the movement of holes in the valence band. This is to be contrast­
ed with a metal where the current is carried by electrons only. 

Fig. 10.2. Covalent bonding of silicon: (a) at 0 K, all electrons participate in bonding, (b) at higher tempera­
tures some bonds are broken by thermal energy leaving a hole in the valence band 

10.1.3 Intrinsic Charge Carrier Concentration 

In a semiconductor, electron-hole pairs are constantly being generated by thermal ener­
gy. At the same time, there are also a certain number of electrons and holes which re­
combine. Under stable conditions, an equilibrium concentration of electron-hole pairs 
is established. If ni is the concentration of electrons (or equally holes) and T the temper­
ature, then 

ni = V NcNy exp ( - Eg) = AT312 exp ( - Eg) , 
2kT 2kT 

(10.1) 

where Nc is the number of states in the conduction band, Ny the number of states in the 
valence band, Eg the energy gap at 0 K and k the Boltzmann constant. Nc and Ny can be 
calculated from Fermi-Dirac statistics and each can be shown to vary as T3!2. Making 
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this dependence explicit then gives the right-hand side of (10.1) where the constant A is 
independent of temperature. 

Typical values for ni are on the order of 2.5 x 1013 cm - 3 for Ge and 1.5 x 1010 cm - 3 

for Si at T = 300 K. This should be put into perspective, however, by noting that there 
are on the order of 1022 atoms/cm3 in these materials. This means that only 1 in 109 ger­
manium atoms is ionized and 1 in 1012 in silicon! Despite the large exponents, there­
fore, the concentrations are very low. 

10.1.4 Mobility 

Under the action of an externally applied electric field, the drift velocity of the elec­
trons and holes through a semiconductor can be written as 

(10.2) 

where E is the magnitude of the electric field and fle and flh are the mobilities of the elec­
trons and holes respectively. For a given material, the mobilities are functions of E and 
the temperature T. For silicon at normal temperatures [lOA], fle and flh are constant 
(Table 10.1) for E < 103 V /cm, so that the relation between velocity and E is linear. For 
E between 103 -104 V /cm, fl varies approximately as E -112, while above 104 V /cm, fl 

varies as 1/ E. At this point the velocity saturates approaching a constant value of about 
107 cm/s. Physically, saturation occurs because a proportional fraction of the kinetic 
energy acquired by the electrons and holes is drained by collisions with the lattice 
atoms. 

Table 10.1. Some physical properties of silicon and germanium 

Atomic number Z 
Atomic weight A 
Density [g/cm2] 
Dielectric constant (relative) 
Intrinsic resistivity (300 K) [ncm] 
Energy gap (300K) leV] 
Energy gap (0 K) leV] 
Electron mobility (300 K) [cm2/Vs] 
Hole mobility (300K) [cm2/Vs] 

Si 

14 
28.1 

2.33 
12 

230000 
1.1 
1.21 

1350 
480 

Ge 

32 
72.6 
5.32 

16 
45 

0.7 
0.785 

3900 
1900 

At temperatures between 100 and 400 K, fl also varies approximately as T- m, where 
m depends on the type of material and on the charge carrier. Values of m in silicon are 
m = 2.5 for electrons and m = 2.7 for holes, while in germanium, m = 1.66 for elec­
trons and m = 2.33 for holes [10.4]. Measured values of the drift velocity as a function 
of T and E are given in [10.5]. 

The mobilities, of course, determine the current in a semiconductor. Since the cur­
rent density J = pv, where p is the charge density and v the velocity, J in a pure semi­
conductor is given by 

(10.3) 
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where we have substituted (10.2) for v and used the fact that current is carried by both 
electrons and holes. Moreover, J = aE, where a is the conductivity; comparison with 
(10.3), therefore, gives us the relation 

a= eni (f.1e+ f.1h) . (10.4) 

This also gives us the resistivity which is just the inverse of a. 

10.1.5 Recombination and Trapping 

An electron may recombine with a hole by dropping from the conduction band into an 
open level in the valence band with the emission of a photon. This process is known as 
direct recombination and is the exact opposite of electron-hole generation. Since both 
momentum and energy are conserved, however, the electron and the hole must have ex­
actly the right values in order for this to occur. Such processes are therefore very rare 
and indeed theoretical calculations [10.6] show that electrons and holes should have 
lifetimes as long as a second if this were the only process. Experimental measurements, 
however, show carrier lifetimes to range from nanoseconds to hundreds of microsec­
onds which clearly implies that other mechanisms are involved. 

The most important mechanism is through recombination centers resulting from 
impurities in the crystal. These elements perturb the energy band structure by adding 
additional levels to the middle of the forbidden energy gap as shown in Fig. 10.3. These 
states may capture an electron from the conduction band and then do one of two 
things: (1) after a certain holding time, the electron is released back into the conduction 
band, or, (2) during the holding time, it may also capture a hole which then annihilates 
with the trapped electron. Such centers are particularly efficient as the impurity is left 
in its original state so that each center may participate in many recombinations. 

For radiation detection, the existence of recombination impurities plays a detrimen­
tal role since they will reduce the mean time charge carriers remain free. This time, of 
course, should be longer than the time it takes to collect the charges otherwise charge 
loss will occur with a subsequent reduction in resolution. Semiconductor detectors 
therefore require relatively pure crystals. For large volume detectors, in particular, the 
impurity concentration cannot be more than 1010 impurities per cm3 [10.7]. 

A second effect which arises from impurities is trapping. Some impurities, in fact, 
are only capable of capturing one kind of charge carrier, that is electrons or holes, but 
not both. Such centers simply hold the electron or hole and then release it after a cer­
tain characteristic time. If the trapping time is on the order of the charge collection 
time, then quite obviously charges will be lost and incomplete charge collection will re­
sult. If the trapping time is very much smaller, then little or no effect occurs. Recombi­
nation centers are also trapping centers as we have seen. 

While impurities are the principal source of recombination and trapping, structural 
defects in the lattice may also give rise to similar states in the forbidden band. Such de-

Fig. 10.3. Recombination and trapping sites in the forbid­
den energy gap 
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fects include simple point defects such as vacancies in the lattice or atoms which occupy 
positions in between lattice points, and dislocations, in which an entire line of atoms is 
displaced. These structural defects may arise during growth of the crystal or may be 
caused by thermal shock, plastic deformation, stress and bombardment by radiation. 
The latter source, of course, is of particular concern for detectors and is discussed in a 
later section. 

While we have thus far discussed the detrimental effects of impurities, the addition 
of certain elements to pure semiconductors may also enhance the characteristics of the 
material. This is discussed in the next section on doped semiconductors. The difference 
between these impurities and recombination and trapping impurities is in the depth of 
the energy levels created in the forbidden band. As we will see, doping impurities create 
shallow levels very close to the conduction or valence bands, whereas recombination 
and trapping impurities produce deep levels near the center. Electrons and holes in 
shallow levels are easily excited out into the conduction and valence bands and thus are 
not trapped for very long periods. 

10.2 Doped Semiconductors 

In a pure semiconductor crystal, the number of holes equals the number of electrons in 
the conduction band. This balance can be changed by introducing a small amount of 
impurity atoms having one more or one less valence electron in their outer atomic shell. 
For silicon and germanium which are tetravalent, this means either pentavalent atoms 
or trivalent atoms. These impurities integrate themselves into the crystal lattice to cre­
ate what are called doped or extrinsic semiconductors. 

If the dopant is pentavalent, the situation in Fig. 10.4a arises. In the ground state, 
the electrons fill up the valence band which contains just enough room for four valence 
electrons per atom. Since the impurity atom has five valence electrons, an extra elec-
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Fig. 10.4. (a) Addition of donor impurities to form n-type semiconductor materials. The impurities add 
excess electrons to the crystal and create donor impurity levels in the energy gap. (b) Addition of acceptor 
impurities to create p-type material. Acceptor impurities create an excess of holes and impurity levels close to 
the valence band 
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tron is left which does not fit into this band 1. This electron resides in a discrete energy 
level created in the energy gap by the presence of the impurity atoms. Unlike recombi­
nation and trapping states, this level is extremely close to the conduction band being 
separated by only 0.01 eV in germanium and 0.05 eV in silicon. At normal tempera­
tures, therefore, the extra electron is easily excited into the conduction band where it 
will enhance the conductivity of the semiconductor. In addition, the extra electrons will 
also fill up holes which normally form, thereby decreasing the normal hole concentra­
tion. In such materials, then, the current is mainly due to the movement of electrons. 
Holes, of course, still contribute to the current but only as minority carriers. Doped 
semiconductors in which electrons are the majority charge carriers are called n-type 
semiconductors. 

If the impurity is now trivalent with one less valence electron, there will not be 
enough electrons to fill the valence band. There is thus an excess of holes in the crystal 
(Fig. 10.4 b). The trivalent impurities also perturb the band structure by creating an ad­
ditional state in the energy gap, but this time, close to the valence band as shown in Fig. 
10.4 b. Electrons in the valence band are then easily excited into this extra level, leaving 
extra holes behind. This excess of holes also decreases the normal concentration of free 
electrons, so that the holes become the majority charge carriers and the electrons mi­
nority carriers. Such materials are referred to as p-type semiconductors. 

In practice, donor elements such as arsenic, phosphorous and antimony are used to 
make n-type semiconductors, while gallium, boron and indium are most often em­
ployed as acceptor impurities for p-type materials. The amount of dopant used is gen­
erally very small with typical concentrations being on the order of a few times 
1013 atoms/cm3• Since the densities of germanium and silicon are on the order of 
1022 atoms/cm3, this implies impurity concentrations of only a few parts per billion! 

Great use is also made of heavily doped semiconductors particularly as the electrical 
contacts for semiconductors. Impurity concentrations in these materials can be as high 
as 1020 atoms/cm3, so that they are highly conductive. To distinguish these semicon­
ductors from normally doped materials, a "+" sign after the material type is used. 
A heavily doped p-type semiconductor is therefore written as p + and a heavily doped n 
semiconductor as n + . 

Regardless of the type of dopant, the concentration of electrons and holes obey a 
simple law of mass action when in thermal equilibrium. If n is the concentration of 
electrons and p is the concentration of holes, then their product is 

np =n r=AT3 exp ( ~~g), (10.5) 

where ni is the intrinsic concentration given in (10.1). Since the semiconductor is neu­
tral, the positive and negative charge densities must be equal, so that 

(10.6) 

where ND and N A are the donor and acceptor concentrations. In an n-type material, 
where N A = 0 and n ~ p, the electron density is therefore 

n:::::ND' (10.7) 

1 Note this extra electron does not imply that the crystal is now charged. Electrical neutrality is assured since 
the nucleus of the impurity atom also contains an extra positive proton. 
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i.e" the electron concentration is approximately the same as the dopant concentration, 
Using (10,5), then, the minority carrier concentration is 

From (10.4), the conductivity or resistivity of an n-type material thus becomes 

1 
-= a == eNo f.1.e 
p 

An analogous result is found for p-type materials. 

10.2.1 Compensation 

(10,8) 

(10.9) 

A question one can ask now is what happens if both n- and p-type impurities are added 
to a semiconductor. In reality, all semiconductors do, in fact, contain impurities of 
both types. Since the extra electrons from donor atoms will be captured by extra holes 
from acceptor materials, it is easy to see that a cancellation effect occurs. What counts, 
therefore, is the net concentration, I No - N A I , where No and N A are the concentra­
tions of donor and acceptor atoms. If No> N A , then the semiconductor is an n-type 
and vice-versa. Similarly, semiconductors with equal amounts of donor and acceptor 
impurities remain intrinsic or at least retain most of the characteristics of intrinsic ma­
terials. Such materials are known as compensated materials and are designated with the 
letter "in. (This should not be confused with intrinsic). 

It is quite obviously difficult to make compensated materials because of the need to 
have exactly the same amounts of donor and acceptor impurities. The first break­
through came in the 1960's when Pell developed the lithium drifting method for com­
pensating p-type silicon and germanium. While we will not go into detail, the process 
consists essentially of diffusing lithium, which acts as a donor, onto the surface of a p­
type material. This changes that end of the semiconductor into an n-type material. The 
concentration of lithium drops off in a Gaussian manner so that the junction between 
the n-type and p-type regions lies at some depth under the surface. A bias voltage is 
then applied across the junction such that the positive lithium ions are pulled further in­
to the bulk of the p-region, To increase lithium mobility, the temperature of the materi­
al is raised. As the lithium donor concentration increases in the p-region, its concentra­
tion decreases in the n-region. Because of the dynamics of the local electric field, how­
ever, the donor concentration of the p-side cannot exceed the acceptor concentration 
and vice versa on the n-side. Indeed, if this happens the local field essentially reverses 
direction and sweeps the ions back in the opposite direction. An equilibrium point is 
thus reached in which the lithium donor ions spread themselves over a region such that 
the number of donors is exactly equal to the number of acceptors. A compensated re­
gion is thus formed. To obtain thick compensated regions from 10 -15 mm, this drift 
process can take several days. The interested reader may find a more detailed descrip­
tion of the process in [10.8]. 

Because of the high mobility of the lithium ions at room temperature, particularly 
in germanium, it is necessary to cool the material to liquid nitrogen temperatures once 
the desired compensation is obtained. This temperature must be maintained at all times 
in order to preserve the compensation. In the case of silicon, however, lithium mobility 
is lower so that short periods at room temperature usually do no harm. 
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The most important property of compensated material is its high resistivity. Rough 
measurements on silicon have yielded values as high as 100000 (2 cm. This is still much 
lower than the intrinsic maximum value of - 230000 (2 cm, however, so that although 
the drifting process is effective, it is still not perfect. We will see how these materials are 
used for radiation detection in Sects. 10.5.4 and 10.7.1. 

10.3 The np Semiconductor Junction. Depletion Depth 

The functioning of all present-day semiconductor detectors depends on the formation 
of a semiconductor junction. Such junctions are better known in electronics as rectify­
ing diodes, although that is not how they are used as detectors. Semiconductor diodes 
can be formed in a number of ways. A simple configuration which we will use for illus­
tration purposes is the pn junction formed by the juxtaposition of a p-type semiconduc­
tor with an n-type material. These junctions, of course, cannot be obtained by simply 
pressing n- and p-type materials together. Special techniques must be used instead to 
achieve the intimate contact necessary for junction formation. One method, for exam­
ple, is to diffuse sufficient p-type impurities into one end of a homogeneous bar of n­
type material so as to change that end into a p-type semiconductor. Others methods are 
also available and will be discussed in later sections. 

The formation of a pn-junction creates a special zone about the interface between 
the two materials. This is illustrated in Fig. 10.5. Because of the difference in the concen­
tration of electrons and holes between the two materials, there is an initial diffusion of 
holes towards the n-region and a similar diffusion of electrons towards the p region. As 
a consequence, the diffusing electrons fill up holes in the p-region while the diffusing 
holes capture electrons on the n-side. Recalling that the nand p structures are initially 
neutral, this recombination of electrons and holes also causes a charge build-up to oc­
cur on either side of the junction. Since the p-region is injected with extra electrons it 
thus becomes negative while the n-region becomes positive. This creates an electric field 
gradient across the junction which eventually halts the diffusion process leaving a re­
gion of immobile space charge. The charge density and the corresponding electric field 
profile are schematically diagrammed in Fig. 10.5. Because of the electric field, there is 
a potential difference across the junction. This is known as the contact potential. The 
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Fig. 10.5. (a) Schematic diagram of an np junction, (b) diagram of electron energy levels showing creation of 
a contact potential Va, (e) charge density, (d) electric field intensity 
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energy band structure is thus deformed as shown in Fig. 10.5, with the contact potential 
generally being on the order of 1 V. 

The region of changing potential is known as the depletion zone or space charge re­
gion and has the special property of being devoid of all mobile charge carriers. And, in 
fact, any electron or hole created or entering into this zone will be swept out by the elec­
tric field. This characteristic of the depletion zone is particularly attractive for radia­
tion detection. Ionizing radiation entering this zone will liberate electron-hole pairs 
which are then swept out by the electric field. If electrical contacts are placed on either 
end of the junction device, a current signal proportional to the ionization will then be 
detected. The analogy to an ionization chamber thus becomes apparent. 

10.3.1 The Depletion Depth 

The width of the depletion zone is generally small and depends on the concentration of 
nand p impurities. If the charge density distribution in the zone, p(x) is known, this 
can be determined from Poisson's equation, 

d 2 V p(x) 
(10.10) 

where e is the dielectric constant. 
As an illustration, let us take the simple example of a uniform charge distribution 

about the junction [10.9]. This is illustrated in Fig. 10.6. Letting Xn denote the extent of 
the depletion zone on the n-side and xp the depth on the p-side, we then have, 

p(X) = { eND 
-eNA 

o <x <xn 

-xp<x<O, 
(10.11) 

where e is the charge of the electron and ND and NA are the donor and acceptor impuri­
ty concentrations. Since the total charge is conserved, we also have the relation 

(10.12) 

Now integrating (10.10) once, we find 

(10.13) 

where Cn and Cp are integration constants. Since dVldx=O at X=Xn and -xp' (10.13) 
becomes 

{

- eND (X-Xn) 0 < x < Xn 
dV e 

dx = eNA () 0 
-- X+Xp -Xp <x < . 

e 

(10.14) 
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Equation (10.14), of course, represents the electric field in the space charge region. One 
more integration now yields, 

(10.15) 

Since the two solutions must join at x = 0, it is clear that C = C'. Now at x = xn, 
V(x) = Vo which is the contact potential; thus 

eNo 2 
VO=--xn+C, 

2e 

Similarly on the p-side V = 0 at x = - xp ' so that 

0 - eNA 2 C - ---xp+ 
2e 

Eliminating C, we then obtain 

Using (10.12) then yields, 

2eVo ( )

1/2 
2eVo ( )

112 

(10.16) 

(10.17) 

(10.18) 

(10.19) 

From (10.19), we can see that if one side is more heavily doped than the other, which is 
usually the case, then the depletion zone will extend farther into the lighter-doped side. 
For example, if NA ~ No, then Xn ~ xp which means that the depletion region is almost 
entirely on the n-side of the junction. 

The total width of the depletion zone can now be easily found 

If NA ~ No, as in our example above, then (10.20) is approximately, 

( )
112 

d == Xn == 2 e Vo 
eNo 

Using the expression in (10.9) for the resistivity p, (10.21) can be expressed as 

(10.20) 

(10.21) 

(10.22) 
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where Pn is the resistivity of the n-region. For the case of a heavily doped n-side 
(No ~ N A ), the depletion region will be entirely on the p-side, so that the factor Pn f.1e in 
(10.22) should be replaced by Pp f.1h' Evaluating some of the constants now, we find the 
formulae 

Silicon 
d =::: [0.53 (Pn Va)l!2 /lm 

lO.32(pp Va)l!2 /lm 

n-type 

p-type 

n-type 

p-type 

(10.23) 

where P is in n cm and Va in Volts. If we take typical values of P - 20000 n cm for 
high-resistivity n-type silicon and Va = 1 V, this yields d =::: 75 /lm, which is a rather 
small sensitive depth. 

10.3.2 Junction Capacitance 

Because of its electrical configuration, the depletion layer also has a certain capacitance 
which, as we will see later, affects the noise characteristics when the junction is used as 
a detector. For a planar geometry, the capacitance is 

A 
C=e­

d ' 
(10.24) 

where A is the area of the depletion zone and d its width. Substituting in the formulae 
of (10.23) then yields 

Silicon 

CIA = n a [
2.2(P v,)-1I2pF/mm2 

3.7(pp Va)-1/2 pF /mm 2 

Germanium 

CIA = n a [
1.37(P V,)-l!2pF/mm2 

2.12(pp Va)-1/2 pF/mm2 

10.3.3 Reversed Bias Junctions 

n-type 

p-type 

n-type 

p-type 

(10.25) 

While the pn-junction described above will work as a detector, it does not present the 
best operating characteristics. In general, the intrinsic electric field will not be intense 
enough to provide efficient charge collection and the thickness of the depletion zone 
will be sufficient for stopping only the lowest energy particles. As we will see later, this 
small thickness also presents a large capacitance to the electronics and increases noise in 
the signal output. Better results can be obtained by applying a reverse-bias voltage to 
the junction, i.e., a negative voltage to the p-side, as shown in Fig. 10.7. This voltage 
will have the effect of attracting the holes in the p-region away from the junction and 
towards the p contact and similarly for the electrons in the n-region. The net effect is to 
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Fig. 10.7. Reversed-bias junction 

enlarge the depletion zone and thus the sensitive volume for radiation detection - the 
higher the external voltage, the wider the depletion zone. Moreover, the higher external 
voltage will also provide a more efficient charge collection. The maximum voltage 
which can be applied, however, is limited by the resistance of the semiconductor. At 
some point, the junction will breakdown and begin conducting. 

Under a reverse bias, the width of the depletion layer can be calculated from (10.20) 
by replacing Va with Va+ VB, where VB is the bias voltage. In general Va 46 VB, so that 
Va may usually be neglected and equations (10.20) to (10.23) used directly with the sub­
stitution Va => VB. This is also true for the capacitance in (10.25). An interesting point 
to note is that because of the difference in mobility between electrons and holes, the 
same bias voltage VB will yield a somewhat larger depletion depth if the material is n­
type rather than p-type. 

If we now calculate the depth for n-type silicon, we can see that a depletion layer 
greater than 1 mm can be obtained if a reverse bias of about VB = 300 V is applied. 
This, of course, is a great improvement over the few tens of microns in an unbiased 
junction. With current high resistivity silicon, depletion depths up to 5 mm can be ob­
tained before breakdown occurs. In order to obtain greater depletion widths, even 
higher resistivity material is necessary which means using higher purity semiconductors 
or compensated material. These will be discussed in a later section. 

10.4 Detector Characteristics of Semiconductors 

Having reviewed some of the basic properties of semiconductor materials and junc­
tions, we now turn to some of the characteristics of semiconductors as detectors of ra­
diation. 

Figure 10.8 shows the basic configuration used for operating a junction diode as a 
radiation detector. In order to be able to collect the charges produced by radiation, 
electrodes must be fitted onto the two sides of the junction. With semiconductors, how­
ever, an ohmic metal contact cannot, in general, be formed by directly depositing the 
metal onto the semiconductor material. Indeed, as we shall see in Sect. 10.5.2, contact 
between many metals and semiconductors results in the creation of a rectifying junc­
tion with a depletion zone extending into the semiconductor. To prevent this forma­
tion, a heavily doped layer of n + and p + material is used between the semiconductor 
and the metal leads. Because of the high dopant concentrations, the depletion depth is 
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then essentially zero as can be seen from (10.19). This then forms the desired ohmic 
contact. 

For signal isolation purposes, the bias voltage to the detector is supplied through a 
series resistor rather than directly. To collect the charge signal from the detector, a pre­
amplifier of the charge-sensitive type is generally used. Because of the low-level of the 
signal, this preamplifier must have low-noise characteristics. Signal processing after the 
preamplifier also requires pulse shaping in order to obtain the best signal-to-noise char­
acteristics as explained in Chap. 14. 

10.4.1 Average Energy per Electron-Hole Pair 

The primary advantage of semiconductors over other detectors is the very small aver­
age energy needed to create an electron-hole pair. Like gases, the average energy at a 
given temperature is found to be independent of the type and energy of the radiation 
and only dependent on the type of material. Table 10.2 summarizes these values for 
various semiconductors at normal and liquid nitrogen temperatures. 

Table 10.2. Average energy for elec­
tron-hole creation in silicon and ger­
manium 

300K 
77K 

Si 

3.62eV 
3.81 eV 

Ge 

2.96 eV 

For the same radiation energy, the number of charge carriers created will therefore 
be almost an order of magnitude greater in these materials than in gases. Compared 
to the number of photoelectrons created in a scintillation counter, this increase ap­
proaches two orders of magnitude. Not surprisingly, semiconductors should provide 
a greatly improved energy resolution. 

As small as the average energies are it is interesting to compare these values to the 
band gaps in Table 10.1. Since the gaps are only on the order 1 eV wide, it is clear that 
less than a third of the energy deposited by passing radiation is actually spent on the 
production of electron-hole pairs. The other two thirds, in fact, go into exciting lattice 
vibrations. 
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10.4.2 Linearity 

Assuming that the depletion region is sufficiently thick to completely stop all particles, 
the response of semiconductors should be perfectly linear with energy. If E is the ener­
gy of the radiation then Elw electron-hole pairs should be created, where w is the aver­
age energy from Table 10.2. Assuming a collection efficiency n, then a charge 
Q = nElw is collected on the electrodes. Since the depletion region has a capacitance 
e, as we saw in Sect. 10.3.2, the observed voltage on the electrodes is then 

Q E 
V=-=n--

e we 
(10.26) 

which varies linearly with E. Moreover, since w is independent of particle type, the re­
sponse is, in principle, also independent of the type of radiation. This turns out to be 
true only for lightly ionizing radiation such as electrons and protons. For heavier ions, 
plasma effects occur which affect the collection efficiency and lead to differences in the 
pulse height between different particles with the same energy. This is discussed further 
in Sect. 10.9.5. 

If the depletion zone is smaller than the range of the radiation, it is clear then that a 
nonlinear response should be expected since the full energy is not totally deposited in 
the sensitive volume. What is measured instead is the energy loss L1 E which is a nonlin­
ear function of energy. For a given depletion depth, the response is therefore linear up 
until the range of the particles exceeds this depth. 

10.4.3 The Fano Factor and Intrinsic Energy Resolution 

The intrinsic energy resolution, as we saw in Chap. 5, is dependent on the number of 
charge carriers and the Fano Factor. Despite numerous experiments, the Fano factor 
for both silicon and germanium is still not well determined. However, it is clear that F 
is small and on the order of 0.12. This, of course, contributes greatly to enhancing the 
resolution of semiconductors which already profit greatly from the small average ener­
gy required to create an electron hole pair. 

From (5.6), the expected resolution is 

IfF 1jF;; 
R = 2.35 V J = 2.35 V E ' (10.27) 

where w is the average energy for electron-hole creation and J = Elw. For a 5 MeV al­
pha particle, the intrinsic resolution expected for silicon is therefore R :::::: 0.07070 or 
3.5 keV. Typical measured resolutions are about 18 keV, however, which indicates that 
contributions from other sources, e.g., electronics, play important roles. 

10.4.4 Leakage Current 

Although a reversed biased diode is ideally nonconducting, a small fluctuating current 
nevertheless flows through semiconductor junctions when voltage is applied. This cur­
rent appears as noise at the detector output and sets a limit on the smallest signal pulse 
height which can be observed. 
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The leakage current has several sources. One is the movement of minority carriers, 
i.e., holes from the n-region which are attracted across the junction to the p-side and 
electrons from the p-region which are similarly attracted to the opposite side. This cur­
rent is generally quite small and in the range of nanoamperes per cm2• A second source 
is thermally generated electron-hole pairs originating from recombination and trapping 
enters in the depletion region. These centers cannot capture electrons or holes since 
they have all been swept out, but they can catalyze the creation of electrons and holes 
from the valence band by serving as intermediate states. The contribution from this 
source depends on the absolute number of traps in the depletion region and thus on 
their concentration and the volume of the zone. In general, current densities on the or­
der of a few IlAI cm2 can be expected. The third and by far the largest source of leakage 
current is through surface channels. This component is complex and depends on very 
many factors including the surface chemistry, the existence of contaminants, the sur­
rounding atmosphere, the type of mounting, etc. Clean encapsulation is generally re­
quired here to minimize this component. 

10.4.5 Sensitivity and Intrinsic Efficiency 

For charged particles, the intrinsic detection efficiency of semiconductors is close to 
100% as very few particles will fail to create some ionization in the sensitive volume. The 
limiting factor on sensitivity is the noise from leakage currents in the detector and the as­
sociated electronics which set a lower limit on the pulse amplitude which can be detected. 
To ensure an adequate signal, the depletion depth must therefore be chosen sufficiently 
thick such that enough ionization will be produced to form a signal larger than the noise 
level. These events are then detected with almost 100070 efficiency. If energy measure­
ments are being made, however, the depletion depth must also be larger than the range of 
the particles. Figure 10.9 shows the range of various particles in silicon. 

For gamma-ray detection, germanium is preferred over silicon because of its higher 
atomic number. However, because of the smaller band gap, the leakage current in ger­
manium at normal temperatures is too high to be acceptable and must be cooled to liq-
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uid nitrogen temperatures. For low energy x-rays below - 30 keV, silicon detectors are 
preferred because of the K-edge in germanium which is located at -11 ke V. Photon 
absorption at these energies, of course, would yield almost zero energy photoelectrons. 

10.4.6 Pulse Shape. Rise Time 

Because the collection time for electrons and holes depends on the location of the 
charges with respect to the electrodes, pulse shapes from semiconductors vary in form 
and rise time. 

As in gas detectors, the electrical pulse on the electrodes arises from induction 
caused by the movement of the charges rather than the actual collection of the charge 
itself. Assuming two parallel electrodes, (6.29) gives the change in potential energy for 
a charge q which moves a distance dx. Since we are interested in the charge collected we 
can reexpress this as 

dQ= qdx 
d ' 

(10.28) 

where d is the distance between electrodes. Although (10.28) is derived for the case of 
empty space between the electrodes, it can be shown that this is also valid [10.11] in the 
presence of a space-charge as well. 

Let us take the example of a pn-junction detector. These are generally formed from 
a p-type material which is heavily doped on one side with n-type donors. As we saw in 
Sect. 10.3.1, the depletion zone then extends almost entirely into the p-side. This is il­
lustrated in Fig. 10.10 which also shows the electric field in the zone as given by (10.13). 
Using the coordinate system shown in the figure, (10.13) is rewritten as 

E= - eNA x . 
e 

(10.29) 

From (10.9), we have the result that the conductivity, (J = eNA /1h. Substituting into 
(10.29) then gives us 

x 
E= - --, 

/1h' 

where we have defined, = e / (J = P e and p is the resistivity. 
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Fig. 10.10. Signal pulse shape due to a single electron-hole pair in an np junction 

(10.30) 
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Assume now that an electron-hole pair is created at a point x in the depletion zone. 
The electron will thus begin to drift towards the n + layer and the hole towards the p 
electrode. From the definition of mobility, we have for electrons 

dx f.J.e x 
V=-= -f.J.eE=- -. 

dt f.J.h T 

Assuming that the mobilities are independent of E, this yields the solution 

( ) f.J.et 
x t = Xo exp -- . 

f.J.h T 

The time it takes for the electron to reach the electrode at x = d is then 

f.J.h d 
t= T-In-

f.J.e Xo 

The charged induced as a function of t during this period is thus 

e j dx e ( f.J.et) Qe(t) = - - -dt = -Xo l-exp-
d dt d f.J.h 

Similarly for the hole, we have the equation, 

dx x 
Vh=-=f.J.hE= --

dt T 

which yields the solution, 

-t 
x(t) = xoexp -. 

T 

The collection time in this case is infinite and the induced charge, 

Qh (t) = - - Xo exp - - = - - Xo 1 - exp - . e J - t dt e ( - t) 
d T T d r 

(10.31) 

(10.32) 

(10.33) 

(10.34) 

(10.35) 

(10.36) 

(10.37) 

The pulse shape is now given by the total charge induced and this is diagrammed in Fig. 
10.10 along with the contributions Qe and Qh' The total charge collected is Qtot = - e 
as can be shown by taking the maximum limits on (10.34) and (10.37). 

The parameter T, as can be seen, determines the rise time of the signal. In silicon, 
this is given roughly by T = P . 10 -12 s, where p is in n cm. For typical 1000 n cm mate­
rial, T is thus on the order of a nanosecond. 

The above calculation, of course, was only for a single electron-hole pair. To calcu­
late the pulse shape due to incident radiation, it is necessary to know the particle trajec­
tory, the density of ionization along the track, the variation of mobilities, the electric 
field distribution, etc. and integrate all these factors - a complicated task! 
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10.5 Silicon Diode Detectors 

For charged particle detection, silicon is the most widely used semiconductor material. 
As we have noted, it has the advantage of room temperature operation and wide avail­
ability. One of the disadvantages of silicon detectors is their relatively small size. Cur­
rent devices are limited to surface areas of a few ten's of square centimeters although 
some development is being done to increase this limit. 

Silicon diodes may be fabricated in a number of ways which result in a number of 
different types of detectors. These are described below. 

10.5.1 Diffused Junction Diodes 

Diffused junction diodes were among the first devices fabricated for radiation detec­
tion. These diodes are usually produced by diffusing n-type impurities, such as phos­
phorus, into one end of a homogeneous p-type semiconductor at high temperature 
( -1000 0 C). By adjusting the concentrations and diffusion time, junctions lying at 
depths of a few tenths of a micron to two microns in the semiconductor can be pro­
duced. 

With the diffusion process, the surface layer becomes heavily doped, so that the de­
pletion layer extends mainly into the p-side. This, unfortunately, leaves a relatively 
thick dead layer through which radiation must pass before reaching the sensitive vol­
ume. For energy measurement, this is particularly disadvantageous as the energy lost in 
this layer goes unrecorded. As well, it sets a lower limit on the particle energy which can 
be detected. In general, the dead layer is smaller than the depletion zone and does not 
vary very strongly with the bias. Methods for measuring the thickness have been devel­
oped and are given in [10.9, 12]. An additional disadvantage of these detectors is that 
the diffusion process must be performed at high temperatures. This tends to reduce 
charge carrier lifetime and increase noise in the detector. 

The advantage of diffusion junctions is their ruggedness relative to other semicon­
ductor detectors and their greater resistance to contamination on the detector surface. 
Nevertheless, because of the relatively thin windows which can be obtained with other 
detectors types, diffused junctions are not often used. 

10.5.2 Surface Barrier Detectors (SSB) 

By far the most widely used silicon detectors for charged particle measurements are the 
surface barrier type. These detectors rely on the junction formed between a semicon­
ductor and certain metals, usually n-type silicon with gold or p-type silicon with alu­
minium. Because of the different Fermi levels in these materials, a contact emf arises 
when the two are put together. This causes a lowering of the band levels in the semicon­
ductor as illustrated in Fig. 10.11. This situation, of course, is similar to the np junction 
(see Fig. 10.5) and a depletion zone extending entirely into the semiconductor is 
formed. Such junctions are also known as Schottky barriers and possess many of the 
characteristics of pn-junctions. 

The depletion depth in a surface barrier detector can be calculated using (10.21) 
which is also valid for this configuration. With current high resistivity silicon, depths of 
- 5 mm can be attained. 

The fabricating process for surface barrier detectors is actually simpler than that for 
diffused junctions and presents many advantages over the latter. They are made at 
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room temperature by first etching the silicon surface and then depositing a thin layer 
(-40 J.lg/cm2) of gold by evaporation. In this process, it is also necessary to allow the 
surface to oxidize slightly before deposition. The junction is then mounted in a insulat­
ing ring with metallized surfaces for electrical contact. Figure 10.12 shows a typical 
SSB. 

Surface barrier detectors can be made with varying thickness and depletion zone 
regions. If the detector is not too thick, a fully depleted detector is possible. Here the 
depletion zone extends through the entire thickness of the silicon wafer. Such detectors 
are useful as transmission detectors for measuring the energy deposition of passing 
charged particles, i.e., dE/dx. Moreover by increasing the bias on fully depleted detec­
tors, a gain in the collection time of the charges can be obtained resulting in a faster sig­
nal risetime. This is not the case with partially depleted detectors where an increase in 
bias also extends the depletion zone and thus the distance over which charges must be 
collected. 

One of the disadvantages of surface barriers is their sensitivity to light. The thin 
gold covering is insufficient to stop ambient light and since visible wavelengths have en­
ergies of 2 to 4 eV, (while the energy gap is only 1.1 eV wide) a signal will be obtained. 
A light tight enclosure of some sort must therefore be provided. 

SSB's are also more sensitive to surface contamination and care must be taken to 
keep this surface clean. Touching the surface with a finger, of course, is to be avoided. 
If the detector is used in a vacuum chamber, attention must also be paid to the possibil­
ity of oil from the vacuum pump being deposited on the surface. 

10.5.3 Ion-Implanted Diodes 

Ion-implanted junctions are formed by bombarding the semiconductor crystal with a 
beam of impurity ions from an accelerator. The dopants are thus literally shot into the 
crystal. By adjusting the beam energy to have a certain range in the semiconductor, the 
impurity concentration and depth profile can be controlled. 

Since some radiation damage is incurred in the process, the semiconductor must be 
annealed at temperatures of about 500 °C before use. This is still much less than the 
temperature used in the diffusion process, however, so that carrier lifetime is much less 
affected. A new method combining oxide passivation with ion-implantation has also 
been developed [10.3] which reduces surface leakage current and thus noise. 
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Ion-implanted detectors are generally more stable than surface barrier detectors and 
can have entrance windows as thin as 34 nm Si equivalent [10.3]. At present, they offer 
the best characteristics of all the silicon detector types and are those generally chosen 
for use in high-energy physics. They are, however, much more expensive. 

10.5.4 Lithium-Drifted Silicon Diodes - Si (Li) 

One of the original problems in fabricating semiconductor detectors was the insuffi­
cient thickness of the depletion zone. To obtain thicknesses greater than a few millime­
ters required very high resistivities which could only be obtained with intrinsic materials 
or eventually compensated semiconductor. Both, of course, were difficult or impossi­
ble to achieve. 

As described in Sect. 10.2.1, this problem was solved with the development of the 
lithium-drifting process for forming compensated material. Junctions formed with 
compensated materials are known as p-i-n-junctions and possess properties different 
from regular np junctions. In particular, there is no space charge in the compensated 
zone. This implies an almost constant electric field. Figure 10.13 illustrates a typical 
planar p-i-n diode and along with the potential and electric field in the various region. 

Detectors made from lithium-drifted silicon are known as Si(Li) (pronounced as 
silly) detectors. The thickness of the compensated zone is generally limited to about 10 
to 15 mm which makes them suitable for beta particle and low-energy x-ray detection. 
Because of the greater sensitive region, the noise contribution from thermally generated 
electrons and holes is much greater than in normal silicon diodes so that cooling to low 
temperatures is necessary for high resolution operation. Moreover, in order to main­
tain the lithium-drifted compensation, Si (Li) must be stored at low temperatures, al­
though short periods at room temperature generally do no harm. A review of typical 
applications of Si(Li) detectors is given in [10.12]. 

10.6 Position-Sensitive Detectors 

As we have mentioned, semiconductor devices have recently gained considerable atten­
tion in the high-energy physics domain as possible high-resolution spatial detectors. In­
terest in position-sensing was already present early in the development of the semicon­
ductor detector, however, because of the need for an all-electronic detector to replace 
the photographic emulsions being used in magnetic spectrographs [10.13]. Two types 
of detector using different methods of obtaining spatial information were developed. 
The first uses a continuous readout with a resistive charge division method, while the 
second employs a discrete array of readout elements. Detectors providing both one­
and two-dimensional information have been developed using these methods. 

10.6.1 Continuous and Discrete Detectors 

Figure 10.14 shows a schematic diagram of a one-dimensional continuous detector and 
its equivalent circuit. Basically the detector is a rectangular diode with a uniform, resis­
tive electrode on the front face and a low resistive back electrode. A typical length for 
such detectors is 5 cm. If now a charged particle passes through the diode, the charge 
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Fig. 10.13. Characteristics of p-i­
n junctions. These is no space 
charge in the compensated zone 
so that the electric field is essen­
tially constant 



236 

A 
Position 

Energy 

10. Semiconductor Detectors 

Fig. 10.14. Layout of a one-dimen­
sional continuous position-sensitive 
detector using resistive charge divi­
sion. A simplified equivalent circuit 
is shown below 

collected at contact B will be proportional to the energy E of the particle and the resis­
tance of the electrode between the contact and the point of incidence, i.e., 

x 
B=E-

L 
(10.38) 

where x is the distance between the point of incidence and the contact A, and L is the 
length of the resistive layer. The signal at electrode C, on the other hand, is proportion­
al to the energy. Dividing B by C, thus yields a signal proportional to the position x, 

B 
x=L-

C 

This is known as the method of resistive charge division. 

(10.39) 

One of the problems with this type of detector is to ensure linearity of the position 
signal. This requires the semiconductor and the resistive layer to be highly uniform and 
homogeneous. Correct shaping of the output signals is also required. If care is taken, 
nonlinearities can be less than 1070 of the detector length. Spatial resolutions can then 
be on the order of a - 250 J!m. This appears to be the inherent limit of these detectors, 
however [10.13]. 

In contrast to the continuous device, the discrete-type detector consists of a series of 
individual electrode strips placed on the same semiconductor base. Each electrode then 
acts as a separate detector. Figure 10.15 illustrates a simple two dimensional configura­
tion. These detectors are also referred to as matrix detectors while the one-dimensional 
discrete devices are called strip detectors. 

The obvious disadvantage of discrete detectors is the quantity of electronics re­
quired. Since each electrode is a separate detector, preamplifiers and other units must 
be provided for each strip. This, of course, becomes quite costly and cumbersome. In 
detectors with many electrodes, the elements may be connected to an external resistive 
divider network as shown in Fig. 10.15. In such a case, however, the discrete detector 
becomes a continuous detector with essentially the same characteristics. Nevertheless 
discrete detectors offer better timing and energy resolution with spatial resolutions only 
limited by the electrode width. Typical widths on these devices have been on the order 
of 0.2 - 0.4 mm. A good review of these devices and their applications is given by 
Laegsgaard [10.13]. 
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Fig. 10.15. Layout of a two-dimensional matrix 
detector. To reduce the readout electronics, the elec­
trodes may be connected to an external resistive di­
vider [from Gerber et al.: IEEE Trans. Nucl. Sci. 
NS-24, No.1, 182 (1977)] 

10.6.2 Micro-Strip Detectors 

While the use of semiconductors in high energy physics was also investigated early in 
the history of these devices, the more favorable characteristics of gas detectors along 
with the rapid advances being made in this domain during the 1970's dominated the at­
tention of most experimentalists. In the 1980's, however, interest was renewed by the 
demonstration of a 5 J.Lm spatial resolution with a silicon micro-strip detector [10.14]. 

This device is composed of separate readout strips arranged at intervals of 20 J.Lm. 
Figure 10.16 shows a schematic diagram of the detector along with the layout of the 
strips. High resistivity n-type silicon (2000 Q cm) is used as the base material onto 
which p + diode strips with aluminium contacts are implanted. An n + electrode is 
similarly implanted on the opposite face. The thickness of the detector is on the order 
of 300 J.Lm which implies an operating voltage of 160 V to obtain full depletion. For 
minimum ionizing particles, the average energy loss in silicon [10.15] is about 
39 keY 1100 J.Lm so that about 100 electron-ion pairs/J.Lm are created. A total of 30000 
pairs is therefore expected in the detector. 
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Fig. 10.16. Layout of a micro-strip detector and readout 
strips (from Hyams et al. [10.14]) 
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To reduce the number of channels, only strips at every 60 11m are read out. A capac­
itive charge division method can then be used between these readout strips. By calculat­
ing the center of gravity of the charge collected, the position of the impinging particle 
can then be obtained to within 5 11m. 

Because of their small size and full depletion, micro-strip detectors offer a fast re­
sponse time and present many advantages as triggering devices for high energy particle 
physics experiments. Charge collection in such devices can be performed in less than 
10 ns which should allow for high counting rates. Moreover, if every channel is read 
out, a resolution of 211m should be possible [10.14]. Such a large number of channels 
may be feasible using large scale integration techniques [10.16] to include the associated 
electronics on the same chip as the detector. 

The relative sensitivity of semiconductors to radiation damage does pose somewhat 
of a problem, however. This generally results in a deterioration of resolution and an 
increase in the leakage current. Some compensation can be obtained by increasing the 
electric field. As well, different methods of fabricating junctions may improve their re­
sistance to radiation damage. 

10.6.3 Novel Position-Sensing Detectors 

The success of the micro-strip detector has stimulated a number of new ideas for space 
localizing semiconductor detectors. Among some of the novel devices is the silicon drift 
chamber proposed by Gatti and Rehak [10.17]. Their idea is based on creating a drift 
channel along the center plane of a flat silicon wafer by fully depleting the wafer from 
the flat sides and one edge. 

Figure 10.17 illustrates the basic principle. Starting with a flat n-type silicon wafer, 
p + contacts are deposited on the flat sides of the material. This creates two depleted re­
gions sandwiching a central undepleted zone. A third n + contact is now implanted on 
one edge of the wafer. Applying a reverse bias then fully depletes the wafer. The poten­
tial inside the wafer is then parabolic in form (Fig. 10.17) with a minimum along the 
central dividing plane. Electrons created at some point in the wafer will then/all down 
the potential well to the central valley where they drift along the longitudinal compo­
nent of the electric field towards the n + electrode. Measuring this drift time then pro-

Electron Potential 

nlL __ ~ ___________ ' x 
Fig. 10.17. Operating principle of 
the silicon drift chamber 
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vides spatial information in a manner analogous to gas drift chambers. Tests with a 
prototype chamber [10.18] have shown a spatial resolution of 5 l..Im with minimum ion­
izing particles which is equivalent to that obtained with micro-strip detectors. The great 
advantage of these devices, of course, is the small volume of electronics required. 

Some of the other new detectors proposed rely on the use of charged-coupled de­
vices (CCD). These are silicon devices consisting of a two-dimensional array of tiny po­
tential wells each covering a surface area of a few square microns. One chip contains 
tens of thousands of elements. When struck by radiation, electrons are released which 
are then trapped in these wells. This charge information is then readout by successively 
shifting the charge from one well to the next until it reaches the output electronics. A 
more detailed description of these detectors is given in [10.2,19]. CCD's have been 
mainly used for light imaging purposes and are extremely sensitive, low noise devices. 
As a detector, spatial resolutions for these instruments are expected to be better than 
2 Ilm. However, they are very limited in counting rate. A review of these and other de­
vices may also be found in the articles by Charpak and Sauli [10.2] and Klanner 
[10.20]. 

10.7 Germanium Detectors 

For gamma-ray detection, germanium is preferred over silicon because of its much 
higher atomic number (ZSi = 14, ZOe = 32). The photoelectric cross section is thus 
about 60 times greater in Ge than Si. Germanium, however, must be operated at low 
temperatures because of its smaller band gap. This inconvenience is offset, however, by 
its greater efficiency. 

Germanium may also be used for charged-particle detection, however, apart from 
its greater stopping power, it offers no advantage over silicon and, in fact, becomes dis­
advantageous because of its need for cooling. 

10.7.1 Lithium-Drifted Germanium - Ge(Li) 

In order to obtain a sufficient sensitive thickness for the detection of gamma rays, the 
first detectors were made from lithium compensated germanium. These detectors are 
known as Ge(Li) (pronounced as jelly) detectors. Since maximum obtainable thick­
nesses for compensated germanium are about 15 or 20 mm, a coaxial geometry is gener­
ally use to maximize the sensitive volume. This is schematically diagramed in Fig. 
10.18. In this configuration, lithium is drifted in from the outer surface of a cylindrical 
crystal of p-type germanium to form a cylindrical shell of compensated material. A 
central core of insensitive p material is then left. If this core extends along the entire 
length of the axis, the configuration is then known as a true coaxial or open-ended co­
axial detector. To increase sensitive volume even further, lithium may also be drifted in 
from the front face of the cylinder. The extent of the insensitive core is then reduced. 
These are known as closed-end coaxial detectors. For high counting efficiency, the cen­
tral core may also be removed to form a well type detector. The various configurations 
are illustrated in Fig. 10.18. For lower gamma energies, Ge(Li) detectors may also be 
fabricated with the conventional planar geometry. 

Because of the high mobility of the lithium ions in germanium, even at room tem­
perature, Ge(Li) detectors must be kept at liquid nitrogen temperatures at all times. 
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This requires mounting the crystal in a mechanically rigid cryostat with an accompany­
ing dewar for liquid nitrogen. This, of course, puts severe constraints on the experi­
mental geometries which can be used with germanium detectors. Nevertheless, detec­
tors with various cryostat positions and dewars are available commercially. 

The sensitivity of coaxial Ge(Li) detectors is generally limited by the thickness of 
the dead layer formed on the face of the crystal by lithium drifting and the cryostat 
window which absorb low-energy photons. Typical limits are on the order of 30 ke V. 
For planar detectors, the window contact can be made from a thin layer of gold which 
results in a lower limit on the order of a few keV. 

A more complete discussion of the operating characteristics of Ge(Li) detectors is 
given in the book by Knoll [10.12]. 

10.7.2 Intrinsic Germanium 

In more recent years, advances in semiconductor growth technology have allowed the 
fabrication of very high purity germanium with impurity concentrations of less than 
1010 atoms/cm3. Detectors of this type have the advantage of not having to be kept at 
low temperatures at all times. Cooling is only necessary when a high voltage is applied. 

Intrinsic germanium (also called HPGe for High Purity Germanium) detectors are 
constructed and operated in the same way as Ge(Li) detectors and are now gradually 
replacing the latter. One advantage with intrinsic detectors is the possibility of using n­
type semiconductor rather than the p-type required for the lithium-drifting process. A 
very thin window can then be formed by ion-implantation to extend the sensitivity of 



10.7 Germanium Detectors 

M 

o 
X 

(f) 

c 
OJ 
o 

u 

60CO source 

2 

1000 2000 
ChQnnel 

Ge 

3000 

241 

Fig. 10.19. Comparison of spectra from a 60Co 
source taken with a NaI detector (top curve) and 
a germanium detector 

4000 

the coaxial detector to below 10 keY. These detectors are also somewhat more resistant 
to radiation damage. 

10.7.3 Gamma Spectroscopy with Germanium Detectors 

The principal application of germanium detectors is gamma ray spectroscopy. At pre­
sent, germanium detectors offer the highest resolution available for gamma-rays ener­
gies from a few keY up to a 10 MeV. This is illustrated in Fig. 10.19 which compares 
the spectrum from 60Co taken with a NaI detector to the same spectrum as measured by 
an intrinsic Ge detector. The difference is quite dramatic: at 1.33 MeV the Ge resolu­
tion is about 0.150/0 while for NaI this value is - 8%! In addition, the peak to Compton 
ratio is much greater due to the higher photoelectric cross section of germanium. 

For precision spectrum measurements, the energy resolution and signal to noise ra­
tio are the most important parameters. It is important therefore to shield the detector 
with lead so as to minimize background. The signal-to-noise ratio can also be increased 
with the use of an optical feedback preamplifier. Attention should also be paid to the 
count rates. These should not be too high so as to avoid pile-up effects which can dis­
tort the spectrum. 

In order to measure the absolute intensities, a calibration of the absolute detection 
efficiency is necessary. This must be performed with calibration sources which span the 
energy region of interest. Gamma sources whose outputs are calibrated to within 1 or 
2% can be obtained commercially. In most cases, it is the full peak efficiency, i.e., the 
efficiency for photoelectric conversion, which is desired. This is given by the total 
count rate in the photopeak for each gamma-ray divided by the total output of the 
source. The Compton scattered part is ignored. 

Attention must be paid to the source-detector geometry. The calibration must be 
performed at the source-to-detector distance to be used and this distance must be repro­
ducible. It is a good idea to construct a rigid source holder which mounts onto the de­
tector so as to insure this reproducibility. Another factor is the size of the radioactive 
sources to be measured. If these are distributed sources, this must also be taken into 
account in the calibration. Most commercial calibration sources can be considered as 
point-like and it may be possible to simulate the distributed source by displacing the 
calibration source off-axis and measuring the efficiency for several points. The total 
efficiency can then be estimated by integrating over these measured points. 
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Fig. 10.20. Full-peak efficiency curve measured for a 
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As with spectrum measurements, it is important to keep the count rate at reasonable 
levels. If possible the calibration should be performed at these rates. At high rates, acci­
dental coincidences between two gamma-rays from the same source can reduce the 
number of counts in their true gamma-ray peaks by pile-up. The two gamma rays are 
thus registered at an energy corresponding to their sum rather their individual energies. 
This summing-effect is particularly important for sources emitting many cascade pho­
tons. If the decay scheme and emission angles between all the gamma rays are known, 
the effect can, in principle, be calculated. However, for most sources this is generally 
not possible. 

Figure 10.20 shows a measured full-peak efficiency curve for a coaxial intrinsic ger­
manium detector at a source-to-detector distance of 5 cm. The points are fitted piece­
wise by polynomial functions. A number of empirical forms have also been proposed 
to describe the form of this curve [10.22]. 

A final factor to consider is the effect of dead time which can also lead to distortion 
as well as losses. This is discussed in Sect. 5.5. 

10.8 Other Semiconductor Materials 

Because germanium must be cooled during operation, a good deal of effort is being put 
into finding new high-Z semiconductor materials which can be operated at room tem­
perature. Many compounds have been investigated, however, only two show some pro­
mise as of this moment. The first is cadmium telluride (CdTe) which is commercially 
available and the second mercuric iodide (HgI2 ) which is still under development. 

Cadmium telluride was the first material (other than silicon) to have been developed 
as a room temperature detector. It has an energy gap of 1.45 eV and atomic numbers of 
48 and 52. This, of course, makes it highly efficient for gamma ray detection. Mercuric 
iodide has an even higher Z (80 and 53) and an energy gap of 2.14 eV. The average ener­
gy for electron-hole creation is somewhat higher than Si and Ge being on the order of 
4.4eV. 

While these detectors present many favorable properties for gamma detection, they 
are still fraught with many problems. Mercuric iodide, in particular, is plagued by in-
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complete charge collection caused by hole trapping and polarization effects leading to 
space charge build-up which limit its efficiency and resolution. CdTe is on somewhat 
firmer ground and is now sold commercially. In both cases, however, it is still difficult 
to fabricate large volume detectors from these materials because of nonuniformities. 
The low yield of good crystals also makes them very expensive. 

Research and development are still continuing in these domains and it is hoped that 
a better understanding of the physics of these materials will allow more reliable detec­
tors to be constructed. For a review of the current status of these detectors, the reader is 
referred to [10.2, 26]. 

10.9 Operation of Semiconductor Detectors 

10.9.1 Bias Voltage 

The bias voltage, as we saw in (10.23) and (10.24), determines the thickness of the de­
pletion layer and also the capacitance of the detector. Higher voltages thus reduce the 
noise by increasing the depletion thickness; however, a greater risk of breakdown is al­
so incurred. For commercial detectors, the optimum bias values are supplied by the 
manufacturer and should not be surpassed. Typical values for SSB's, for example, 
range from 50 - 300 V while for germanium detectors these voltages can be as high as 
4000 - 4500 V. 

When voltage is applied, this should be done slowly, raising the voltage a few tens 
of volts at a time and allowing the detector to "settle" for a few seconds after each step. 
A good procedure is to observe the noise signal on the oscilloscope as the voltage is 
raised. Immediately after each increase in voltage, the signal may disappear from the 
oscilloscope display but should reappear after a second or two. If there are any sudden, 
intermittent increases in noise, this is a sign of incipient breakdown and one should 
proceed slowly allowing more settling time. If there is a sudden, very large increase in 
noise, breakdown has occurred and the voltage should be removed immediately to pre­
vent irreversible damage. After the desired voltage has been reached, it is a good idea to 
allow the detector to stabilize for a few hours, especially if it has not been used for a 
long period. In some cases, the noise level will also diminish further. 

Particular care should be taken with very thin detectors as small increases in voltage 
correspond to large increases in the electric field intensity. A 10 Volt increase on a 
20 J!m detector, for example, corresponds to an electric field increase of 5000 V / cm! 

In the case where the operating voltage is unknown, the bias may be determined by 
observing the noise level on an oscilloscope while slowly raising the applied voltage. 
The noise amplitude should diminish to some minimum and then slowly rise again. Set­
ting the voltage at the minimum point then should normally provide the best results. 
Needless to say, care should be taken not to apply too much voltage. 

10.9.2 Signal Amplification 

Because of the small signals obtained from semiconductor detectors, care must be tak­
en to use low-noise electronics for signal processing. In particular, a preamplification is 
necessary before any further treatment can be made. Because the capacitance of semi­
conductors change with temperature, this is performed by a charge-sensitive preampli-
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fier which, after the detector itself, is the second most important part of a semiconduc­
tor detector system. This type of preamplifier is preferred because of its insensitivity to 
changes in capacitance at its input as described in Sect. 14.1. To ensure stability, it is 
necessary for the preamplifier capacitance to be much larger than all other sources of 
capacitance at the input, i.e., the detector, cables, etc. Since typical detector capaci­
tances are on the order of ten's of picofarads, preamplifier dynamic capacitances are 
generally on the order of a few 10's of nanofarads. With very thin SSB's, however, the 
detector capacitance can approach 1 or 2 nF, in which case, higher preamplifier capaci­
tance would be required for optimum performance. 

The noise of the preamplifier is particularly important as it affects the ultimate res­
olution of the detector. Since the signal from the detector appears as electric charge, 
electronics noise is usually quantified by giving its equivalent noise charge (ENC). If 
Vrms is the average voltage noise level appearing at the output, then 

EN C = e Vrms C , 
w 

(10.40) 

where C is total input capacitance of the detector and preamplifier and w the average 
energy required to create an electron-hole pair. The noise may also be expressed in 
terms of an equivalent energy corresponding to the ENC. This is usually given as a peak 
width [i.e., the full width at half maximum (FWHM)] using the relation 

FWHM =ENC 
2.35 w 

(10.41) 

From (10.40), it is clear that minimizing noise requires minimizing the input capaci­
tance to the preamplifier. For this reason, the preamplifier is generally mounted as 
close as possible to the detector in order to reduce capacitance from cables, etc. Cou­
pling to the detector can be performed either directly (dc coupling) or through an addi­
tional capacitor (ac coupling) [10.27]. These are diagrammed in Fig. 10.21. For high 
resolution operation at low temperatures, such as with germanium gamma-ray detec­
tors, a direct coupling is made for the minimum in input capacitance. A direct coupling 
also allows monitoring of the leakage current which is an advantage. An inconve­
nience, however, is that neither electrode of the detector is at ground potential which 
implies some additional work in designing the detector mounts to ensure a good insula­
tion. Typical noise values range from less than 1.5 keY at 0 input capacitance to 18 keY 
at 1000 pF [10.28]. 
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Fig. 10.21. AC and DC coupling of preamplifiers to semiconductor 
detectors (after Goulding and Landis [10.27)) 
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For charged particle spectroscopy with room temperature detectors, the ac coupling 
method is generally quite adequate. In this configuration, one electrode is grounded 
which facilitates mounting, however, the additional load capacitor contributes to the 
noise. If the particles are of sufficiently high energy, however, the effect is usually min­
imal. 

For fast timing applications, such as time-of-flight measurements, in which a timing 
signal, as well as an energy signal from the detector are desired, some additional con­
siderations must be made. If the collection time of the detector is greater than the rise­
time of the preamplifier, then both energy and timing signals may be derived from the 
same charge-sensitive preamplifier. Very often, however, the detector is a thin, high ca­
pacitance dEl dx detector in which the collection times are much shorter. In such cases, 
a hybrid system involving charge-sensitive and voltage sensitive or current sensitive pre­
amplifiers might be necessary. These and other timing problems are reviewed by Spieler 
[10.29]. 

10.9.3 Temperature Effects 

As we have seen, temperature has an important effect on the conductivity of the detec­
tor. Germanium detectors must always be operated at low temperatures otherwise the 
high leakage current will cause irreversible damage to the crystal. 

For silicon detectors, increasing temperature will also result in higher leakage cur­
rents and greater noise. For each 10°C rise in temperature, there is roughly a three-fold 
increase in the leakage current [10.28]. The maximum temperature limit for silicon is 
generally between 45° to 50°C at which point breakdown occurs. 

Decreasing the temperature with silicon detectors, of course, greatly reduces noise. 
However, the expansion coefficients of the mounting should first be considered before 
cooling. In particular, the bonding epoxy could crack if it is not made to withstand low 
temperatures. Another point to be aware of, is that the band gap for silicon increases 
by about 0.1 eV (see Table 10.1) when going from room temperature to liquid nitrogen 
temperatures. For the same gain on the associated electronics, there will therefore be a 
slight shift between spectra recorded at these two temperatures. 

10.9.4 Radiation Damage 

As we have mentioned, semiconductor detectors are relatively sensitive to radiation dam­
age. Incident particles colliding with lattice atoms cause point defects by "knocking" 
them out of their normal positions. These structural defects then give rise to discrete trap­
ping levels in the forbidden band gap which reduce the number of charge carriers in the 
semiconductor. There also appears to be changes in the resistivity of the base material as 
well. A review of the radiation damage problem can be found in [10.30]. 

The main effects of radiation damage on detector performance are an increased 
leakage current and a degradation of energy resolution. In more heavily damaged de­
tectors, double peaks in spectra have also been reported. If the damage is not too great, 
however, an increase in the bias voltage can compensate resolution loss to some extent 
by decreasing the collection time. 

For a given fluence 2 of radiation, the increase in leakage current can be estimated 
through the relation 

2 The fluence is defined as the total accumulated number of particles incident per unit area. It is thus the inte­
gral of the particle flux over time. 
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Table 10.3. Damage constants in silicon for various 
radiations (from [10.25, 26]) 

Particle type 

Electrons 
3 MeV 

Muons 
GeV 

Neutrons 
Fission 

1 MeV 
14MeV 

Protons 
2 MeV 

20 MeV 
207 MeV 
590 MeV 

3GeV 
24GeV 

n-type 

2-10x10- 8 

1.4x10- 7 

0.5x10- 5 

1 x10- 5 

2x10- 6 

2x10- 8 

2-10x10- 5 

5x10- 6 

1.2x10- 6 

10- 6 

3.8xtO- 8 

¢ 
J=qn·dK­

I 2 

p-type 

3x10- 9 

2.5x10- 6 

2.5 X 10- 6 

0.7x10- 6 

1.3xtO- 5 

2x10- 6 

0.9 X 10- 6 

to. Semiconductor Detectors 

(10.42) 

where ¢ is the radiation fluence, nithe intrinsic carrier concentration from (10.1), dthe 
depletion depth, and K the damage constant which depends on the radiation type and 
its energy. Table 10.3 summarizes some measured damage constants for various radia­
tions at different energies. By choosing the maximum tolerable leakage current, the 
maximum allowable fluence for a given type and energy of incident radiation can be 
calculated by inverting (10.42). 

10.9.5 Plasma Effects 

For very heavily ionizing particles, i.e., heavy ions, fission fragments, etc., the high 
density of electron-hole pairs created in semiconductors leads to space-charge phenom­
ena which affect the rise time and pulse height of the resulting signal. In effect, the high 
ionizing power of these particles produces a dense cloud of space charge along the par­
ticle trajectory which locally nullifies the external applied electric field. The charge in 
the cloud, therefore, is not immediately swept up. Gradually, of course, diffusion dissi­
pates the cloud and the charge is collected after a characteristic delay time. 

This delay affects the signal in a number of ways: 

1) The risetime of the pulse is much slower since the effective collecting field is much 
lower. This change in risetime is known as the plasma time. 

2) During the delay, electrons and holes in the cloud have time to recombine so that to­
tal collected charge is less than what is created. This leads to what is called pulse 
height defect. 
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The main consequence of pulse height defect is that the detector calibration is different 
for different particle types. In general, the energy-pulse-height relation can be given by 
a formula [10.31, 32] of the type 

(10.43) 

where E is the energy of the ion, M, its mass and X the pulse height. The coefficients a, 
aI, band b l are experimentally determined by measuring the spectrum of fission frag­
ments from a standard source such as 252Cf. A new formula based on more recent mea­
surements has also been proposed by Ogihara et al. [10.33]. 



11. Pulse Signals in Nuclear Electronics 

As we have seen, modern detectors provide a variety of information on detected radia­
tion in the form of electrical signals. In order to extract this information, however, the 
signal must be further processed by an electronics system. This system can be designed 
to perform an enormous variety of tasks. For example, it can be made to sort out the 
various signals from the detectors, extract energy information, determine the relative 
timing between two signals, etc., and based on this information, make a decision as to 
the acceptability of the event. It can then take appropriate action, for example, by acti­
vating a recording device. Indeed, many systems virtually run themselves! 

In the following chapters, we will try to present an introduction to some of the logic 
and techniques of setting up an electronics system in nuclear and particle physics ex­
periments and touch on some of the problems which will most likely be encountered. 
As will be seen, nuclear electronics today has been largely standardized into a modular 
form, i.e., the circuits for the basic processing functions (e.g., amplification, discrimi­
nation, etc.) have been built into separate electronic modules of standard mechanical 
and electrical specifications which are then interconnected as desired. These systems, 
(NIM, CAMAC), which we will discuss later, are extremely advantageous as they allow 
the design of many different systems using the same set of modules. Moreover, since 
the physical and electrical specifications have been standardized and accepted through­
out the world, modules from different laboratories can be freely exchanged without 
any problem in compatibility. An analogous example, perhaps more familiar to the 
reader, is the modern Hi-Fi system. While the various components (e.g. amplifier, 
tuner, tape deck, etc.) are constructed separately by many different manufacturers, 
they are all compatible with each other so that a variety of Hi-Fi systems can be created 
with no problem. 

In both cases, as well, a detailed knowledge of electronics at the level of circuit de­
sign is not necessary in order to set up the system, only an understanding of the logic. 
In the following chapters, therefore, we will assume only an elementary knowledge of 
circuits and give explanations where some more sophisticated knowledge is needed. 

We begin in this chapter with a discussion of pulse signals and their characteristics. 

11.1 Pulse Signal Terminology 

The coding of information in nuclear electronics is generally done in the form of pulse 
signals. These are brief surges of current or voltage in which information may be con­
tained in one or more of its characteristics, for example, its polarity, amplitude, shape, 
its occurrence in time relative to another pulse, or simply its mere presence. This mode 
of coding, as opposed to other systems, for example, amplitude or frequency modula­
tion of a sinusoidal signal, is natural in nuclear and particle physics, for, as we have 
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seen most modern particle detectors are pulse devices. To begin our discussion, let us 
first identify some basic characteristics of pulse signals and define the terms which are 
associated with these features. Figure 11.1 (a) shows an ideal rectangular pulse, either 
in voltage or current, as a function of time. In nuclear electronics, this time scale may 
vary from micro-seconds to fractions of a nanosecond. We can define the following 
features: 

1) Baseline. The baseline of the signal is the voltage or current level to which the pulse 
decays. While this is usually zero, it is possible for the baseline to be at some other 
level due to the superimposition of a constant dc voltage or current, or to fluctua­
tions in the pulse shape, count rate etc. 

2) Pulse Height or Amplitude. The amplitude is the height of the pulse as measured 
from its maximum value to the instantaneous baseline below this peak. 

3) Signal Width. This is the full width of the signal usually taken at the half-maximum 
of the signal (FWHM). 

4) Leading Edge. The leading edge is that flank of the signal which comes first in time. 
5) Falling Edge. The falling edge or tail is that flank which is last in time. 
6) Rise Time. This is the time it takes for the pulse to rise from 10 to 90070 of its full am­

plitude. The rise time essentially determines the rapidity of the signal and is extreme­
ly important for timing applications. 

7) Fall Time. In analogy with rise time, the fall time is the time it takes for the signal to 
fall from 90 to 10% of its full amplitude. 

8) Unipolar and Bipolar. Signal pulses may also be unipolar or bipolar. A unipolar 
pulse is one which has one major lobe entirely (excepting a small possible under­
shoot) on one side of the baseline. In contrast, bipolar pulses cross the baseline and 
form a second major lobe of opposite polarity. Figure 11.2 illustrates these two 
types. Both are used in nuclear electronics. 

UNIPOLAR 

D 
BIPOLAR 

/\ 
Fig. 11.2. Unipolar and bipolar pulses 

In practice, however, it will be found that pulses are very often distorted by various 
factors in the circuit. Figure 11.1 also illustrates some of various deviations in form 
which may be observed and the terminology which is used to describe the effects. 

11.2 Analog and Digital Signals 

Pulse signals, and signals in general, carry information in two forms: analog or digital. 
An analog signal codes continuously-valued information by varying one or more of its 
characteristics, (e.g. amplitude and/or shape), in some fixed relation to the informa-
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tion value. The voltage signal from a microphone, for example, analogically varies its 
amplitude continuously in proportion to the intensity of the sound it picks up. Similar­
ly, a scintillation detector, as we have seen, generates pulses whose amplitudes are in 
proportion to the energy deposited in the detector. If a beam of particles with a contin­
uous spectrum of energies is allowed to strike the detector, then a continuous analog 
spectrum of pulse heights will result. More generally, if we consider each possible am­
plitude or shape of a pulse as a state, then the analog signal can be said to have an infi­
nite, noncountable number of states. In nuclear physics, most analog pulses are of the 
amplitude varying type, although in certain cases, such as pulse shape discrimination, 
information is also contained in the shape of the pulse. Since the proportionality be­
tween pulse height and energy is usually linear, these pulses are also referred to as linear 
pulses. 

In contrast to the continuum of amplitudes or shapes which are possible for the 
analog pulse, the digital or logic signal may only take on a discrete number of states; 
the information represented is thus of a quantized nature. For example, the signal from 
a Geiger-Miiller counter has essentially two states: present or not present. 1 The corre­
sponding information is then simply: yes, radiation was detected, or no, radiation was 
not detected. No finer distinction is possible. Similarly, we might imagine a ten-state 
rectangular signal which can only take on the amplitudes 0, 1, 2, 3, ... 9 V, for ex­
ample. Such a signal might then be used to represent the decimal integers from ° to 9, 
only. Technically, however, it is difficult to find electrical devices which have more 
than two naturally quantized states. In practice, therefore, all logic signals are limited 
to two-states only. When reference is made to logic or digital signals, therefore, this 
generally implies the two-state variety. 

Although in a certain sense, the logic signal carries less information than the analog 
signal, from a technical point of view it is the more reliable since the exact amplitude or 
form of the signal need not be perfectly preserved. Indeed, distortion or noise, which 
are always present in any circuit, will easily alter the information in an analog signal 
but would have much less effect on the determination of what state a logic signal is in. 
Moreover, the limited information-carrying ability of the logic signal may be overcome 
by using several logic signals to represent equivalent analog information in numerical 
form, that is, each logic signal would represent a digit in a number (hence the name dig­
ital signal) whose value corresponds to the analog information. Since only two states 
are available, this number must be in the binary system. One logic state, for example, 
pulse-present would represent the binary digit 1, while the other state pulse-absent 
would represent O. The contrary, of course, would also be an equally valid system, as 
would a system involving positive and negative signals, etc. The important point is to 
keep the same convention throughout. An entire binary number would then consist of a 
string of logic signals, which could be transmitted serially, i.e., one after the other, or 
simultaneously along an equal number of parallel lines. This involves, of course, more 
signals and electronics, however, with the advent of miniaturization and large scale in­
tegrated electronics, this disadvantage is removed giving digital systems a clear superi­
ority over analog systems. 

In nuclear electronics, the two electrical states of the logic signal are standardized 
by the NIM convention. One logic state is usually taken as ° V, i.e., no pulse at all, and 
the other at a fixed voltage level. Because of the obvious difficulty in generating a pulse 

1 Recall that the Geiger counter signal is saturated so that when it is present, it has the same amplitude and 
shape regardless of the energy of the radiation detected. 
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with exactly the right voltage level, a band of voltages into which the signal must fall is 
defined instead. These limits are given in the next chapter. As a general rule, the analog 
signals from radiation detectors are changed into logic signals at sometime or another 
in a nuclear electronics chain. Usually this is performed relatively early after analyzing 
the detector signal for certain conditions, for example, a certain minimum energy. 
Here, the detector signal is passed through a discriminator which tests the amplitude of 
the signal for the minimum height. If yes, a logic signal is issued, if no, no signal (i.e., 
logic state no) is issued. This signal may then be fed into other modules for processing, 
and depending on the outcome, may initiate further operations: for example, incre­
menting a counting device or starting a timer, etc. In spectroscopy measurements, 
where the analog signal is to be analyzed for the exact value of its amplitude, the signal 
is often digitized and the numerical result treated with a computer. Electronic devices 
which perform such a conversion are know as analog-to-digital converters (ADC's). In 
a similar manner, a digital signal may be converted into an analog signal by a digital-to­
analog converter (DAC). 

As will be seen in Chap. 14, a variety of electronic modules exist for signal process­
ing, some treating analog signals only, others logic signals only, and some converting 
the two. We emphasize here the importance of distinguishing between the different 
types. Sending a logic signal into a module expecting an analog pulse or vice-versa does 
no harm generally, however, unless there is a specific reason for doing so, the result is 
meaningless. 

11.3 Fast and Slow Signals 

For technical reasons which we will consider later, it is important to distinguish be­
tweenfast and slow pulses in an electronics system. Fast signals generally refer to pulses 
with rise times of a few nanoseconds or less while slow signals have rise times on the or­
der of hundreds of nanosecond or greater. This definition includes both linear and log­
ic signals. 

Fast pulses are very important for timing applications and high count rates; in these 
applications it is very important to preserve their rapid rise times throughout the elec­
tronics system. Slow pulses, on the other hand, are generally less susceptible to noise 
and offer better pulse height information for spectroscopy work. 

While it would certainly be more convenient to be able to work with both these 
types in an identical manner, fast signals, unfortunately, must be treated differently 
from slow pulses. This is because of their much greater susceptibility to distortion from 
small, stray capacitances, inductances and resistances in the circuits and interconnec­
tions. These elements can combine to form inadvertent, parasitic circuits; for example, 
equivalent RC or RL circuits which have fast transient responses due to the small values 
of R, C and L (recall that the time constant of the RC circuit is r = RC). Compared to 
slow signals these transients are negligibly short. Compared to fast signals, however, 
these transients are of the same order of magnitude in duration. A fast signal passing 
through one of these inadvertent circuits can thus be quickly deformed. 

A second problem, which will be treated in Chap. 13, is distortion from reflections 
in the interconnecting cables. This arises because of the short duration of fast pulses 
relative to their time of transit in the interconnection. Processing fast signals, there­
fore, not only requires special attention in the circuit design but also in the interconnec-
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tions between modules. For this reason, essentially two standardized NIM systems have 
arisen: one designed for fast nanosecond pulses and the other for slower pulses. Within 
each system the electronic modules are compatible with each other; however, mixing 
the two without proper adaptation will invariably lead to problems. And, as already 
mentioned, special attention must be paid to how the interconnections are made in fast 
systems. This is one of the most important points to keep in mind when setting up nu­
clear electronics. 

11.4 The Frequency Domain. Bandwidth 

Our description and visualization of pulses so far has been in terms of its variation in 
time. A complete understanding of pulse electronics, especially pulse distortion, how­
ever, also requires viewing the pulse in terms of its frequency components. From Fou­
rier analysis, it is well known that a pulse form can be decomposed into a superposition 
of many pure sinusoidal frequencies. Indeed, if we have a pulse whose shape in time is 
represented by the function f(t), where t is time, then it may be decomposed as 

00 

f(t) = _1_ J g(w) exp (iwt)dw , 

~ -00 

(11.1) 

where g(w) is the Fourier transform or frequency spectrum of the pulse. Inverting 
(11.1) gives 

00 

g(w) = _1_ J f(t) exp( -iwt)dt 

~ -00 

(11.2) 

As a representative example, consider an ideal rectangular pulse of width T shown in 
Fig. 11.3. For simplicity, we have taken the pulse to be centered at t = O. Thus, 

f(t) = {~ Itl< TI2 

Itl> TI2 

If we Fourier analyze this function, we find the spectrum 

( ) _ 1 r A (. ) d _ A T sin (w T 12) 
9 w - --- J exp - 1 W t t - --- , 
~ ~ (wT12) 

(11.3) 

(11.4) 

which is plotted in Fig. 11.3 as a function of frequency f = w/2 7r. As can be seen,j(t) 
contains a continuous spectrum of frequency components from 0 to 00, arranged in a 
band structure reminiscent of optical diffraction. The energy or power contained in 
each frequency component is the square of g(w): 

E(w)=lg(w)12 • (11.5) 

The negative frequencies are, of course, purely imaginary. 
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Fig. 11.4. Typical frequency response curve. The 
frequency range between the points at which the 
curve falls by 3 dB from its maximum value is 
defined as the response bandwidth. The lower end of 
the band is not seen on this graph 

All frequencies playa role in the shaping of the functionf(t). Thus, in order for an 
electronic device to faithfully treat the information contained in this signal, the device 
must be capable of responding uniformly to an infinite range of frequencies. In any 
real circuit, of course, this is impossible. There will always be resistive and reactive 
components present, which will filter out some frequencies more than others, so that 
the response is limited to a finite range in w. This is also true for the interconnecting 
cables, as will be seen later. Figure 11.4 shows a typical response curve. The range of 
frequencies delimited by the points at which the response falls by 3 dB is defined as the 
bandwidth and represents the range of accepted frequencies. Frequencies outside this 
range are attenuated or cutoff. 

While complete and faithful signal reproduction is desirable, it is of course not ab­
solutely necessary that this be ideally so. Indeed, what is important is that those parts 
of the signal carrying information be reproduced with good fidelity. For nuclear pulses, 
these parts are the amplitude and, more particularly, the fast rising edge. To investigate 
the effect of bandwidth on these characteristics, Fig. 11.5 shows the resulting pulse 
shapes obtained by integrating (11.4) from f = 0 to various cut-off frequencies. 
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As can be seen, a minimum bandwidth of iJf';?, 1/T, is necessary to give a reason­
able approximation of the pulse. This is not too surprising as most of the frequencies 
are contained in this region as seen in Fig. 11.3. Moreover, by comparing the various 
figures, it can be seen that the high frequency components allow the signal to rise 
sharply, while the lower frequencies account for the flat parts. For a typical fast pulse 
of say 5 ns width this would mean iJf';?, 200 MHz. For slow pulses, this limit, of 
course, is lower. Fast nuclear electronics, therefore, must be capable of accepting fre­
quencies up to =::500 MHz. In addition, we can also define a lower limit. Since we are 
only interested in the fast rising edge and not the flat parts, eliminating some of the 
lower frequencies should not affect the information in our signal too much either. For 
nanosecond pulses, it can be shown, in fact, that frequencies up to =:: 100 kHz can be 
removed with no harm. As a practical rule, therefore, only the frequencies between 
=:: 100 kHz and =:: several hundred MHz to 1 GHz are of importance in nuclear elec­
tronics. As we will see in a later chapter, achieving a few hundred MHz bandwidth is 
not a simple task. 



12. The NIM Standard 

The first (and simplest) standard established for nuclear and high energy physics is a 
modular system called NIM (Nuclear Instrument Module). In this system, the basic 
electronic apparatus, for example, amplifiers, discriminators, etc., are constructed in 
the form of modules according to standard mechanical and electrical specifications. 
These modules, in turn, fit into standardized bins which supply the modules with stan­
dard power voltages. Any NIM module will fit into any NIM bin. A specific electronic 
system for a given application can easily be created, then, by simply collecting the 
necessary modules, (e.g. an amplifier, a discriminator and a scaler for a simple 
counting system), installing them in a NIM bin and cabling them accordingly. After the 
experiment, the modules can be transferred to another NIM system, for example, or 
rearranged and/ or combined with other modules for another application, or stored for 
later use. The NIM system offers enormous advantages in flexibility, interchange of in­
struments, reduced design effort, ease in updating instruments, etc. - all of which 
leads to reduced costs and more efficient use of instruments. For this reason the NIM 
system is now adopted worldwide by research laboratories and commercial enterprises. 

12.1 Modules 

Mechanically, NIM modules must have a minimum standard width of 1.35 inches 
(3.43 cm) and a height of 8.75 in (22.225 cm). They can, however, also be built in 
multiples of this standard, that is, double-width, triple-width, etc. Figure 12.1 shows an 

Fig. 12.1. NIM modules 
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example of single and double width modules. Power for these modules is supplied 
through a rear connector which fits into a corresponding connector in the bin. Apart 
from these mechanical restrictions and the power voltages to be described below, how­
ever, the individual is free to design his module in any way desired, thus allowing for 
new developments and improvements. 

12.2 Power Bins 

The standard NIM bin is constructed to accept up to 12 single-width modules or a lesser 
number of multiple-width modules. Figure 12.2 shows a typical example. The external 
bin dimensions are such as to allow mounting in 19-inch racks or cabinets. The rear 
power connectors must provide, at the very least, four standard dc voltages, -12 V, 
+ 12 V, - 24 V and + 24 V, as designated by the NIM convention. However, many bins 
also provide - 6 V and + 6 V. Prior to 1966, these voltages were not officially part of 
the NIM standard, but in the past decade their use has become so increasingly common 
that they are essentially standard now. 

Fig. 12.2 
A NIM bin 

The pin assignments of the rear connectors are shown in Fig. 12.3. All pins are 
bussed to all of the 12 rear connectors, that is, all # 10 pins, for example, are connected 
to a common conductor, as are all # 11 pins, etc. However, since only the standard 
pins (marked with an asterisk) are used, manufacturers have tended to bus these pins 
only, so as to discourage use of the others. In any case, pins marked as reserved are not 
to be used since the NIM committee retains these as options for possible use at a later 
date. Pins marked as spare can be used as desired by the individual. 

12.3 NIM Logic Signals 

NIM modules include both analog and digital instruments. It should be recalled that in 
analog signals, information is carried in the amplitude or shape of the signal, thus they 
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are of continuously varying heights and form. Digital or logic signals, on the other 
hand, are of fixed shape and have only two possible states: yes or no. It is customary to 
refer to the two states as logical 0 and logical 1; which signal is chosen as 1 or 0 is 
arbitrary however. For example, one might designate a + 5 V signal as logical 1 and 0 V 
as logical 0 or equally, a - 5 V signal as 1 and -1 V as O. Such a signal might then be 
used to indicate the presence or absence of a particle in a detector, for example. Thus, it 
can be used to increment a scaler or to form a coincidence with another signal, etc. 
This, of course, requires that the scaler or coincidence unit recognize the signals. In 
practice, a voltage range into which the logic signal must fall is defined rather than a 
definite level. This allows for fluctuations in the signal due to noise or interference, etc. 

While it is not an official part of the NIM convention, an essential standardization 
has also been set for the voltage levels of logic signals. These levels have been designated 
as Preferred Practice and are generally accepted by manufacturers and laboratories. 

Two types of standards exist: slow-positive logic and fast-negative logic. The first 
refers to signals of relatively slow rise time, on the order of hundreds of nanoseconds or 
more. They are of positive polarity and are used with slow detector systems. Table 12.1 
defines the voltage levels for this logic. Note that the definition is in terms of a voltage 
across a 1000 Q impedance. This implies that the current carried by the signal is very 
small. The consequence of this is that slow-positive signals cannot be transmitted 
through long cables. As we will see in the next chapter, the characteristic impedance of 
most cables is not more than about 100 Q. After a meter or two of cable, therefore, the 
signal becomes highly attenuated. 

Table 12.1. Slow-positive NIM logic 

Logic 1 
Logic 0 

Output must 
deliver 

+4 to + 12 V 
+1 to -2 V 

Input must 
accept 

+3 to + 12 V 
+ 1.5 to - 2 V 

Input impedance must be 1000 Q or more 
Source impedance 10 Q or less 

Fast-negative logic, often referred to as NIM logic, employs extremely fast signals 
with rise times on the order of 1 ns and comparable widths. This type is often used in 
experiments using fast plastic counters (in high-energy physics, for example) where 
high count rates or fast timing is desired. The NIM logic levels are defined in Table 
12.2. Note that unlike slow-positive logic, the definition is current based rather than 
voltage based. As well, the input and output impedances of all fast NIM modules are 

Table 12.2. Fast-negative NIM logic 

Logic 1 
Logic 0 

Output must 
deliver 

-14mAto-18mA 
-1 rnA to + 1 rnA 

Current into 50 Q 

Neither risetime nor width is defined 

Input must 
accept 

-12 rnA to - 36 rnA 
- 4 rnA to + 20 rnA 
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required to be 50 0, as are the characteristic impedances of the connecting cables. The 
corresponding voltage levels are thus 0 V and - 0.8 V for logic 0 and 1 respectively. In 
contrast to slow positive signals, the fast NIM signals can be transmitted through rela­
tively long lengths of cable. 

12.4 TTL and EeL Logic Signals 

While not part of the NIM standard two other logic families are often found in nuclear 
and particle physics electronics. The first is the TTL (Transistor-Transistor Logic) logic 
family. This is a positive going logic which is very often found on NIM electronics 
modules. The levels are defined in Table 12.3. 

The second is a logic family which is becoming increasingly popular in high-energy 
physics. This is the emitter-coupled logic (ECL) family which is currently the fastest 
form of digital logic available. These levels are also defined in Table 12.3. 

Table 12.3. TTL and EeL signal levels 

Logic 1 
Logic 0 

TTL 

2-5V 
0-0.8 V 

EeL 

-1.75 V 
-0.90V 

ECL is, in fact, used in most modern fast-logic NIM and CAMAC circuits. Howev­
er, to make them compatible with the NIM standards the levels at the input and output 
stages are generally adapted. This adds additional cost and power consumption to the 
module. 

ECL modules do away with the adapter stages and enter directly with the ECL 
levels. This allows a better noise immunity with no loss of bandwidth and minimizes 
ground loops. Since the input impedance is high (== 1000), cheaper twisted pair cables 
may be used allowing higher density modules. Flat ribbon cable may also be used but 
only for short lengths. 

NIM signals are not directly compatible with ECL, however, if frequency is not a 
problem, a very simple translator can be constructed as shown below (Fig. 12.4). 

12.5 Analog Signals 

Three ranges of analog signals: 0 to 1 V, 0 to 10 V and 0 to 100 V are specified in the 
NIM convention, however, only 0 to 10 V has found any appreciable usage and indeed 
almost all commercially available modules work with this definition. 

1IJ.F 

ECL~HJr5~o-n---r !500: -N'M 

--1 ~ Fig. 12.4. A simple EeL to NIM signal con-
1IJ.F verter (from Lecroy Catalog [12.1]) 
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We now turn to the problem of transmitting pulse signals from one part of the elec­
tronics system to the other, or, more specifically, the interconnecting cables. This may 
seem somewhat trivial, at first, but this will be shown to be otherwise. 

The goal of signal transmission, of course, is two-fold: (1) get the signal from point 
A to point B, and (2) preserve the information in the signal. Recalling that a pulse 
generally consists of a continuous spectrum of frequencies from 0 to infinity, this 
would mean that our interconnecting cable would have to be capable of transmitting an 
infinite range of frequencies uniformly and coherently over the required distance - in 
most systems, a few meters. Such an ideal cable, of course, does not exist. Stray capaci­
tances, inductances and resistance, inherent in any configuration of conductors, will in­
variably attenuate some frequencies more than others, causing a distortion of the pulse 
at the receiving end. Indeed, sending a fast pulse signal through simple wire connec­
tions, for example, already results in intolerable distortion after only a few centimeters! 

In practice, of course, it is not necessary to transmit an infinite range of frequen­
cies. The Fourier spectrum of a rectangular pulse of width T is largely contained in the 
region .1f =::: 1 IT, and, as we have seen, most of the information will be reproduced if 
only this range is kept. This is not to imply that our problems are over, however. In 
deed, for a fast 2 or 3 ns pulse, this means uniformly transmitting all frequencies up to 
several hundred MHz. This is still a very large range and it is by no means obvious how 
transmission of even this finite range can be performed without attenuation of some 
frequencies. Fortunately, the theory of pulse signal transmission has been developed 
for some time now and has allowed the design of transmission lines which permit low­
distortion transmission over long distances. 

In nuclear electronics, the standard transmission line is the coaxial cable. These 
cables offer a number of advantages as opposed to other designs and our discussion 
will be focused primarily on this cable type, although much of what will be presented is 
generally applicable to other transmission lines as well. Since it is the physicist who 
makes these interconnections, (the design of the module circuits being left to the elec­
tronics engineer!), it is, of course, extremely important that he understand how these 
signals are transmitted and to recognize the problems which arise. 

13.1 Coaxial Cables 

The basic geometry of a coaxial transmission line is that of two concentric cylindrical 
conductors separated by a dielectric material. A cutaway section of a typical cable 
showing its construction is illustrated in Fig. 13.1. The outer cylinder, which carries the 
return current, is generally made in the form of wire braid, while the dielectric material 
is usually of polyethylene plastic or teflon, although other materials are sometimes 
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Fig. 13.1. Cut-away view of a coaxial cable 

used. The entire cable is protected by a plastic outer covering. One advantage of this 
type of construction is that the outer cylindrical conductor, besides serving as the 
ground return, also shields the central wire from stray electromagnetic fields. 
Frequencies down to =:: 100 kHz are effectively attenuated in most standard cables. A 
variety of cable sizes and designs are available commercially from several manufac­
turers and are briefly summarized in Table 13.1. The most commonly used cables are 
RG-58C/U (50 Q) for fast signals and RG-58/U (93 Q) for spectroscopy work. In 
recent years, however, the miniature RG-174/U cables have gained particular 
popularity in nuclear and high energy physics. Seventy-five ohm cable (RG59/U) is also 
used for high voltage transmission. 

Table 13.1. Some common coaxial cable types and their characteristics (data from LeCroy catalog [13.1)) 

Type Delay Diameter Capacitance Max. operating Remarks 
[RG] [ns/m] [cm] [pF/m] voltage [kV] 

50 n, single braided cables: 

58U 5.14 0.307 93.5 1.9 Standard cable for fast NIM 
electronics 

58A1U 5.14 0.305 96.8 1.9 
58C/U 5.06 0.295 93.5 1.9 
174/U 5.14 0.152 98.4 1.5 Miniature cable for fast NIM 

electronics 
213/U 5.06 0.724 96.8 5.0 Formerly RG-8A/U 
215/U 5.06 0.724 96.8 5.0 Same as 213/U but with 

armor; formerly RG-l0A/U 
218/U 5.06 1.73 96.8 11.0 Large, low attenuation cable 

formerly RG-17 A/V 
219/U 5.06 1.73 96.8 11.0 Same as 218/U but with 

armor; formerly RG-18A/U 
220/U 5.06 2.31 96.8 14.0 Very large, low attenuation 

formerly RG-19A/U 
2211U 5.06 2.31 96.8 14.0 Same as above but with 

armor; formerly RG-20A/U 

50 ~, double braided cables: 

558/U 5.06 0.295 93.5 1.9 Small size, flexible cable 
2211U 5.06 0.470 93.5 3.0 Small size, microwave cable; 

formerly RG-58/U 
214/U 5.06 0.724 98.4 5.0 Formerly RG-98U 
217/U 5.06 0.940 96.8 7.0 Power transmission cable; 

formerly RG 14A/U 
224/U 5.06 0.940 96.8 7.0 Same as 217/V but with 

armor; formerly RG-74AIV 
223/U 5.06 0.295 93.5 1.0 formerly RG-55A/U 

High voltage cables: 

59/U 5.14 0.381 68.9 2.3 Z = 73 n, standard HV cable 
for detectors 

598/U 5.14 0.381 67.3 2.3 Z=75n 
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Table 13.1 (continued) 

Type Delay Diameter Capacitance Max. operating Remarks 
[RO] [ns/m] [cm] [pP/m] voltage [kV] 

93 Q cables: 

621U 4.0 0.635 44.3 0.75 Standard cable for slow NIM 
signals in spectroscopy work 

62A/U 4.0 0.632 44.3 0.75 Standard cable for slow NIM 
signals 

High temperature, 50 Q single braided cables: 

178B/U 4.7 0.086 95.1 1.0 Miniature size cable 
179B/U 4.7 0.160 65.6 1.2 
196A/U 4.7 0.086 1.0 Teflon dielectric 
211A1U 4.7 1.575 95.1 7.0 Operation between 

- 55° - + 200°C; formerly 
RO-117A1U 

228A/U 4.7 1.575 95.1 7.0 Same as 211A/U but with 
armor; formerly RO-118A/U 

303/U 4.7 0.295 93.5 1.9 
304/U 4.7 0.47 93.5 3.0 
316/U 4.7 0.15 1.2 Miniature cable 

High temperature, 50 Q double braided cables: 

115/U 4.7 0.635 96.8 5.0 Used where expansion and 
contraction are a problem 

142B/U 4.7 0.295 93.5 1.9 Small-size flexible cable 
225/U 4.7 0.724 96.8 5.0 Operation between 

-55°- + 200°C; formerly 
RO-87A1U 

227/U 4.7 0.724 96.8 5.0 Same as 225/U but with 
armor; formerly RO-116/U 

As will be seen in the following sections, pulses signals are transmitted through a 
coaxial line as a traveling wave. As such the coaxial line is nothing more than a wave 
guide. 1 In electronics, however, it is customary to view the coaxial cable as a circuit 
element and to consider the voltage and current in the cable rather than the E and B 
fields, which is perhaps more familiar to the physicist. The former approach is, of 
course, the more practical since voltage and current are directly accessible. We will 
therefore take this point of view in our discussion. 

13.1.1 Line Constituents 

By virtue of its geometrical configuration, (two conductors separated by a dielectric), 
coaxial cables necessarily contain a certain self-capacitance and inductance. From elec­
tromagnetic theory, it is easy to show that for two long concentric cylinders, these com­
ponents are 

1 Signals are transmitted in degenerate TEM mode. The next mode begins at frequencies well above those of 
interest and does not interfere for our purposes. 
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L ==: :n In (~) [Him] = 0.2 Km In (~) [~H/m] 
C==: 2ne [F/m] 

In (b/a) 
55. 6Ke [pF/m] , 
In (b/a) 

(13.1) 

where a and b are the radii of the inner and outer cylinders respectively, f.1. and e the 
permeability and permittivity of the insulating dielectric, Ke = eleo and Km = f.1.1f.1.o, the 
permittivity and permeability relative to the vacuum. For nonferromagnetic materials, 
of course, Km ==: 1. Typical values for Land C are on the order of ==: 100 pF/m and a 
few tenths of ~H/m. 
, In any real cable, however, there also exists a certain resistivity due to the fact that 

the conductors are not perfect, and a certain conductivity across the dielectric due to its 
"imperfectness" as an insulator. These components, like the capacitance and induc­
tance, are distributed uniformly along the cable length and are generally small com­
pared to the capacitive component. Nevertheless, for most applications, we can ap­
proximately represent a unit length of cable by the lumped circuit shown in Fig. 13 .2. L 
and C are, respectively, the series inductance and capacitance per unit length, while R is 
the resistance per unit length and G is the conductance per unit length of the dielectric, 
represented here as a parallel resistance of 1/G O. These latter two quantities, as will be 
seen later, are responsible for signal losses in the cable. In the ideal case of a perfect 
lossless cable, Rand G are zero. 

13.2 The General Wave Equation for a Coaxial Line 

With the aid of Fig. 13.2, we can now derive an equation for the voltage, Vand the cur­
rent, I, in the cable. Consider, therefore, a small unit length of cable, Ll z, and let us 
calculate the difference Ll V and LlI across this small distance, 

Ll V(z, t) = - R Ll Z I(z, t) - L Ll z ~ (z, t) 
at 
av 

LlI(z, t) = - G Ll z V(z, t) - C Ll z - (z, t) . 
at 

Dividing by Ll z and taking the limit Ll z ..... 0, we find the differential equations 

av = -RI-L~ 
az at 

~= -GV-C av. 
az at 

(13.2) 

(13.3) 

I G By differentiating with respect to z and t, and substituting, the equations may be un-

Fig. 13.2. Equivalent circuit for a 
unit length of transmission line 

coupled to give 

a2 v ~V av -- = L C--+ (L G + R C) -+ R G V 
az 2 at 2 at 

(13.4) 



13.3 The Ideal Lossless Cable 267 

and an identical equation for I. This is the general wave equation for a coaxial cable 
(or, in fact, any other type of transmission line whose constituents are represented by 
Fig. 13.2). 

13.3 The Ideal Lossless Cable 

Before tackling the solutions to (13.4), let us first consider the simpler case of an ideal 
lossless cable where Rand G are zero. For relatively short lengths of cable of a few 
meters or so, this, in fact, is a good approximation since the effects of Rand G will be 
negligible for most purposes. The last two terms on the right-hand side of (13.4) vanish 
then leaving 

82 V 82 V 
--=LC--
8z 2 8/ 2 . 

This can be recognized as the well-known wave equation. 

(13.5) 

Suppose now a simple sinusoidal voltage in time (i.e., one Fourier component), 
V = V(z) exp(iwl) is impressed on the cable. Substitution into (13.5) then yields 

d 2 V = -w2LC V= _k2V, 
dz 2 

where we have set k 2 = w 2 L C. The space solutions are then of the form 

V(z) = VI exp ( - kz) + V2 exp (kz) 

which results in 

V(z, I) = VI exp [i(wl-kz)] + V2 exp [i(wI+ kz)]. 

(13.6) 

(13.7) 

This represents two waves, one traveling in the + z direction, and the other in the op­
posite direction, - z. This second wave corresponds to a reflection and its presence or 
absence depends on the boundary conditions for the cable under question. As we will 
see later, reflections play an important role for signal transmission since they can 
distort the form of the original signal. 

Examination of (13.7) will also show that the quantity, k, is the wave number and 
that the velocity of propagation is 

w 1 
V=-=--. 

k VLC 
(13.8) 

As long as the cable stays constant in its cross-section, the product L C is, in fact, in­
dependent of length and L C = f.1 e where f.1 and e are the permeability and permittivity 
of the dielectric. This is identical to the case for optical media. Thus, for a cable 
with free space as a dielectric, the velocity of propagation equals 1IV f.1oeo = c, the 
speed of light in a vacuum. 

The speed of signal propagation is more often expressed as its inverse, the time of 
propagation per unit length. 

(13.9) 
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This quantity is known as the delay of the cable, and is typically on the order of 
::::: 5 ns/m for standard 500 cables currently found in the lab. 

We might note here that the bandwidth of the ideal cable is infinite, that is, it is 
capable of uniformly transmitting all frequencies impressed upon it. In reality, of 
course, losses will limit this range as we will show later. 

13.3.1 Characteristic Impedance 

An important property of a transmission cable is its characteristic impedance. This is 
defined as the ratio of the voltage to the current in the cable, (including the phase rela­
tionship), i.e., 

v 
Zo=-

I 
(13.10) 

which, with some manipulation of (13.3) and (13.7), can be shown to be 

Zo= VI (13.11) 

for an ideal lossless cable. Examination will show that Zo has, in fact, the dimensions 
of impedance and is moreover purely resistive. It is, however, totally independent of 
the cable length and only dependent on the cross sectional geometry and the materials 
used. The characteristic impedance is, in fact, a rather special quantity in the sense that 
it cannot be measured with a normal resistive bridge, but behaves as a real impedance 
when connected to the output of a device. It is perhaps best interpreted as being the 
impedance offered to the propagation of the signal in the line. 

For coaxial cables, an explicit calculation shows that 

VI V4tm I b Zo = - = 60 - n - [0] , 
C Ke a 

(13.12) 

where a and b are the inner and outer diameters of the conductors and Km and Ke, the 
relative permeability and permittivity of the dielectric. At present, the standard cable 
used in fast nuclear electronics has a characteristic impedance of 50 0 while cables of 
93 0 are generally used for slower spectroscopy pulses. 

An interesting point to note is that all coaxial cables are necessarily limited to the 
range between ::::: 50 - 2000 characteristic impedance. This is because of the 
dependence of Zo on the logarithm of b/a in (13.12). To construct a coaxial cable of 
10000, for example, would require a diameter ratio of 1011 - clearly an impractical if 
not impossible task! Moreover, there is an optimum value for the ratio b/a of ::::: 3.6 
which minimizes losses (see Sect. 13.6). If this ratio is kept and Ke is on the order of 2.3, 
as for polyethylene, then Zo ::::: 50 O. 

13.4 Reflections 

As we have seen from (13.7), the signal in a coaxial cable is, in general, the sum of the 
original signal and a reflected signal traveling in the opposite direction. For an 
arbitrary signal form J, we can write 
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v = f(x - V t) + g(X + V t) , 
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Fig. 13.3. Cable of characteristic impedance Z terminated 
by an impedance R 

(13.13) 

where g is the reflected wave form. The presence of reflections can have serious conse­
quences. Obviously, if they overlap with the original signal, interference and distortion 
will result. Moreover, even if no overlap occurs, it is clearly undesirable to have echos 
of the original signal bouncing back and forth in the cables leading to spurious counts 
and confusion. Reflections, of course, occur when a traveling wave encounters a new 
medium in which the speed of propagation is different. In optical media this 
corresponds to a change in the index of refraction. By analogy, in transmission lines, 
reflections occur when the characteristic impedance of the line is abruptly changed. 

These reflections can be calculated by considering the boundary conditions at the 
interface. Consider a cable of characteristic impedance Z terminated by an impedance 
R, the input impedance of some device, for example. Figure 13.3 illustrates such a con­
figuration. As a signal travels down the line, the ratio of the voltage to current must al­
ways be equal to the characteristic impedance by definition. When the interface is en­
countered reflections are set up which adjust the ratio of VI I to the new characteristic 
impedance. These reflections, however, must also be compatible with the original 
characteristic impedance since they will also travel back down the original line in the 
opposite direction. We, thus, have the conditions 

Z=~ 
10 

R = Vo+ Vr 

Io+Ir 

Z=~ 
-Ir ' 

(13.14) 

where Vo and 10 are the voltage and current of the original signal and Vr and Ir those of 
the reflected signal. Note the negative sign for the reflected current! 

From these equations, we find 

Vr -Ir R-Z 
p=-=--=---, 

Vo 10 R+Z 
(13.15) 

where p is known as the reflection coefficient. The polarity and amplitude of the re­
flected signal are thus dependent on the relative values of the two impedances. If R is 
greater than the cable impedance Z, then the reflection will always be of the same 
polarity but with an amplitude intermediate in value between 0 and the original pulse 
height. In the limiting case of infinite load impedance (an open circuit, for example), 
the reflected amplitude is equal to the incident amplitUde. On the other hand, if R is 
smaller than the cable impedance, the reflection is opposite in polarity and intermediate 
in amplitude between 0 and the original. In the limit of zero load impedance (a short 
circuit), the reflection is equal and opposite to the incident pulse. In the special case of 
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.. Fig. 13.4. Reflections along a transmission line. Note how 
the voltage level is changed due to interference from the 
reflection 

Fig. 13.5. Lattice diagram for multiple reflections 

R = Z, p vanishes and there is no reflection whatsoever. Thus, only when the load and 
cable impedances are matched are interfering reflections avoided. The various cases are 
summarized in Fig. 13.4 for a simple step function pulse. 

In the above example, it is easy to see what will also happen if the input end of the 
cable is also terminated by an impedance different from Z. Clearly, when the first re­
flected signal reaches the input end it will again be reflected but with some new coeffi­
cient p', and this again when it reaches R, etc. Multiple reflections are thus set up in the 
cable. An easy method of calculating the value of the signal at any time in the cable is 
with the simple lattice diagram shown in Fig. 13.5. 

13.5 Cable Termination. Impedance Matching 

As we have seen, signal distortion from reflections can only be avoided by matching the 
device impedances to the cable impedance. To a large extent, this problem has been 
removed by the fast NIM standard which requires that all input and output device 
impedances and cables be 50 Q. However, occasions very often arise where an 
impedance mismatch cannot be avoided. One very common instance is when a fast 
signal must be viewed on an oscilloscope. Since oscilloscopes are high impedance 
devices (=::: 1 MQ), direct entry of a fast NIM signal will result in an impedance mis­
match and a false signal reading. (For a slow NIM signal, direct entry is compatible as 
given by the NIM standard, provided the cables are not too long.) In such cases, the 
cable can be terminated with an additional impedance of the appropriate value so as to 
adjust the total load impedance seen by the cable. For high impedance devices such as 
our oscilloscope, this is done by placing a resistance of 50 Q in parallel with the device. 
The signal seen by the oscilloscope is then reflection free and appears as it would to a 
standard fast NIM module. Since the need to terminate cables arises fairly often, 
special 50 Q terminators made so as to easily fit onto the cables are manufactured com­
mercially. Figure 13.6 illustrates this method. 

More generally, termination can be done in two ways: either by adding an 
impedance in series with the load or in parallel (shunt termination). As well, this can be 
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~----;1iiII"''''_1.6. Cable termination at an oscilloscope 

Parallel Termination 

: , 
end 

Series Termination 

= 7. Series and parallel termination 

done at the sending end of the cable and/ or at the receiving end. Figure 13.7 illustrates 
the various configurations. In most cases, a simple termination at the receiving end 
is usually sufficient. In the example of signal viewing at the oscilloscope, shunt 
termination at the receiving end is used. Nevertheless, certain situations may arise 
which require use of some other termination scheme with different values of the 
terminating resistance. 

Example 13.1 A signal is to be sent from a coaxial cable of impedance ZI into another 
coaxial cable of impedance Z2' What termination scheme should be used in order to 
avoid reflections? 

Two cases arise: 
a) ZI <Z2 
Here the impedance which cable 1 sees must be reduced. This implies adding a resis­
tance R in parallel to cable 2, i.e., 

Zl 

Since the combination must equal ZI we find 

RZ2 -Z 
-1 

R+Z2 

R = Z1 Z 2 

Z2- Z 1 

b) ZI>Z2 
Since the impedance seen by cable 1 must be increased, we add a resistance R in series. 

receiving end 
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Table 13.2. Cable termination schemes 

Cable impedance = Zc 

Source Load Termination scheme 

I Zs = Zc I ZC 
IZL = Zcl No termination necessary 

I Zs = Zc I 
Zc I ZL>Zc I Receiving end; parallel 

R = Zc/(1- Zc/Zd 

I Zs = Zc I Zc I ZL <Zc\ 
Receiving end; series 
R = Zc-ZL 

I Zs<Zc I Zc B Sending end; series 
R = Zc-Zs 

I Zs>Zc I ZC 
IZL = Zcl 

Sending end; parallel 
R = Zc/(1- Zc/Zs) 

Combinations of the above situations may also arise in which case an ap­
propriate combination of termination schemes may be used, e.g., 

Then, 

Receiving end; parallel 
R = Zc/(1- Zc/Zd with 
sending end; series 
R = Zc-Zs 

13. Signal Transmission 

Some other possible situations which often arise are summarized in Table 13.2 along 
with the termination scheme to be used. 

13.6 Losses in Coaxial Cables. Pulse Distortion 

Signal losses in a transmission line arise from resistance in the conductors and leakage 
through the dielectric. In addition, some loss may also result from electromagnetic 
radiation; however, this effect is small, especially in coaxial cables with their inherent 
shielding, and can be neglected for most purposes. 

The effect of Rand G on signal propagation may be seen by returning to (13.4) and 
once again impressing a sinusoidal signal, V = V(z) exp (i w t), on to the cable. Sub­
stitution then leads to the form, 

(13.16) 



13.6 Losses in Coaxial Cables. Pulse Distortion 273 

where the complex number, y, 

Y= a+ik= V(R+iwL)(G+iwC) (13.17) 

is known as the propagation constant. The general solution is then 

V(z, t) = V j exp ( - az) exp [i(wt- kz)] + V2 exp(az) exp [i(wt+ kz)] (13.18) 

which again represents two traveling waves, however, modified this time by the ex­
ponential factor exp( ± az). The introduction of Rand G, therefore, leads to an ex­
ponential attenuation of the signal with distance at a rate given by a. As can be seen 
from Fig. 13.8, however, a is generally small so that only in very long cables of many 
ten's of meters does signal loss begin to be a problem. 

The above statement overlooks a more serious factor, however, and that is the 
dependence of a and v = dkldw on w. This implies a differential attenuation of the 
frequency components which leads to a dispersion of the pulse packet. 

The dependence on frequency enters in two ways: (1) explicitly through (13.17) and 
(2) through the fact that both Rand G also vary with frequency: R via the skin effect 
and G via high frequency dielectric leakage. 2 The former is most significant at low 
frequencies ( < 10's kHz) where Rand G are essentially constant. Evaluating a and k 
explicitly from (13.17), we find, in fact, the rather complicated expressions 3 

a 2 = + [(RG- w 2LC)+ V(R 2 + w 2L 2) (G 2 + W 2C 2 )] 

k 2 = + [- (RG- w 2LC) + V(R 2 + w 2L 2) (G 2 + w 2C 2)] • 

(13.19) 

At higher w such that RlwL q; 1 and GlwC q; 1, however, a and k may be approxi­
mated by 

a~ ~ (R Vf+G V%) (13.20) 

k~wVLC· 

The speed of signal propagation is thus v ~ 1 IV L C as in the case of an ideal cable, and 
the attenuation constant is approximately independent of w. For coaxial cables, this 
high frequency region begins at about w ~ 100 kHz. As will be recalled, however, the 
frequency range of interest for fast pulses also begins at about this point. Thus the ex­
plicit w dependence in (13.19) is not an important effect for fast nuclear pulses. 

However, at and above these frequencies, R begins to vary with w through the well­
known skin effect. Indeed, as w increases, the current in the conductors confines itself 
to thinner and thinner layers near the conductor surface. The effective cross-sectional 
area of the conductor is thus reduced and its resistance increased. For a coaxial cable, 
this results in a resistance per unit length which varies approximately as the square root 
of the frequency and inversely as the inner and outer radii, i.e., 

2 The inductance also varies somewhat if the magnetic flux inside the conductors is taken into account. This 
contribution is small, however, and may generally be ignored. The capacitance, on the other hand, is strictly 
constant. 
3 The explicit w dependence is removed in the special case of RIL = OIC. Such a cable would still attenuate 
but without distortion. Unfortunately, construction of such a cable is uneconomical and, moreover, does not 
remove the high-frequency w dependence. 
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(13.21) 

where 0- is the conductivity, 11 the permeability and a and b the inner and outer radii of 
the cable. For copper, this becomes 

_ (1 1) R(f)=4.17x10 8t1j -;;+-,; a per unit length, (13.22) 

wherej= wl271. Taking the cable RG-58C/U with b = 0.25 cm as an example, we find 
R varies from == 2.4 x 10 2 aim at 100 kHz to == 2.4 aim at 1 GHz. Since R also 
depends on the cable dimensions, it is easy to show that attenuation through the skin 
effect is minimized when bla = 3.6. 

At high frequencies, there is also leakage across the dielectric. For materials such as 
polyethylene or teflon, this remains small up to several hundreds of MHz. But because 
of its linear dependence on w, it rapidly overtakes the skin effect and becomes 
dominant at and above 1 GHz. Considering both effects, the high-frequency depen­
dence of a can then be written as 

a(f) = aVi+bj, (13.23) 
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where I = wl2 Te and a and b are constants. Typical values of a for the various coaxial 
cable types at different frequencies may be found in Fig. 13.8. 

For a cable with loss, it is also interesting to see what happens to the characteristic 
impedance. With nonzero Rand G, the definition of Zo then gives, 

Zo = VII= 
R+iwL 

G+iwC 
(13.24) 

Thus, Zo takes on an imaginary reactive part. If we ignore the effect of G, for the 
reasons given above, we can approximate (13.24) by 

1 (L ( R )112 1 (L ( R) zO=Vc 1+ iwL :::::Vc 1+ 2iwL . (13.25) 

As a circuit element, therefore, the cable will behave as a resistance R' ::::: VLIC in 
series with a capacitance C' = 2VLCIR. However, in the high-frequency approxima­
tion, the characteristic impedance reduces once again to (13 .12). 

13.6.1 Cable Response. Pulse Distortion 

Equation (13.18) essentially gives the response of a lossy transmission line to a pure 
sinusoidal signal. For an arbitrary pulse waveform, however, the calculation becomes 
very complicated, generally requiring a numerical solution. Nevertheless, in the rela­
tively simple case of a unit step function, a closed analytic expression can be obtained 
which illustrates the essential effect of losses on pulse shape. For an initial step function 
described by 

V(t) = {~ 1<0 

1;:::0, 

therefore, we find the response 

V(t)= 0 

erfc 

(xa)2 
ro=---

Tel 

(13.26) 

where (13.27) 

I;::: 0, 

with x: length of cable; a: attenuation constant in the region of validity; I: frequency at 
which a is evaluated. 

The error function is defined as 

2 x 
erfc(x) = 1 - ,;: J exp ( - u 2 ) du . 

V Te 0 

For simplicity we have ignored the fixed delay caused by passing through the cable. Fig­
ure 13.9 plots this response as a function of Ilro. As can be seen, the primary feature 



Fig. 13.10. Distortion of a rectan­
gular pulse in a lossy cable (from 
Fidecaro [13.2]) 

Fig. 13.11. Distortion of a photo­
multiplier pulse in a lossy trans­
mission cable (from Brianti 
[13.3]) 
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6to t 

is a loss in time response, the once sharp edge of the pulse now being softened to a slow 
rise. The parameter TO can now also be seen as the time it takes to reach a height = 1- of 
maximum. If skin losses only are considered, then from (13.23) 

(13.28) 

so that 

To = (xa)2/n. (13.29) 

By use of the convolution theorem in Fourier analysis, the response of other wave­
forms may be calculated from the unit step response. Figure 13.10 shows the distortion 
of an ideal rectangular pulse of width LI for various TO. In addition to the slower rise 
time, note how the centroid of the pulse is also displaced. 

For the case of a photomultiplier pulse, Brianti [13.3] has made calculations consid­
ering both skin effects and dielectric leakage. His results, however, are based on the 
cable response to a J(t)-function rather than a step function. Some examples of these 
are shown in Fig. 13 .11. 
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14. Electronics for Pulse Signal Processing 

The aim of this chapter is to survey some of the basic functions which can be applied to 
pulse signals for information processing. Since most of these functions have been large­
ly standardized over the years by the nuclear electronics industry, our discussion will 
rest mainly on a descriptive level and only touch on the detailed circuitry where it is ab­
solutely necessary. The assembling or combination of these functions into a system for 
a specific application is left to the following chapters. For pedagogic reasons also, we 
will concentrate on the simpler NIM modules and not enter into the more sophisticated 
digital processes which are found, for example, in CAMAC systems (see Chap. 18). 
Once a good understanding of the basic functions and their applications is acquired, 
however, the functioning of these latter modules will become evident. The references at 
the end of this chapter should also provide additional information for those desiring 
more detail. 

All of the modules described here can be found commercially. Variations between 
modules by different manufacturers will, however, be encountered. Some models, for 
example, will combine several functions together into one module or offer additional 
features which may be useful in specific applications, while others will remain on a 
more rudimentary level. The difference is often seen in the price! For information con­
cerning the detailed operation of any particular module, therefore, the reader should 
consult the manual provided by the manufacturer. However, the basic operations are 
usually so similar that after some experience many of the operating details may be gues­
sed a good deal of the time. 

In addition to a description of processing modules, we will also present a short sec­
tion on some very simple circuits which can be constructed for signal manipulation, 
e.g., attenuation, splitting, etc. These come in very handy when setting up a nuclear 
electronics system and may help save some needless and time-consuming searching for 
an appropriate module. 

14.1 Preamplifiers 

The basic function of a preamplifier is to amplify weak signals from a detector and to 
drive it through the cable that connects the preamplifier with the rest of the equipment. 
At the same time, it must add the least amount of noise possible. Since the input signal 
at the preamplifier is generally weak, preamplifiers are normally mounted as close as 
possible to the detector so as to minimize cable length. In this way, pickUp of stray elec­
tromagnetic fields is reduced and cable capacitance, which decreases the signal-to-noise 
ratio, minimized. In some detectors, notably the scintillation counter, considerable 
amplification already occurs before entry into the preamplifier. In such cases, the gain 
and low noise characteristics of the preamplifier are less critical and the pre-
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amplifier is used mainly to present the correct impedances to the detector and the elec­
tronics and to shape subsequent output pulses. 

Three basic types of preamplifier exist: 

1) voltage sensitive, 
2) current sensitive, 
3) charge-sensitive. 

The current-sensitive preamplifier is generally used with very low impedance signal 
devices and is thus not very useful with radiation detectors, which are generally high 
impedance instruments. We will not discuss this type further, therefore. 

Of the two remaining types, the voltage-sensitive preamp is the more conventional. 
This device amplifies any voltage which appears at its input. Since radiation detectors 
are essentially charge producing devices, this voltage appears through the intrinsic 
capacitance of the detector plus any other stray capacitances which may be in the input 
circuit, i.e. 

Q V=-. 
Ctot 

It is therefore important that the capacitance of the detector remain stable during oper­
ation. For PM's, proportional counters and Geiger-Muller tubes, this is the case. How­
ever, for semiconductor detectors variations in the intrinsic capacitance occur as tem­
perature changes. This is caused by the leakage current in the semiconductor diode 
which is dependent on the temperature. It is therefore not advisable to use this type of 
preamplifier with semiconductor devices. Figure 14.1 shows a schematic diagram of the 
basic design of a voltage-sensitive preamp. 

The shortcomings of the voltage-sensitive preamplifier can be avoided by using a 
charge-sensitive preamp. Figure 14.2 shows a schematic of the basic design for this type 
of amplifier. The basic idea is to integrate the charge carried by the incoming pulse on 
the capacitor Cr. By working out the voltages from the diagram, it can be seen that the 
output voltage is always proportional to 

R, 
-A 

.. 
Fig. 14.1. Schematic diagram of a voltage-sensitive preamplifier 

Fig. 14.2. Schematic diagram of a charge-sensitive preamplifier. To discharge the capacitor Cr. a resistor is 
also usually placed in parallel with Cr. This results in the exponential tail pulse 
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so that all dependence on the detector capacitance has been removed. Although 
originally designed for use with semiconductor detectors, the charge-sensitive amplifier 
has proven so superior that it is often used even when there is no need for its specific 
properties. 

14.1.1 Resistive vs Optical Feedback 

As we have seen, in the charge-sensitive preamplifier, the incoming charge is collected 
on a capacitor. This charge however, must eventually be removed. The simplest 
method is a slow discharge through a resistance feedback network. This produces the 
exponential tail pulse shown in Fig. 14.3 a. The characteristic time constant varies from 
preamp to preamp but is generally quite long, on the order of 40 - 50 I!s or more. 

For precision spectroscopy work, modern preamplifiers use optical feedback to 
enhance the bandwidth and reduce noise. In these designs, the feedback resistor is 
replaced by an optical coupling. The charging capacitor does not leak continually as in 
resistive feedback networks. Instead, the charge is kept until a certain fixed limit 
(usually a few Volts) is reached, at which point an internally generated current pulse of 
opposite sign is triggered and the capacitor discharged. During this process, a large 
negative pulse is generated in the amplification chain. To prevent analysis of this dis­
charge pulse, an auxiliary inhibit signal is generated for use in blocking these pulses in 
the following electronics. 

Figure 14.4 schematically diagrams the output of a preamp with optical feedback. 
Since there is no leakage, the pulses are flat-topped rather than exponential. When the 
fixed limit is reached, a large negative discharge pulse is seen after which the preamp 
capacitor begins recharging once again. 
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Fig. 14.3. (a) Exponential tail pulse from a 
preamplifier, (b) pulse pileup: a second pulse rides 
on the tail of the first 
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Fig. 14.4. Schematic diagram and pulse putput of an optical feedback preamplifier 
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14.2 Main Amplifiers 

The amplifier serves two main purposes: 

1) amplify the signal from the preamplifier, and 
2) shape it to a convenient form for further processing. 

In both cases, the amplifier must always preserve the information of interest. If timing 
information is required, a fast response is necessary. If pulse height information is 
desired, a strict proportionality between input and output amplitudes must be pre­
served (linear amplifier). In many of the latter, an adjustable gain over a wide range is 
provided so as to allow a scale adjustment in a spectrum analyzer. 

For spectroscopy amplifiers one of the most important factors is the pulse shaping 
characteristic. In general, the pulse coming from the preamplifier can be characterized 
as an exponential with a long tail lasting anywhere from T"'" few /lS -100 /lS. The 
amplitude of this pulse is proportional to energy. If a second signal should now arrive 
within the period, T, it will ride on the tail of the first and its amplitude will be increased 
as shown in Fig. 14.3b. The energy information contained in this second pulse is thus 
distorted. This is known as pile-up. To avoid this effect, one must either restrict the 
counting rate to less than 11T counts/s or shorten the tail by reshaping. This latter 
method is, of course, the more preferable option. 

A second reason for pulse-shaping is the optimization of the signal to noise ratio. 
For a given noise spectrum, there usually exists an optimum pulse shape in which the 
signal is least disturbed by noise. 1 Tail pulses in the presence of typical noise spectra are 
not ideal, in fact and it would be more advantageous to have a Gaussian or triangular 
form. Thus, even at low counting rates where pile-up is not a problem, pulse-shaping 
remains important. 

In contrast to the spectroscopy amplifier, the most important factor for fast ampli­
fiers is preservation of the fast rise time of the signal which means maintaining a wide 
bandwidth. For this reason, these amplifiers generally perform very little or no pulse 
shaping and are limited to smaller gains ("'" x 10). Higher gains may be obtained by 
cascading several amplifiers, however, it is not generally recommended to go beyond 
gains of about x 1000. Obviously, in applications where both good timing and pulse 
height information is desired, a conflict exists between the best timing shape and the 
best signal-to-noise shape. In such cases, a compromise must be made. 

14.3 Pulse Shaping Networks in Amplifiers 

Most pulse shaping networks in commercially available amplifiers today are based on 
two methods: delay line shaping and RC differentiation-integration. The basic ele­
ments making up these networks, i.e., the CR differentiator, the RC integrator and the 

1 The relation between pulse shape and noise can be best understood by looking at the signal and noise in 
terms of their Fourier components. Optimizing the signal to noise ratio, then, involves filtering out those 
frequencies where noise is at its greatest, i.e., a narrowing of the bandwidth. This narrowing, of course, also 
alters the distribution of frequencies in the signal resulting in a change of shape. The shape of the pulse, 
therefore, is an indication of the filtering scheme. 
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delay line, are described in Sect. 14.23. The reader who is unfamiliar with these devices 
should first consult this section befores continuing. 

In amplifiers, combinations of these simple circuits are generally used to limit the 
bandwidth and thereby improve the signal-to-noise ratio. This results, as we have 
noted, in a change of pulse shape. We briefly survey some of the most commonly found 
methods. 

14.3.1 CR-RC Pulse Shaping 

CR-RC pulse shaping is the most widespread technique and is performed by sending 
the signal through a cascaded CR differentiator and RC integrator. The pulse is thus 
filtered at low (differentiation) and high (integration) frequencies resulting in an im­
provement in signal-to-noise. A typical CR-RC circuit is shown in Fig. 14.5 along with 
the resultant shape for an incident step function pulse. Not that a unipolar pulse, i.e., 
one with only one polarity, is produced. In most cases, optimum signal-to-noise ratio is 
obtained with equal differentiation and integration time constants, however, the ab­
solute value of this constant depends on the particular characteristics of the pulse. On 
many spectroscopy amplifiers, a choice of time constants is, in fact, offered by a front 
panel knob. 

Fig. 14.5. CR-RC pulse shaping network. Because of residual differentiations in the preamplifier, the width 
and cross-over point of the resultant signal are not those calculated theoretically (from Orlee catalog [14.1)) 

14.3.2 Pole-Zero Cancellation and Baseline Restoration 

One of the undesirable side-effects of RC pulse shaping is the presence of an under­
shoot in the shaped pulse. As shown in Fig. 14.6, this undershoot returns only very 
slowly to zero. This is obviously a problem for pulse height analysis for if a second 
pulse rides on this undershoot, an amplitude deject will arise with a subsequent distor­
tion of the pulse height information in the second signal (Fig. 14.6). 

The primary cause of CR-RC undershoot is the differentiation of finite length ex­
ponential tail pulses from the preamplifier. Theoretically, no undershoot would oc­
cur if these tail pulses were infinitely long; however, in practice, real tail pulses are cut­
off at some finite point. This undershoot, fortunately, may be corrected by a so-called 
pole-zero cancellation circuit. (This term arises from a Laplacian transform analysis of 
the circuit.) This is shown in Fig. 14.7 and involves adding a simple variable resistor in 
parallel with the capacitor in the CR stage. This circuit is adjusted by observing the 
signal on the oscilloscope and varying the resistance (usually by a front panel screw) 
until the undershoot disappears or is at a minimum. For spectroscopy work, a precise 
pole-zero adjustment is crucial. Note that with optical feedback preamplifiers, a pole­
zero correction is not necessary since the output signals are not exponential in form. 
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Fig. 14.6. Amplitude defect arising from undershoot in CR-RC pulse 
shaping 

Fig. 14.7. Pole-zero cancellation circuit (from Orlee catalog [14.1]) 

Even with pole-zero cancellation, however, undershoot may still occur due to un­
wanted residual differentiations which can occur after the pole-zero correction. Indeed, 
one of the major culprits is the dc coupling capacitor present at the output of the 
amplifier. When coupled with the input impedance of the receiving module an effective 
CR differentiator is formed creating undershoot once again. To avoid this, the coupl­
ing capacitor is usually given a large value so that the time constant of the output 
capacitor is large compared to the signal. The differentiation effect is thus reduced 
along with the amplitude of the undershoot. In consequence, however, the duration of 
this smaller undershoot is lengthened. At low counting rates, where the pulses are 
widely separated in time, this procedure works well; however, as the count rate in­
creases the pulses begin to fall on top of each other and the undershoot, though small, 
is multiplied several times. This is illustrated in Fig. 14.8. The net result of this is effec­
tive baseline fluctuations and amplitude distortion. 

o -
Fig. 14.8. 
Baseline shift at high count rates 

To remedy this situation, many amplifiers are equipped with baseline restoring 
circuits at the output stage. These circuits essentially shorten the long decay time of the 
undershoot by shorting the coupling capacitor to ground just after passage of the pulse. 
Separate baseline restoration units are also available for use with amplifiers not equip­
ped with such corrective circuits. 

14.3.3 Double Differentiation or CR-RC-CR Shaping 

A solution to the problem of baseline shift at high count rates is to use bipolar pulses. 
These pulses can be formed by adding an additional CR stage to the CR-RC cascade to 
form a double differentiating network. This illustrated in Fig. 14.9. 

Such a circuit forms a bipolar pulse with each polarity lobe having approximately 
the same area. When passing through a coupling capacitor, such a pulse, then, leaves 
no residual charge, (as a unipolar pulse would), so that baseline shifts are avoided. At 
high count rates, in fact, bipolar pulses generally give better resolution than corrected 
unipolar pulses. However, at low rates, the unipolar pulse has the better signal-to-noise 
ratio. 
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Fig. 14.9. Double differentia­
tion pulse shaping network 
(from Ortee catalog [14.1)) 

Bipolar pulses are also useful in timing applications as the zero cross-over point 
provides a unique reference for triggering discriminators. This is explained in more 
detail in Chap. 17. 

14.3.4 Semi-Gaussian Shaping 

While a good signal-to-noise ratio is obtained with simple CR-RC shaping, a theoreti­
cal 18070 improvement can be made if the pulse is given a Gaussian form. Shaping a 
pulse to an ideal Gaussian is not realizable electronically, however, an approximate 
semi-Gaussian shaping can be performed with a network consisting of a CR differ­
entiation followed by many RC integrations, i.e., a CR-RC-RC-RC-... cascade. In 
general, four or five RC stages are sufficient to produce a form having close to the 
theoretical signal-to-noise improvement. The disadvantage of Gaussian pulses, unfortu­
nately, is that they are much wider than RC shaped pulses and thus run into overlap 
problems at high counting rates. 

14.3.5 Delay Line Shaping 

An alternative to RC shaping is the use of reflections from delay lines. This basic 
technique is outlined in Sect. 14.23.1. Delay line shaping has the advantage that the rise 
time of the pulse is left unaltered so that this method becomes ideal for fast amplifiers. 
The signal-to-noise ratio, however, is much poorer than that obtained in RC shaping so 
that delay-line shaping is used mainly to prevent signal overlap. 

As in RC shaping, two delay-line stages may be cascaded to produce a bipolar 
pulse. This is illustrated in Fig. 14.10 which shows both single and double delay-line 
shaping. 
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14.4 Biased Amplifiers 

The purpose of a biased amplifier is to expand a certain portion of a linear signal. This 
is useful in certain applications, particularly pulse height analysis with a multichannel 
analyzer, where it is sometimes desired to expand a certain portion of a spectrum for 
closer examination. To do this, the biased amplifier is equipped with a variable thresh­
old which rejects all pulses below the set value and, in addition, subtracts this threshold 
value from all pulses greater than the threshold. Thus only the excess or remainder is 
accepted and this portion is then amplified to cover the full MCA input range. 

Figure 14.11 illustrates how this works. Suppose the full range of acceptance of an 
MCA is 0 to 10 V and we would like to expand that portion of spectrum lying between 5 
and 7.5 V. To do this, we set the threshold of the biased amplifier at 5 V and the 
amplifier gain to 4 x. Incoming pulses below 5 V are thus blocked out while those 
above 5 V are displaced so that they lie between 0 and 5 V after acceptance. The range 
of interest now lies between 0 and 2.5 V. Amplifying by a factor 4, this range is thus ex­
panded to cover 0 to 10 V which is the full range of our ADC. The pulses above this 
range are rejected or recorded as overflow by the MCA. 

'OP" --jk-----A----
I I I 

: I I I 

"Excess" I I I I 
I I I I 

Bias Level 

:0 W 

Excess /\ 
amplified and 

stretched ____ '---__ -'--__ --L..C\_---'-_ Fig. 14.11. Biased amplifier operation 

For pulses close to the threshold, amplification of the excess sometimes results in a 
very narrowly peaked pulse. Since many MCA's have pulse rise time and width require­
ments, most biased amplifiers also have a pulse stretching stage included. In this way, 
consistently shaped pulses are produced at the output. 

14.5 Pulse Stretchers 

The pulse stretcher is a pulse shaping module which prolongs the duration of an analog 
signal at its peak value. This unit is used mainly to shape fast signals for acceptance by 
MCA's. In most units, the rise time and width are readjusted to a standard value with 
only the pulse height being preserved (Fig. 14.12). 

14.6 Linear Transmission Gate 

The transmission or linear gate is essentially a pulse signal switch which allows linear 
signals at its input to pass through only if there is a second coincident signal present at 
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Fast Fig. 14.12. Pulse stretcher function 

the gate input. At all other times the input signal is blocked. The gate signal is usually a 
standard logic signal the width of which determines the time the gate stays open. 

To illustrate some of the basic features of the linear gate, consider the simple circuit 
shown in Fig. 14.13. This is a unidirectional gate. The heart of this circuit is a diode 
which is kept in a non-conducting state by a bias which keeps point A at a lower potential 
than point B. Signals at the input with amplitudes lower than this bias are thus blocked 
from passing through. If now a gate signal of equal but opposite polarity to the bias is 
present along with the input signal, the signal is lifted up above the bias so that the diode 
becomes conducting and the signal is transmitted. If the gate signal is smaller than the 
bias only that portion above the zero level is transmitted so that an effective threshold 
exists. If the gate signal is larger than the bias, then the signal is transmitted along with 
the excess from the gate. This excess is called the gate pedestal as the signal appears to be 
transmitted on a pedestal (see Fig. 14.13). Depending on the application the pedestal may 
or may not be important. For this reason most linear gates provide a pedestal adjustment 
which allows the bias to be equalized to the amplitude of the gate signal. 
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Fig. 14.13. 
Basic linear gate 

Linear gates may be found as separate modules, but are very often provided on 
other modules, e.g. amplifiers, scalers, ADC's, etc., as an auxiliary feature. An 
amplifier or scaler, etc. in gate mode will therefore only function when there is a gate 
signal present. A selection of events, determined by whatever generates the gate signal, 
is thus achieved. 

14.7 Fan-out and Fan-in 

Fan-outs are active circuits which allow the distribution of one signal to several parts of 
an electronics system by dividing the input signal into several identical signals of the 
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same height and shape. This should be distinguished from the passive pulse splitter 
discussed in Sect. 14.22.2 which divides both the signal and its amplitude. 

The fan-in, on the other hand, accepts several input signals and delivers the 
algebraic sum at the output. These modules may be bipolar, i.e., accepting signals of 
both polarities, or of single polarity, i.e., accepting signals of one polarity only. Fan­
ins are particularly useful for summing the outputs of several detectors or the signals 
from a large detector with many PM's. 

Both fan-ins and fan-outs come in two varieties: linear and logic. The linear 
modules accept both analog and logic signals, whereas logic fan-outs and -ins are 
designed for logic signals only. In the case of a logic fan-in, the algebraic sum is 
replaced by a logical sum (i.e., OR). 

14.8 Delay Lines 

In making a coincidence measurement, it is important to assure that the electrical paths 
(and thus the times of propagation) along which two coincident signals travel to the 
coincidence unit are equal. Delay boxes provide adjustable delays which permit a 
lengthening or shortening of the electrical paths in a coincidence circuit. The boxes 
generally consist of variable lengths of cable which in a normal NIM module allow a 
0- 64 ns delay. Several boxes may be cascaded to give delays of up to a few 100 ns. For 
longer delays of =::: 1 /..ls or more, the length of cable becomes prohibitive and 
attenuation becomes a factor. In such cases, special low attenuation delay cables must 
be used or an active electronic circuit. 

14.9 Discriminators 

The discriminator is a device which responds only to input signals with a pulse height 
greater than a certain threshold value. If this criterion is satisfied, the discriminator 
responds by issuing a standard logic signal; if not, no response is made. The value of 
the threshold can usually be adjusted by a helipot or screw on the front panel. As well, 
an adjustment of the width of the logic signal is usually possible via similar controls. 

The most common use of the discriminator is for blocking out low amplitude noise 
pulses from photomultipliers or other detectors. Good pulses, which should in 
principle be large enough to trigger the discriminator, are then transformed into logic 
pulses for further processing by the following electronics (see Fig. 14.14). In this role, 
the discriminator is essentially a simple analog-to-digital converter. 
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An important aspect of the discriminator is the method of triggering. Because of its 
use in timing, it is important that the time relation between the arrival of the input pulse 
and the issuance of the output pulse be constant. In most discriminators, triggering 
occurs the moment the pulse crosses the threshold level. This is known as leading edge 
(LE) triggering. A more precise method is constant fraction (CF) triggering. These 
techniques are discussed in more detail in Chap. 17. 

Two important parameters measuring the speed of the discriminator are the double 
pulse resolution and the continuous pulse train or cw rate. The double pulse resolution 
is the smallest time separation between two input pulses for which two separate output 
pulses will be produced. For fast discriminators, this is usually on the order of a few 
nanoseconds. The continuous pulse train rate is the highest frequency of equally spaced 
pulses which can be accepted by the discriminator. This rate can be as high as 200 MHz 
in fast discriminators. 

14.9.1 Shapers 

The shaper is a module which accepts pulses of varying width and height and reshapes 
these pulses into logic signals of standard levels and fixed width. To trigger the shaper, 
a minimum signal height is required and usually two or more inputs with differing 
threshold values are provided. Its function is thus identical to that of a discriminator. 

The width of the shaper output signals is usually cable-timed, i.e., the width is 
determined by an external delay cable which the user chooses. In these models, the 
shaper is bistable so that it may also be operated as a flip-flop. The set signal is given at 
the normal input while the reset signal is taken from the width-in terminal. 

14.10 Single-Channel Analyzer (Differential Discriminator) 

The single channel analyzer (SCA) or differential discriminator (DD) is a device which 
sorts incoming analog signals according to their amplitudes. Like the discriminator, it 
contains a lower level threshold below which signals are blocked. In addition, however, 
there is also an upper level threshold above which signals are rejected. Thus only signals 
which fall between these two levels provoke a response from the SCA, i.e., a standard 
logic signal. This is illustrated in Fig. 14.15. 

The opening between the upper and lower levels is usually called the window. With 
detectors where the output is proportional to energy, the SCA can be used to measure 
energy spectra by choosing a small, fixed window and systematically sweeping the 
window across the full pulse height range. The relative number of counts per unit time 
at each position can then be plotted to give a histogram of the spectrum. 

seA input 

seA output 

--~--\7(--~-
---------~--- ----

I 
I 
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Lower Level 

Upper Level 

Fig. 14.15. Basic operation of a single channel analyzer (SCA): only signals whose 
amplitudes fall within the window defined by the upper and lower level threshold 
trigger a signal 
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The SCA generally has three working modes, although not all are always available 
on any given model. 

1) Normal Mode or Differential Mode. In this mode, the upper (ULD) and lower 
(LLD) levels can be adjusted independently of each other, that is the settings of the 
LLD has no effect on the setting of the ULD and vice-versa. Thus if one wants to select 
signals with amplitudes between 1 and 2.5 V, for example, the lower level would be set 
at 1 V and the upper level at 2.5 V. Care should of course be taken to keep the upper 
level above the lower level. 

2) Window Mode. Rather than setting the upper and lower levels separately, in this 
mode one sets the lower level and the window width, that is the distance between lower 
and upper levels. In the example above, one would again have the lower level at 1 V, 
but the window (often indicated as L1E) at 1.5 V (= 2.5 -1.0). This mode has a 
particular advantage in that the window width is preserved even if the lower level is 
moved. Thus with L1E = 1.5 V as above, we could change the LLD to, for example, 
3 V, and the ULD would automatically be changed to 4.5 V (= 3 + 1.5). This mode is 
most suitable for spectrum analysis. One can define a certain resolution width, i.e., the 
window, and sweep this across the range of amplitudes, measuring the relative number 
of counts at each position without having to change two levels each time. 

3) Integral Mode. Here, the upper level is completely removed from the SCA circuit al­
together so that one simply has a discriminator with an adjustable lower level. The 
number of signals which pass is then just the integral of all the pulses from the 
threshold to the maximum limit of the SCA. 

In its role as a pulse height analyzer, the stability and linearity of the SCA threshold 
becomes an important factor. The degree to which the threshold control and the actual 
threshold correspond to each other is referred to as integral linearity. A typical linearity 
curve and an ideal curve are shown in Fig. 14.16. In percent, it is defined as 

(14.1) 

with L j : integral linearity; L1 Vmax: maximum deviation of real threshold from ideal 
threshold; Vmax: maximum input voltage to the SCA. 
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Fig. 14.16. Integral linearity of an SeA (after Milam 
[14.3)) 
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Fig. 14.17. Differential linearity of an SCA (after Milam [14.3]) 
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Equally important is the differential linearity which gives a measure of the con­
stancy of the window width as the LLD is changed. This is defined as 

(14.2) 

with L1 Vw : max. change in window width as LLD is varied; Vw : average window width. 
Figure 14.17 shows a plot of typical differential linearity . Clearly it is preferable to 

work in the middle of the SCA range than at the extremes. 
An extension of the normal SCA is the timing SCA which also include circuits for 

correcting walk in the generation of the logic signal. The outputs from the SCA's are 
thus also suited for timing circuits. The various time-pickoff triggering techniques 
which can be used for this are described in Chap. 17. 

14.11 Analog-to-Digital Converters (ADC or AID) 

The ADC is a device which converts the information contained in an analog signal to 
an equivalent digital form. This instrument is the fundamental link between analog and 
digital electronics. To give an example of its function, suppose an ADC accepts input 
pulses in the range of 0 and 10 V and is capable of outputting digital numbers from 0 to 
a maximum of 1000. (For simplicity, we will use decimal numbers in this example, al­
though in most ADC's this will be expressed in binary form.) An input signal with an 
amplitude of 2.5 V will thus be converted to the digital number 250. Similarly, for a 
150 m V pulse, we would find 15, and so on. The resolution of the ADC depends on the 
range of digitization. If numbers between 0 and 10000 were generated instead of 0 and 
1000, a finer digitization and a higher resolution would be obtained. 

ADC's may be of two types: peak-sensing or charge sensitive. In the former, the 
maximum of a voltage signal is digitized, as in our example above, while in the latter, it 
is the total integrated current. The latter is used with current-generating devices, e.g., a 
PM in current mode (usually fast detectors). Peak-sensing, on the other hand, is used 
with slower signals which have already been integrated, e.g., a PM in voltage mode. 
The time of integration or the time period over which the ADC seeks a maximum is 
usually determined by the width of a gate signal. 

Electronically, many methods are in current use for analog to digital conversion. 
One of the simplest and oldest techniques, often used for spectroscopy ADC's, is the 
ramp or Wilkinson method. In this technique, the input signal is first used to charge a 
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Fig. 14.18. Wilkinson method of analog-to-digital con­
version. The input is used to charge a capacitor which is 
then run down at a constant current. At the same time, a 
fixed frequency oscillator is gated on and the number of 
pulses generated during the time it takes the capacitor to 
discharge counted 

_ Scaler 

capacitor. This capacitor is then "run down", i.e. discharged at a constant rate. At the 
start of the discharge, a scaler counting the pulses from a constant frequency clock or 
oscillator is gated on. When the capacitor has completely discharged, the scaler is gated 
off. The contents of the scaler is then a number proportional to the charge on the 
capacitor. This method is illustrated by the block diagram in Fig. 14.18. 

The most widely used technique is the successive approximation method. Here, the 
incoming pulse is compared to a series of reference voltages to determine the height of 
the pulse. For example, suppose the ADC accepts 0 to 10 V input pulses and a signal of 
8 V arrives. The ADC first compares this pulse to a reference of 5 V. If the signal is 
greater than this value, which is true in our example, the first bit of the digital number 
is set to 1. Then one-half the previous reference is added to make a new reference of 
7.5 V and a comparison again made. Since the signal is greater, the second bit is also set 
to 1. One-half is again added on to make 8.75 V. This time the signal is less than this 
value, so that the third bit is set to O. Now half is subtracted from the reference and a 
comparison is made. This continues until the required number of bits is obtained. 

The time required for the digitization process is called the conversion time which, 
for most ADC's, is on the order of several tens of I-lseconds or more depending on the 
number of digits desired. Thus, they are slow devices when compared to other NIM 
modules. In the Wilkinson ADC, the conversion time is determined by the frequency of 
the clock. Obviously, the faster the clock, the faster the ramp can be run down (or the 
more digits can be converted). Currently, frequencies of 50 MHz to 200 MHz are used 
in this type of ADC. The successive approximation method is generally faster than the 
ramp type; however, the Wilkinson method is more linear and thus preferred for 
spectroscopy work. 

In addition to these two types, there are hybrid ADC's which combine the Wilkin­
son and successive approximation types to obtain a compromise between speed and 
accurarcy. The advent of modern integrated circuits has also made possible a number 
of very high-speed ADC's with conversion times less than 1 I-lS. Among these are the 
flash or parallel ADC which determines each bit of the digital number simultaneously 
rather than sequentially. This is made possible by sending the signal to a bank of volt­
age comparators connected in parallel with each comparator set at a different threshold 
(one for each bit). However, the larger the number of bits the larger the bank required. 
Other high-speed types are the tracking ADC, parallel ripple ADC and the variable 
threshold flash ADC. A review of these types is given in the article by Henry [14.2]. 
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14.11.1 ADC Linearity 

The linearity, or nonlinearity, of the ADC is defined in a manner similar to the SCA. 
Integral nonlinearity is the deviation from the ideal linear correspondence between 
pulse height and channel number. In most modern ADC's, this is less than 0.1070 (i.e., 1 
channel in 1000). The ADC differential nonlinearity, on the other hand, measures the 
nonconstancy in width of each channel. This parameter is of special importance for 
spectrum measurements where differing channel widths can distort the spectrum shape. 
Indeed, a perfectly flat input spectrum, for example, will take on a different shape 
since some channels will count more and others less. This distortion is not significant as 
long as the statistical uncertainty in each channel is greater than the differential non­
linearity. For example, if the differential linearity is 10070, the total counts per channel 
must exceed 100 before the effects of uneven channel width appear. For spectroscopy 
work, therefore, the ADC differential linearity is usually 1070 or less which allows a 
maximum of 104 or more counts per channel. 

Although they are given as two separate parameters, the integral and differential 
nonlinearities are related quantities since the integral nonlinearity is just the algebraic 
sum of the deviations of each channel from the ideal value. Because the deviations may 
be of opposite sign, however, it is possible for an ADC to have a good integral linear i­
ty, but a poor differential linearity. The differential linearity, therefore, is the more 
crucial of the two parameters. 

14.12 Multichannel Analyzers 

Multichannel analyzers (MCA) are sophisticated devices which sort out incoming 
pulses according to pulse height and keep count of the number at each height in a multi­
channel memory. The contents of each channel can then be displayed on a screen or 
printed out to give a pulse height spectrum. 

The MCA works by digitizing the amplitude of the incoming pulse with an analog­
to-digital converter (ADC). The MCA then takes this number and increments a 
memory channel whose address is proportional to the digitized value. In this way in­
coming pulses are sorted out according to pulses height and the number at each pulse 
height stored in memory locations corresponding to these amplitudes. The total num­
ber of channels into which the voltage range is digitized is known as the conversion 
gain. This determines the resolution of the MCA. Conversion gains of 128 up to 8 K or 
16K are often found on commercial MCA's. A block diagram is shown in Fig. 14.19. 

The heart of the MCA is, however, the ADC, and in order to give it sufficient time 
to digitize the input signals, there are usually very strong requirements on the rise times 
and widths of the incoming analog signals. To facilitate this, there exist a number of 
modules used mainly for adapting signals for MCA's. These include the biased 
amplifier and the pulse stretcher which are also described in this chapter. 

In addition to the ADC and memory, the MCA is also equipped with a discrimina­
tor or SCA, a linear gate and, in many cases, other useful provisions such as live time 
meters, etc. Some more sophisticated models are also equipped with microprocessors 
which allow a manipulation of the data stored in memory. 

In some of the larger models, the MCA may also be operated in multichannel scal­
ing mode (MCS). In this function, the MCA no longer acts a pulse height selector, but 
as a multi-channel scaler with each channel acting as an independent scaler. At the start 
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Fig. 14.19. Basic architecture of a multi-channel 
analyzer 
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of operation, the MCA counts the incident pulse signals (regardless of amplitude) for a 
certain dwell time and stores this number in the first channel. It then jumps to the next 
channel and counts for another dwell time period, after which it jumps to the next 
channel and so on. In MCS mode, therefore, the channels represent bins in time. This 
mode of operation is particularly useful for measuring the decay curves of radioactive 
isotopes, etc. 

14.13 Digital-to-Analog Converters (DAC or DI A) 

The opposite of the ADC is the digital-lo-analog converter or DAC. Here, a digital 
signal is converted into an equivalent linear signal which can then be used to drive an 
analog device, e.g., a servo-mechanism. Like ADC's, there are several ways in which 
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Fig. 14.20. Weighted resistor DAC. Each resistor value increases by 
a factor 2 (from Millman and Halkias [14.1]) 
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this can be accomplished. One method is the binary weighted resistor technique shown 
in Fig. 14.20. 

In this circuit, the binary word is passed through a network of parallel branches, 
one branch for each bit. At the beginning of the branches, there is an electronic switch 
which is connected to a constant reference voltage, Vp if the state of the bit is 1, or 
grounded if the bit is o. Each branch also contains a resistance weighted in proportion 
to the significance of the bit in the digital word, i.e., if the resistance of the most signifi­
cant branch is R, then the next branch has a resistance 2R, the following branch 4R, 
etc. All branches are then summed by an amplifier to give an output voltage: 

(14.3) 

where ai is the state (1 or 0) of the ith bit and n is the number of bits. The least 
significant bit (LSB) is ao while the most significant bit (MSB) is an-to 

The disadvantage of the weighted resistor DAC is that its accuracy and stability 
depend on the precision of resistance values. For large numbers of digits, the absolute 
values of the later resistances can, in fact, become quite large. Moreover, the weighted 
resistor method is particularly susceptible to variations in temperature since it is diffi­
cult to find resistors of widely differing values with the same temperature characteris­
tics. 

An alternate method which overcomes many of the disadvantages of the weighted R 
technique is the R - 2R ladder network. This network is essentially a current divider 
and is shown schematically in Fig. 14.21. Indeed, as can be verified by the reader, the 
resistance looking in any direction from any node is 2R. If we take one binary bit, say 
an -3 equal to 1 and all the rest 0, for example, then we see that it passes through 3 
nodes and is divided in two each time. This results in the binary weighting given by 
(14.3). Unlike the weighted R method, the ladder method only requires resistances of R 
or 2R. Moreover, the stability of the ladder depends only on the ratio of the resistances 
and not their absolute values. Variations are thus kept to a minimum and the resistance 
values remain reasonable. 

Node 0 Node N-3 Node N-2 Node N-l 
r----e ---/\.I\I'v----
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Fig. 14.21. The R-2R ladder DAC (from 
Millman and Halkias [14.1)) 
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14.14 Time to Amplitude Converters (TAC or TPHC) 

The T AC is a unit which converts a time period between two logic pulses into an output 
pulse whose height is proportional to this duration. This pulse may then be analyzed by 
a multichannel analyzer to give a spectrum as a function of the time interval. An ADC 
may also be placed after the T AC to digitize the output pulse. Units such as these are 
known as time-to-digital converters (TDC) and are also found commercially. 

A time measurement by the TAC is triggered by a START pulse and halted by a 
STOP signal. One simple method used by TAC's is to begin a constant discharge of a 
capacitor at the arrival of a START signal and to cutoff this discharge when the STOP 
appears. The total charge collected is then proportional to the time difference between 
the START and STOP signals. This is illustrated in Fig. 14.22. More on TAC's can be 
found in Chap. 17. 
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14.15 Scalers 

Fig. 14.22. Operation of a time-to-amplitude 
converter (T AC) 

The scaler is a unit which counts the number of pulses fed into its input and presents 
this information on a visual display. So-called blind scalers are those which do not have 
their own integrated display. Their contents may be read by a computer or fed into a 
separate display unit. In general, scalers require a properly shaped signal in order to 
function correctly; thus it is usually necessary to have a discriminator or a pulse shaper 
process signals from the detector before they can be counted by the scaler. Most com­
mercial scalers are also available with a variety of auxiliary functions such as a gate, 
preset count, reset, etc. 

14.16 Ratemeter 

The rate meter is a device which provides the instantaneous average number of events 
occurring at its input in a given unit of time (i.e. the frequency of events) and outputs 
this information in the form of a proportional dc voltage level. This output signal can 
then be used to drive a meter or a chart recorder or both. Like the scaler a standard 
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logic pulse is usually required at the ratemeter input. A choice of integration times is 
usually provided as well as a selection of decay constants on the output signal. The lat­
ter quantity essentially adjusts the reaction time to instantaneous changes in the count­
ing rate. 

The ratemeter is a much used instrument appearing mainly in the form of radiation 
monitors! 

14.17 Coincidence Units 

The coincidence unit determines if two or more logic signals are coincident in time and 
generates a logic signal if true and no signal if false. 

The electronic determination of a coincidence between two pulses may be made in a 
number of ways. One method is to use a transmission gate as we have seen (see Linear 
Gate). Another simple method often used is to sum the two input pulses and to pass the 
summed pulse through a discriminator set at a height just below the sum of two logic 
pulses. This method is shown in Fig. 14.23. Obviously, the sum pulse will only be great 
enough to trigger the discriminator when the input pulses are sufficiently close in time 
to overlap. The definition of coincidence, here, actually means coincident within a time 
such that the pulses overlap. This time period determines the resolving time of the 
coincidence and depends on the widths of the signals and the minimum overlap 
required by the electronics. 

B-U-
time-

B-U-

----- -- Threshold 

A+B Output 
Fig. 14.23. The summing method for 
determining the coincidence of two 
signals. The pulses are first summed 
and then sent through a discrimina­
tor set at a level just below twice the 
logic signal amplitude 

The coincidence unit is one example of a more general class of units known as the 
logic gate. These are units which perform the equivalent of Boolean logic operations on 
the input signals. The coincidence unit, for example, essentially, performs the logical 
"AND" operation. Other logic gates perform the "OR" operation, "NOT" and com­
binations of the above. These will be discussed in more detail in Chap. 16. 

14.18 Majority Logic Units 

A sophisticated and flexible version of the simple logic gates described above is the so­
called majority logic unit. Such modules accept several input pulses and allow a selec­
tion of logical operations on the input. For example, in a majority logic unit which ac­
cepts four inputs: A, B, C, and D, one might expect to find the functions shown in 
Table 14.1. 
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Table 14.1. Majority logic functions for 4 inputs 

Inputs 
connected 

4 

3 

2 

Function 

4-fold-AND 

4-fold OR 

3-fold majority 
(any 3 of 4) 

2-fold majority 
(any 2 of 4) 

3-fold AND 

3-fold OR 

2-fold majority 
(and 2 of 3) 

2-fold AND 

2-fold OR 

Pulse shaper 

14.19 Flip-Flops 

A·B·C·D 
A+B+C+D 
A·B·C+B·C·D+A·C·D+B·A·D 

A·B+A·C+A·D+B·C+C·D+B·D 

A·B·C 
B·C·D 
C·D·A 
B·A·D 
A+B+C 
B+C+D 
A+C+D 
A+B+D 
A·B+A·C+B·C 
B· C+B·D+C·D 
A·C+A·D+C·D 
A·B+A·D+B·D 
A·B 
A·C 
A·D 
B·C 
B·D 
C·D 
A+B 
A+C 
A+D 
B+C 
B+D 
C+D 
A,B, C,D 

The flip-flop is a two-input logic device which remains stable in either logic state until 
changed by an incoming pulse on the appropriate input. Such a device may be formed 
from two AND gates using feedback loops as shown in Fig. 14.24. 

The two input signals are defined as set (8) and reset (R), while the output signals 
are Q and its inverse Q. A set signal causes the Q output to go into logic state 1 (and Q 
into 0), where it will stay until a reset signal arrives. The Q output then changes to logic 
state 0 where it will remain until another set arrives, etc. A shortcoming of this device is 
that the arrival of both a set and reset at the same time results in an undetermined state. 
This operation is undefined and it is impossible to predict what will happen. The most 
likely result is that no reaction whatsoever will occur. This type of flip-flop is known as 
an SR-flip-flop and is the simplest device of this genre. More sophisticated variants in-
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Fig. 14.24. An RS flip-flop and its electronic 
symbol 

clude the JK-flip-flop, the clocked flip-flop, etc. A description of these may be found 
in any textbook on digital electronics. 

The flip-flop is a basic element in digital electronics as it is the only device which es­
sentially memorizes the input signal. It may thus be considered as a i-bit memory or 
latch. By combining several flip-flops in parallel, a multi-bit memory for a digital word 
can then be formed. This is the basis for the register described below. Other uses of 
flip-flops are illustrated in the following chapters. 

14.20 Registers (Latches) 

Registers record the pattern of several input pulses (e.g., the signals from an array of 
counters or the bits of a binary word) and store this pattern in a buffer where it can be 
read by an external device such as a computer. Most registers are coincidence registers 
requiring the presence of a gate signal in order for the input signals to be recorded. 

Registers may also be used to output logic signals. These are known as output 
registers and are most useful in computer-controlled systems. A bit-pattern written into 
the register buffer by the computer can then be output as logic signals to control the 
operation of other devices. 

14.21 Gate and Delay Generators 

Gate and delay generators or timers are triggerable devices which generate variable­
width gate pulses ranging from a few nanoseconds to as long as a few seconds. The 
duration desired is usually chosen by a front panel helipot. Gate generators can be trig­
gered by an input logic signal, and in some cases, manually via a front panel button. 
The gate pulse then may be used to activate a certain device, for example, a scaler for a 
chosen length of time. In this way, it serves as a timer. These modules are also equipped 
with an end marker signal which is a logic pulse issued at the end of the gate pulse. This 
feature can then be used as an active logic signal delay. Care, of course, must be taken 
to ensure the the accuracy of the signal widths and their stability. 

14.22 Some Simple and Handy Circuits for Pulse Manipulation 

While the NIM standard generally removes most problems of signal compatibility 
between modules, occasions still arise where some extra manipulation of the pulse 
signal must be made in order to satisfy some particular condition. Many times the 
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problem can be solved by a simple circuit constructed from a few resistances and 
capacitors without need for a special module. We present here several simple circuits 
for pulse manipulations which can be easily constructed in this way. 

14.22.1 Attenuators 

Although relatively rare, occasions do arise where an attenuation of the signal is neces­
sary. If signal amplitude is important, this should be done with a good linear attenua­
tor. However, if only a simple reduction in amplitude is desired, an attenuator can be 
made from the circuits shown below. 

For slow signals greater than say 100 ns rise time, the configuration in Fig. 14.25 
may be used. The attenuation factor, a, is given by the ratio 

(14.4) 

In order to meet the normal NIM impedance requirements for slow signals, the condi­
tions 

R j ~ Zin 

R2 ~Zout, 

where Zin and Zout are the impedances of the input and output devices should also be 
imposed when choosing the resistances. 

Because of high frequency attenuation, the circuit in Fig. 14.25 is not suitable for 
fast pulses. For these signals, the circuit in Fig. 14.26 is better suited. The values of the 
resistances are given by the equations: 

a-I 
Rj=ZL--

a+l 

2a 
R 2 =ZL-2--' 

a -1 

where a is the attenuation factor and ZL is the load impedance as shown in Fig. 14.26. 

14.22.2 Pulse Splitting 

Pulse splitting involves a division of the input signal with a corresponding attenuation 
of the pulse amplitudes. This, as we have cautioned, should be distinguished from the 

R, 

Fig. 14.25. Attenuator for slow signals 
(risetime > 100 ns) 

R, 

Fig. 14.26. Attenuator for fast pulses 
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R Fig. 14.27. Pulse splitter (or adder) for fast signals 

R 2 R 

fan-out which preserves the original pulse height. The pulse splitter may thus be used 
with analog signals (e.g., a PM signal), but not with logic signals which must maintain 
the correct levels. 

For fast signals, which must satisfy impedance requirements, the circuit in Fig. 
14.27 may be used. The circuit is symmetric so that the input signal is equally divided 
among the branches. Moreover, each branch sees the same impedance, as can be veri­
fied by the reader. If ZL is the impedance to which the splitter must be matched, a 
simple calculation then shows that the resistance R should be 

n-1 
R=ZL--, 

n+1 

where n is the number of branches. 

(14.5) 

In the case of slow pulses, splitting may be performed with a simple T-connector. 
By inverting the input and outputs in Fig. 14.27, the opposite of the a splitter, a 

pulse adder, may be formed. Such a circuit sums the various inputs into one signal. In 
order for this to work, of course, the signals must be correctly timed to arrive at the 
same moment. 

14.22.3 Pulse Inversion 

Fast pulses may be transformed with the aid of simple transformer as shown in Fig. 
14.28. Here the leads are simply reversed on the other end of the transformer. 

For pulses slower than::::: 100 ns, however, this method becomes nonlinear. The in­
version of such slow pulses, then, requires an active circuit. 

14.23 Filtering and Shaping 

14.23.1 Pulse Clipping 

In high counting rate measurements, it is sometimes desired to shorten the duration of 
the pulse to avoid pile-up. A simple method for fast pulses is to use a well-timed cable 
reflection to destructively interfere with the pulse. Figure 14.29 illustrates this method. 
A well-chosen length of' shorted cable is connected in parallel to the output. After 
splitting at the junction, one-half the pulse travels down this length of cable where it is 
reflected back in an inverted state. If T is the delay of this cable, this reflection rejoins 

Fig. 14.28. A pulse inverter 

CABLE 
DELAY=T~ -/\ R=oo 

v-

OUT k--r-....o..._-

Fig. 14.29. Pulse clipping with re­
flection 
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the other half at a time 2T later, where it interferes with the pulse tail. This leaves a 
pulse of width == 2T as shown. 

Clipping by reflections is a special case of a pulse shaping technique known as delay 
line shaping which is discussed in Sect. 14.3.5. 

14.23.2 High-Pass Filter or CR Differentiating Circuit 

A second method for pulse shortening is to use the CR high-pass filter shown in Fig. 
14.30. This simple circuit, consisting of a single capacitor and resistor, acts as a low 
frequency filter, attenuating frequencies below 

1 
fs 2nRC 

(14.6) 

Its effect on a step function pulse is illustrated in Fig. 14.30. As is seen, the flat part of 
the pulse (i.e., the top) is degraded and made to decay to the baseline, thereby shorten­
ing the pulse. In constrast, the fast rising part of the pulse, which depends on the higher 
frequencies, is not affected. 

C 

~~Lt-IN R OUT 1--, F1,. 14.". CR h~h.pa" filwc oc dif. 

1: = RC ferentiating circuit 

The CR high-pass filter is also commonly known as a CR differentiator. This latter 
name comes from the fact that it also performs the electrical analog of a mathematical 
differentiation, i.e., given a pulse form, the output will have the approximate form of 
its derivative. This can be verified mathematically. From Fig. 14.30, we have the equa­
tion 

Q 
Vin = - + VOU! . 

C 
(14.7) 

Differentiating both sides 

dVin 1 dQ dVout --=---+--. 
dt C dt dt 

(14.8) 

The term dQldt is just the current, i, so that 

dQ _ . _ VOU! 
---1---. 

dt R 
(14.9) 

Equation (14.8) then becomes 

dVin = _1_ VOU! + dVou! . 
dt RC dt 

(14.10) 
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If R C is small such that the last term is negligible, then 

dVin _ 1 v: 
Tt--; out, 
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(14.11) 

where T = R C is known as the time constant of the circuit. If T is large, however, then 

dVin _ dVout V. - v: 
-----~ m- out-

dt dt 
(14.12) 

Thus, the circuit will only differentiate the input pulse if the time constant is small com­
pared to the width of the pulse; otherwise, the pulse passes without a large change. 

The CR differentiator is a basic element in many pulse shaping networks in ampli­
fiers, although it is generally used in combination with other elements such as the RC 
integrator discussed below. This is elaborated upon in Sect. 14.3. For the nuclear 
physicist, the simple differentiator comes in handy for deriving short NIM pulses from 
long rectangular signals, for example, gates. This derived pulse may then be used to 
trigger some other part of the electronics. Figure 14.31 illustrates the effect of differen­
tiation on a rectangular pulse. Two pulses are obtained, one at the leading edge and 
another inverted pulse, on the trailing edge. Under the NIM standard, this latter pulse 
will be ignored because of its polarity. 

EI--_· -. 1No---1 ~UT r 
t ~ t:RC>t r 

r '. 

Fig. 14.31. Deriving a NIM 
pulse by differentiation 

When performing such a derivation, special care must be taken to ensure that the 
differentiated pulse attains the correct NIM level. This is done by choosing the time 
constant smaller than the width, as required, but larger than the rise time. In this way, 
the rising part of the pulse passes with no change and the differentiated pulse retains 
the original NIM pulse height. If the time constant is smaller than the rise time, howev­
er, the differentiated pulse begins to decay before reaching its full amplitude. This loss 
of amplitude is sometimes referred to as ballistic deficit. 

14.23.3 RC Low-Pass Filter or Integrating Circuit 

Complementing the CR low-frequency filter is the RC high-frequency filter shown in 
Fig. 14.32. Its effect on a step function is also shown. The lower cut-off frequency for 
this circuit is 

1 
f~---

2rrRC 

I R ,t---j 
(14.13) 

~ IN~UT~ 
Fig. 14.32. RC low-pass filter or 

1: : RC integrating circuit 
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This circuit is also known as an RC integrator as it performs the electrical 
equivalent of an integration. This can be shown mathematically in the following man­
ner. From Fig. 14.32, we have the equation, 

Substituting, 

. dQ C dVOUl 
1=--= ---

dt dt 

we find 

V in = R C dVout + Vout . 
dt 

If T = R C is large, then 

V dVout 1 J d in:::: T-- ~ Vout :::: - Vin t. 
dt T 

If T is small, however, we have 

(14.14) 

(14.15) 

(14.16) 

(14.17) 

(14.18) 

Thus in order for the integrator to work, the time constant must be large compared to 
the pulse. The principal application of the integrator is to smooth out fluctuations in a 
noisy signal as shown in Fig. 14.33. As a high-frequency filter, however, this integra­
tion also affects the fast rise time of the signal. Like the CR differentiator, the RC low­
pass filter enjoys an equally important role in pulse shaping in amplifiers. 

R 

IN~OUT~ Fig. 14.33. Noise filtering by inte­
gration 



15. Pulse Height Selection and 
Coincidence Technique 

With this chapter, we begin our discussion of designing and setting up nuclear elec­
tronics systems for measurements in nuclear physics. This is a somewhat ambitious 
goal, as for a given application, there is no one particular system which must be used. 
Indeed, nowhere does the old adage of "more than one way of skinning a cat" apply 
more often than here. And if there are any hard and set rules, it is to use lots of 
imagination! There are nevertheless certain basic systems and methods which have 
proven their efficiency and efficacy over the years and which provide a foundation for 
more complex systems. Our method here will be to describe examples of these often 
used systems using them as illustrations of the how the various functions described in 
the previous chapter can be combined to give a particular result. 

We will begin in this chapter with some simple analog systems and cover two par­
ticularly fundamental techniques: setting up and adjusting circuits for pulse height 
selection and coincidence determination. Once this is understood, the student can go on 
to the intricacies of electronic logic to which we devote a separate chapter. Before sett­
ing up these systems, however, we advise the student to familiarize himself with the use 
of the oscilloscope, if he has not already. A review of oscilloscope operations is given in 
Appendix A. A practice to be recommended, in fact, is to examine the input and output 
signals at each point in the system as it is being set-up. This not only leads to a better 
understanding of the system, but will also facilitate trouble-shooting later on. 

15.1 A Simple Counting System 

A basic measurement in nuclear or particle physics experiments is a simple counting of 
the number of signals from the detector. For example, measuring the activity of a 
source, or "plateauing" a counter. Let us examine a simple electronics set-up for this 
purpose. Figure 1S.1 shows as schematic diagram of the processing units and connec­
tions necessary in this system. 

In this set-up, the analog signal from the detector is shaped by a preamplifier and 
amplifier combination. The resulting signal is then sent through a discriminator which 
delivers a standard logic signal for every analog signal with an amplitude higher than 
the threshold. The logic signal is then sent to the scaler which counts each arriving 

Fig. 15.1. A simple counting 
system 



304 15. Pulse Height Selection and Coincidence Technique 

signal. One should also ensure here that the scaler is of the correct logic type, i.e., it ac­
cepts positive (TTL) or negative (NIM) signals, whichever may be the case. NIM to 
TTL converters may be used if there is an incompatibility. 

For some scintillation counters, the direct output is sufficiently large such that 
amplification is not necessary. In such cases, the detector output may be connected 
directly to the discriminator. 

The discriminator serves the dual purpose of excluding low level electronic noise 
and shaping the accepted signals to a form acceptable to the scalers. The threshold 
should be carefully adjusted so as to ensure that electronic noise is eliminated, but not 
so high as to also cut out good signals. 

The scaler should be chosen according to the count rate desired. Evidently, the use 
of a scaler which is slower than the count rate of the experiment will result in lost 
counts and bad data! Thus, either take a faster scaler or reduce the count rate. 

The system shown in Fig. 15.1 is operated manually, i.e., counting is started and 
stopped by hand. If two timers, one with a manual trigger, are available, and the scaler 
is provided with a gate and reset facility, the following circuit may be used for starting 
and stopping the scaler for fixed time intervals (Fig. 15.2). 

MANUAL 
START 

o 
GOG 

SCALER 
rO-U-T------~RESET 

IN 1----

IN 
GOG 

2 

GATE 

Fig. 15.2. Using two gate and delay generators 
(GDG) as a timer for a scaler 

In this set-up, a short pulse from the first timer, triggered manually, is used to clear 
the scaler. The end marker then starts a gate pulse which opens the scaler for accumula­
tion for a period equal to the gate width. 

15.2 Pulse Height Selection 

Often in may experiments, the reaction of interest or the products of the reaction are of 
a fixed energy or are limited to a small range of energies. For example, in the classic 
Rutherford scattering experiment, the energy of the probing a-particles is the same 
before and after scattering. Similarly, in experiments using positron annihilation, the 
energy of the two annihilation photons is fixed by kinematics. In such measurements, it 
WOUld, of course, be advantageous to be able to pick out only those events with the cor­
rect energies and eliminate the rest. Interference from background reactions would 
then be reduced and a cleaner, more efficient measurement made. Assuming the use of 
an energy sensitive detector, such a "filtering" can be made by electronically selecting 
only those signals with the correct pulse height. 

A simple system for such a purpose can be formed from Fig. 15.1, by replacing the 
discriminator with a single channel analyzer (SeA), as shown in Fig. 15.3. This module 
has adjustable upper (ULD) and lower (LLD) thresholds which define an acceptance 
"window". Pulses with amplitudes falling into this window are accepted and converted 
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Fig. 15.3. A simple system for pulse height selection 

to logic signals while everything else is rejected. The SCA thus acts as a pulse height 
filter. 

In most commercial SCA's, the thresholds are calibrated in volts and are adjustable 
over the full input range of the module. In slow SCA's this range is usually 0 to 10 V, in 
accord with the NIM standard for analog signals. For fast SCA's, this is more com­
monly 0 - 5 V or 0 - 1 V. In either case, both thresholds should remain stable and linear 
with respect to the dial settings. While this is generally true in the central region, some 
fall-off may occur near the upper and lower extremes. For this reason, when setting a 
window, it is advisable to keep it near the center of the input range for the best results. 
This may require adjusting the gain of the amplifier or detector voltage so that the 
pulse heights of interest fall into this range. 

15.2.1 SCA Calibration and Energy Spectrum Measurement 

For energy selection, the thresholds must first be calibrated in terms of energy. In 
nuclear physics, this can be done by using the SCA to measure the energy spectra of 
sources with emissions of known energies. 

To do this: 

1) define a small energy window, 11E = ULD- LLD, for example, 0.1 or 0.05 V. 

2) sweep this window across the full input voltage range in non-overlapping steps 
equal to the window width, and measure the number of counts per unit time at each 
position. For example, if 11E = 0.10 V, then starting at 0, measure at positions 
0.0 - 0.10,0.10 - 0.20,0.20 - 0.30 V, etc. This is a rather tedious operation and is more 
easily done if the SCA is equipped with a window mode of operation; otherwise, the 
ULD and LLD must be adjusted separately by hand. 1 

3) Plot the results versus LLD setting. A spectrum is thus obtained which should 
reveal peaks characteristic of the calibration source. A correspondence between LLD 
and energy can then be made. As an example, Fig. 15.4 shows the spectra from 22Na 
and 60Co sources taken with a NaI detector using the electronics set-up in Fig. 15.3. 
A window of 0.05 V was chosen and measurements were made for 10 s at each setting. 
(As such, the entire measurement took == 1 h!!) 

4) Identify the peaks with the aid of the isotope tables. A calibration curve can be 
drawn by taking the best fitting straight line through the points. This is shown in Fig. 
15.4. The energy scale is indicated on the right-hand side of the graph. 

One should note the linearity of the calibration. While a minimum of only two 
points is required to perform the calibration, it is generally a good idea to take more 
than this number in order to check for any nonlinearities or instabilities in time. Note 

1 When changing the threshold values, be careful of any play in the dial. Turning backwards to a previous 
position may not be the same as turning forwards to the same position. 
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Fig. 15.4. Calibrating an SCA by measuring the pulse height spectrum of known sources. Spectra from 22Na 
and 60Co are shown along with a calibration line 

also that the curve crosses through zero volts at zero energy. If this is not the case, there 
is most likely a dc offset being added to the signal somewhere in the electronics chain. 
This is generally not a serious problem as it simply shifts the spectrum to the right or 
left by a fixed amount. 

This calibration is, of course, only valid for a fixed value of the amplifier gain and 
detector voltage. Changing any of these parameters changes the correspondence be­
tween energy and pulse height. In particular, if one follows the recommendation of 
centering the pulse heights of interest in the input range of the SCA by adjusting the 
amplifier gain, several calibrations may be necessary. In such a case, a preliminary 
calibration can first be made with a larger window, for example, and a final more 
detailed one made when the pulses are centered. 

15.2.2 A Note on Calibration Sources 

Before ending this section, a word about choosing calibration sources should be made. 
In general, sources of the same type of radiation as is to be measured in the experiment 
with energies as close as possible to the desired energy range should be chosen. This is 
to avoid any possible differences in detector response for different particle types 
and/or energies. For y-rays, this is not usually a problem as many y-ray or x-ray 
sources covering a relatively large energy range exist. For electrons, however, this 
becomes somewhat more difficult. The only natural sources of monoenergetic electrons 
are internal conversion sources and these are generally limited in number and in the 
range of energies they cover. Moreover, electron detectors are also usually very ineffi­
cient for y-ray absorption by the photoelectric effect, so that the measurement of y 
peaks may not be used either. To obtain a wider energy coverage, an alternate method 
is to measure the energy distribution of electrons coming from the Compton scattering 
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of y-rays in the detector. Since the maximum energy of this distribution (the Compton 
edge) is fixed kinematically and can be calculated from the known energy of the y-ray 
(2.110), this point serves as a reference. In this way, the larger variety of y-sources is 
also made available for calibration of electron detectors. 

When using the Compton edge technique, a problem may arise in determining just 
where the Compton edge lies. Indeed, the finite resolution of the detector smears out 
the theoretically vertical edge into a sloping edge so that a sharp structure is no longer 
available. A common procedure is to choose the mid-point on this slope [15.1]. This 
appears to work for the Compton edges in Fig. 15.4 if we compare their mid-points to 
the calibration line. However, some investigators have found the "knee" or peak of the 
edge or a variable point dependent on energy [15.2] to be better. This can only be deter­
mined by trying the various schemes and seeing which gives the most consistent results. 

15.3 Pulse Height Spectroscopy with Multichannel Analyzers 

In the preceding section, we have described how a pulse height spectrum may be ob­
tained with the use of an SCA. For those who have tried this technique, it is clear that 
while the method works, it is a tedious operation and not very convenient if many 
spectra are to be taken. For such work, the multichannel analyzer becomes indispen­
sable. The basic functioning of this device is explained in Chap. 14. Here, we will only 
discuss some points about the use of the MCA. 

Figure 15.5 shows a diagram of the basic set-up. Depending on the ADC and the 
detectors used, it may be necessary to use a pulse stretcher to shape the signals before 
entry into the MCA. This is usually the case with fast signals from an organic scintil­
lator. In addition, a biased amplifier can be used if expanded portions of the spectrum 
are desired. These are optional however and are thus shown in outline in Fig. 15.5. 

:----~ADC 

: : IN 
..... ____ ..J 

BIAS. AMP. MCA 
OR 

PULSE STRETCHER '--___ --' 
Fig. 15.5. Pulse height spectroscopy 
with a multichannel analyzer (MeA) 

An important factor is the setting ofthe discriminator. This should not be too high, 
otherwise, valid portions of the spectrum will be cut out, nor so low as to flood the 
system with low energy noise. This latter case is a common error by first-time users, but 
shows up very quickly as an almost 100070 dead time on the live-time meter (assuming 
the MCA is equipped with one!) or with a very high counting rate in the lowest 
channels. 

Even with a correctly set discriminator, attention should be paid to the count rate. 
If the dead time is greater than 30 - 40%, then this rate is too high. This leads to pulse 
pile-up which results in broaden peaks and a deterioration in resolution. In such cases, 
the counting rate should be reduced by either increasing the distance between source 
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Fig. 15.6. Sample MeA pulse height spectra from a Nal detector: ia) 1\ Cs. (b) wCo 

and detector or using a weaker source. Scattering from surrounding materials should 
also be examined in the case of poor resolution. 

A correct amplification of the input signal must also be found in order to have 
a correctly centered spectrum of sufficient resolution. Obviously, if the maximum sig­
nal amplitude is only 1 V and the MCA accepts from 0 to 10 V, the spectrum will be 
squeezed into the first 10070 of the channels with a resolution ten times worse than can 
be obtained! 

Many MCA's also allow a selection of the total number of channels (conversion 
gain) into which the spectrum is to be fitted. Choosing this number requires a little 
care. A spectrum with closely spaced peaks, for example, will never be resolved if too 
few channels are used. Using too many, on the other hand, results in a spectrum with 
large statistical fluctuations in each channel since the total number of counts is now 
divided among more channels. Small peaks or bumps may consequently be lost in these 
fluctuations. The remedy, here, it to count longer; however, time may not always be 
available. 

For spectra showing sharp peaks, a general rule of thumb is to allocate 4 to 5 chan­
nels to the peaks in the region above FWHM (full width half maximum); see, for 
example, the spectrum in Fig. 15.6. Allowing more, of course, is always possible as­
suming time is not a factor. If the resolution of the detector is known beforehand and if 
the entire spectrum from 0 to maximum pulse height is desired, this criterion allows us 
to calculate a lower limit for the number of channels required. From the definition of 
resolution, we have 

. FWHM 
R (resolutIOn) = ------

energy of peak 

In terms of the MCA channels, 

FWHM 
R=------

5 

position of peak position of peak 

(15.1) 

. . 5 
pOSItion = - . 

R 
(15.2) 
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A detector with a 10070 resolution, therefore, requires at least 

position:::: _5_ = 50 channels. 
0.1 

309 

(15.3) 

For spectrum measurements in which only expanded portions are desired, this calcula­
tion is no longer valid. 

Calibrating the MCA is similar to the SCA: the spectra from known sources can be 
measured and a calibration line drawn as in Fig. 15.4. The calibration line should be 
linear of the form 

pulse height = a + b . channel, (15.4) 

where a is the zero offset and b is related to the gain. If a line passing through zero is 
desired, this can be adjusted with the zero-offset control which shifts the spectra (and 
thus the calibration line) to the left or right without changing the spacing between the 
channels. If the slope of the line (i.e., the channel spacing) is to be changed, then the 
signal gain must be changed either by adjusting the amplifier gain or the detector volt­
age. For the beginning user, the difference between gain and offset and their relations 
to the channel spacing and positions should be made perfectly clear. 

Although the ADC should be linear to much less than 0.1 %, one must also include 
the nonlinearities of the detector, amplifier and any other instruments through which 
the analog signal passes before being analyzed. This can be calculated by adding the 
non-linearities quadratically, i.e., 

(15.5) 

The resulting calibration line will thus be less linear than the MCA specification, but 
should still remain small. Nevertheless, if many channels are being used, say 1024, and 
the overall nonlinearity is 0.1 %, there is still a 1 channel uncertainty. If a very precise 
calibration is desired in such cases, the calibration line may be fit with a quadratic 
form. 

E = a . (channel)2 + b . channel + c . (15.6) 

Going beyond this, however, should not be necessary. 

Example 15.1 Mossbauer Spectrometry 

A good example of the use of the SCA and the MCA is Mossbauer spectrometry. Here, 
we are interested in measuring the transmission rate of a particular y-ray (among 

f----_~ _____ ----iBIAS. 
DRIVE AMP. 

GATE 

= ABSORBER 
MeA 

Fig. 15.7. A set-up for Mossbauer spectrometry 
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several emitted by the source) through an absorber as a function of the velocity of the 
source relative to the absorber. The source is mounted on a drive which delivers an elec­
tronic signal whose amplitude is proportional to velocity. For each transmitted y-ray, 
then, we would like to measure this velocity and accumulate the total counts in a MeA. 
Figure 15.7 illustrates a typical set-up for this purpose. 

The velocity signal is sent to the MeA via an amplifier in "gate" mode, i.e., a gate 
signal is required in order for the signal to pass through. At all other times, the signal is 
blocked. This gate is generated by a signal from an SeA which selects out the correct 
y-ray. The spectrum obtained is then transmitted y's versus source velocity. In place of 
the gated amplifier, a gated biased amplifier may also be used to allow the expansion of 
certain portions of the Mossbauer spectrum. 

15.4 Basic Coincidence Technique 

An extremely important technique in nuclear and particle physics is the electronic 
determination of coincidences. Like pulse height selection, coincidence in time between 
two or more events serves as a very powerful criterion for distinguishing reactions. 

Figure 15.8 illustrates a simple coincidence measuring system. The basic technique 
is to convert the analog signal from the detectors into a logic signal and then to send 
these pulses to a coincidence module. The functioning of such a circuit is described in 
Sect. 14.17. If the two signals are, in fact, "coincident", then a logic signal is produced 
at the output. 

The meaning of coincident here deserves some explanation. From the description of 
the circuit, it can be seen that a coincidence output signal is produced if any part of the 

1-----1 DISCR. 

1----1 DI5CR. 

INPUT 1 

INPUT 2 

COINCIDENCE 

OUTPUT 

DELAY 

SCALER 

DELAY -u-

Fig. 15.8. A system for coincidence measurement 

Fig. 15.9. 
Coincidence between pulses 
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two incoming signals overlap. (This is the ideal case, of course. In a real circuit, there is 
generally a minimum overlap necessary before it can be recognized as such. For the 
purposes of discussion, however, we will consider the coincidence circuit as ideal.) 
Thus all pulses arriving within a time equal to the sum of their widths are registered 
as coincident. Figure 15.9 shows some examples of coincident and non-coincident 
pulses. 

In order for this set-up to work, however, it is necessary that the electrical path of 
each branch leading to the coincidence module be of equal length. This can be ensured 
by adding adjustable delays to each line, as shown in Fig. 15.8. In principle, only a 
delay is needed on the faster branch, however, one on each branch provides a bit more 
flexibility when adjusting the circuit. 

15.4.1 Adjusting the Delays. The Coincidence Curve 

To adjust the delays, a source of true coincident events is necessary. For y-ray detectors 
a very common source is radiation from positron annihilation (e.g. 22Na). Here, two 
photons of equal energy are emitted in opposite directions. If the detectors are placed 
face to face with the annihilation source between them, then these events may be used 
to adjust the delays. 

If the detectors are inefficient for y-ray detection but are thin, for example, plastic 
scintillators, coincidences may be obtained by placing the detectors close together and 
allowing a beam of charged particles (from a P source, for example) to pass through 
both counters. Be sure the particles have sufficient energy to penetrate through the 
counters, however! These two set-ups are illustrated in Fig. 15.10 and should be appli­
cable most of the time. However, there will, of course, be situations in which neither of 
the above is suitable. In such cases, some imagination must be used! 

With a source of coincident events, the relative values of the delays can be found by 
measuring the number of coincidences as a function of delay setting. Plotting the re­
sults on a graph gives what is then known as the coincidence curve. This is illustrated in 
Fig. 15.11. 

Here we have plotted the delay setting of branch 1 on the positive x-axis and the 
delay of branch 2 on the negative x-axis since this represents a negative delay of branch 
1 relative to branch 2. It should be noted that even with a zero delay setting on the box, 
a certain delay (= a fraction of a ns) is still present just from passing through the box. 
In our set-up with delay boxes on both branches, this is equalized. However, if only one 
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ANNIHILATION RADIATION 
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Fig. 15.10. Set-up for adjusting the coincidence between two detectors. For gamma ray detectors, the two 
photons from positron annihilation provide a useful source of coincident events. For charged particle detec­
tors, a beam of electrons or other particles may be used provided the particle energy is high enough (and the 
counters thin enough) for the particles to pass through at least the first counter 
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Fig. 15.11. A measured coincidence curve 
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box is used and the coincidence curve is made by placing the box on one branch and 
then the other, the zero points of each branch will not coincide because of this residual 
delay! 

From this curve, it is clear that the correct setting for the delay is that in the middle 
of the plateau. Ideally, of course, this coincidence curve should be perfectly rectangular 
in shape as it, in principle, corresponds to the region of overlap between the two rec­
tangular pulses. However, timing variations arising from the detectors and the elec­
tronics (as well as the less than perfect shape of the signals) cause a jitter in the time 
relation between the two signals which smears out the sides of the curve. If the width of 
the signals is smaller than these fluctuations true coincidences will, in fact, be lost. 
Measurements of the coincidence curve will therefore fluctuate giving the curve an 
aberrant shape. In such a case, the widths should be enlarged so as to encompass this 
time jitter. These effects are the limiting factors in a coincidence circuit and are discus­
sed in more detail in Chap. 17. 

The full width of this curve at half its maximum height (FWHM) is usually taken as 
the resolving time of the system. This time should generally be close to the sum of the 
two pulse widths. Obviously, the narrower this curve, the better is the capability of the 
circuit for distinguishing small time intervals and the less accidental coincidences. To 
increase this resolution, one might at first be tempted to decreases the widths of the 
pulses to the minimum. However, this is limited by the timing fluctuations which we 
have mentioned. 

15.4.2 Adjusting Delays with the Oscilloscope 

While not as precise as measuring a coincidence curve, a quick method of finding the 
approximate delay settings is to view the two pulses on a dual trace oscilloscope. By 
triggering on one pulse, the time relation of the second may be seen quite readily and 
appropriate delays can be added or subtracted to bring the pulses into an overlap condi­
tion. In doing this, of course, one should also ensure that the cable leads to the oscillo­
scope are both of the same length! Figure 15.12 illustrates this technique. 

While this method is quite convenient, it requires a relatively intense source of coin­
cidences, (especially when inefficient detectors are involved), in order for the second 
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signal to have sufficient intensity to be seen clearly on the oscilloscope screen. In the 
case of a weak signal, one must resort to measuring a coincidence curve. 

15.4.3 Accidental Coincidences 

In making a coincidence measurement, one must also consider the possibility of ac­
cidental coincidences occurring in the circuit. These may be due to uncorrelated back­
ground events in the detectors which happen to arrive within the resolving time of the 
circuit or to random noise which triggers the discriminators, etc. Clearly in any mea­
surement, the number of such accidentals must be kept to a minimum. 

The rate of accidentals in any coincidence setup may be estimated from the singles 
rate in each branch and the time resolution of the system. Suppose Nt and N2 are the 
singles counting rates for branches 1 and 2 respectively and a is the resolution. Since 
any overlap in these pulses produces a coincidence, this means that the signals need 
only be within a period a of each other in order to trigger the module. Assuming a 
constant singles rate, then, for each signal which arrives from branch 1, there will be 
N 2a pulses from branch 2 which fall into this allowable time period. Since there are Nt 
pulses/unit time in branch 1, the total number of accidentals per unit time will be 

Accidentals =::: a Nt N2 . (15.7) 

This rate may also be measured, and, in fact, corresponds to the baseline of the 
coincidence curve in Fig. 15.11. This automatically suggests a method for measuring 
the accidentals simultaneously with the true coincidences, i.e., form a second coin­
cidence circuit with delays set so as to be completely off the coincidence curve. With 
current NIM modules which contain multiple outputs and multiple coincidence circuits 
within one physical module, such side measurements are facilitated. 

15.5 Combining Pulse Height Selection 
and Coincidence Determination. The Fast-Slow Circuit 

We have seen now how to set-up a system for pulse-height selection and a circuit for 
coincidence determination. The next obvious step is to consider combining the two. 
One way would be the set-up illustrated in Fig. 15.13. 

The signals from the detectors are amplified and shaped, then sent to timing SeA's 
for pulse height testing. The logic pulses from these modules are corrected for walk 
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effects (see Chap. 17) and may be tested for coincidence. Such a system generally gives 
good timing resolution and is adequate for most purposes. 

It is clear, however, that in such a system the shaping of the pulse destroys some of 
the rise time information and does not represent the ideal situation for timing even with 
walk correction. Indeed, if the maximum in timing and pulse height resolution is 
desired, a so-called fast-slow system can be used. Such a system divides the signal into 
two branches, fast and slow, treates each separately and then combines the results. This 
system is schematically outlined in Fig. 15.14. 

The slow branch is sent to a shaping amplifier and tested for pulse height in the 
usual manner. Thefast branch, on the other hand, is passed directly (or through a fast 
amplifier) into a fast coincidence. This signal is then placed in a triple-fold coincidence 
with the slow branch. In this way, the cirteria of a fast coincidence is added to the 
slower coincidence of the SCA signals. 

With scintillation counters, a method that is sometimes used is to take the slow 
signal from one of the later PM dynodes and the fast signal from the normal anode. 
The dynode signal is somewhat more linear since it is less saturated, while the anode 
signal has less time jitter because of its greater amplitude. 

For fast scintillator signals, a recent development has been the construction of fast 
SCA's which allow both a fast timing signal and a good pulse height selection on un­
shaped signals. With such modules, the simpler set-up in Fig. 15.13 may then be used. 

15.6 Pulse Shape Discrimination 

In addition to pulse height information, the signals from some detectors also carry in­
formation in their shapes, (or more precisely in their rise and decay times). A prime 
example is the liquid scintillator NE213 which has the characteristic of emitting differ­
ent pulse shapes in response to different types of particles. This is a result of the differ­
ent ionizing powers of the particles which give rise to different excitation mechanisms 
in the scintillator and in consequence, different fluorescent decay times (see Sect. 7.2). 
A similar effect may be found in large ionization detectors. Particles of differing 
ionization power produce longer or shorter ionization trails in the detector volume 
which result in different charge collection times and hence different pulse shapes at the 
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detector output. The technique of pulse shape discrimination (PSD) takes advantage of 
this property to allow a distinction between particle types when different incident 
radiations are present. One of the most common applications of PSD in in fast neutron 
detection where large gamma-ray backgrounds often accompany the neutrons. Using 
PSD, the gamma ray events may be selected out and suppressed leaving only the neu­
trons or vice versa. 

Electronically, discriminating between different pulse shapes requires measuring 
the decay time of each pulse and this independently of the amplitude. In practice, this 
can be done efficiently only over a limited range of amplitudes (the dynamic range), 
which, for some applications such as spectroscopy, may imply certain restrictions. A 
second consideration is the speed of the PSD circuit. For high count rates, this becomes 
an important limiting factor. Not surprisingly therefore, a number of different circuits 
have been developed over the years. One of the most widely used methods is the zero­
crossing system [15.3] shown in Fig. 15.15. This method offers a wide dynamic range 
and is relatively easy to implement; it is, however, limited to maximum count rates on 
the order of 20 - 30000 counts/ s. 

FAST AMPLIFIER 
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SIGNAL 

C 
F ~------------~ 
D LJ 

DOUBLE ZERO 
START r 
STOP C 

PREAMP 

DIFF CROSSING 

AMP Dv PICK L...-....------'-----' 

OFF 

OTHER EVENT RELATED INFORMATION 
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Fig. 15.15. A zero-crossing pulse shape discrimination circuit 
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In this system, the detector output signal is first split into two with one branch going 
to a fast time-pickoff discriminator (a constant fraction, for example), which triggers 
on the fast leading edge of the signal and starts a T AC or some other type of timing 
circuit. The second branch is integrated and sent through a preamplifier. This results in 
a pulse whose rise time depends on the decay time of the initial pulse (see, for example, 
Fig. 7.12). This signal is then doubly differentiated by a double delay amplifier which 
produces a bipolar pulse whose zero-crossing time depends on the input rise time. A 
zero cross-over pickoff module now triggers on this point and generates a STOP signal 
for the TAC. The time period measured by the TAC is thus proportional to the decay 
time of the detector pulse. Figure 15.16 shows a typical TAC spectrum from an NE213 
detector in a field of neutrons and gammas. The two types of particles are clearly dis­
tinguished. To select a particular particle, an amplitude selection is performed on the 
T AC signal using an adjustable discriminator of SCA. The resulting logic signal may 
then be used to gate a recording instrument such as an MCA. Alternatively, the TAC 
pulse may be digitized and selected by computer, or stored on some sort of recording 
medium along with other event related information for analysis at a later time. 
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When using pulse shape discrimination, there are a number of important points to 
consider. The first and most important is the efficacy of the discrimination. Quite 
obviously, one would like the PSD time spectrum (e.g., Fig. 15.6), to show narrow 
peaks associated with each particle type separated by as wide and deep a valley as pos­
sible. This allows a clean distinction between particle types to be made with a minimum 
of breakthrough i.e., events in the tails of the peaks which "break" through the 
separating cut to contaminate the events in the opposite region. A wide valley also 
makes the cut less sensitive to any drifts which might occur in the spectrum. 

We can define the breakthrough more precisely as the fraction of unwanted events 
which are accidentally accepted as good ones. In general this should be less than 107o, 
although how much can be actually tolerated depends on the application. Even with a 
good 1 % breakthrough fraction, however, one must also consider the relative amounts 
of each type of radiation. Indeed, if the undesired radiation type is 100 times more 
prevalent than the type being selected, for example, the total number of breakthrough 
events will be comparable to the total number of desired events - clearly an intolerable 
background! 

Apart from the limits imposed by the intrinsic pulse shape discriminating properties 
of the detector itself, the quality of the timing spectrum depends very strongly on the 
time pick-off circuits used (see Chap. 17) and the dynamic range desired. Because of 
time walk, the timing spectrum will vary somewhat with the amplitude of the pulse. 
This effect is most marked for small pulses where time walk is the greatest. If a wide 
dynamic range is chosen, as in spectroscopy, it may be necessary to record events as a 
multi-dimensional spectrum, i.e., as a function of both amplitude and PSD time plus 
any other relevant parameters, and then make an amplitude dependent cut to select out 
the desired events. Another solution is to divide the amplitude range desired in two and 
make two separate measurements at two different gains. This latter solution, of course, 
requires normalizing the two measurements in some manner. 

The total count rate on the detector is another factor which should be considered. 
At high rates, pile up effects, etc. can cause a worsening of time resolution and increase 
the breakthrough. With scintillation counters, PM gain shifts also occur. 



16. Electronic Logic for Experiments 

In the preceding chapter, we discussed a number of simple setups which treated the 
analog signals coming from the detectors. These signals were at some point converted 
into logic signals, either by a discriminator or an ADC, after which a simple analysis 
was performed, e.g. counting. In some of these systems, only events satisfying certain 
conditions were accepted. In the coincidence circuit, for example, this selection was 
made possible by the AND gate, which mathematically speaking, performed a Boolean 
logic operation upon the two detector signals. Then, according to the result, the event 
was accepted or rejected. This is a simple example of electronic logic and its use in se­
lecting out certain events from many. Using combinations of logic gates, e.g., OR, 
AND, etc., it is evident that more complicated Boolean operations can be performed 
on the signals and more stringent selections made. In present day nuclear and particle 
physics experiments, this electronic logic can be extremely complex due to the large 
number of detectors and reactions which occur. And indeed many of these experiments 
cannot be performed otherwise! 

Unfortunately, there are no simple prescriptions for constructing an electronic logic 
system and, in general, there is more than one (indeed many!) way of implementing it. 
To a certain extent, the configuration of a system depends on what electronics modules 
are available, cost, etc. Our purpose here is to present some simple examples and tricks 
which hopefully will guide the reader towards a better comprehension of such systems 
and help in his own formulation of other systems. Further examples are also given in 
the next chapter which treats the specific case of timing. 

16.1 Basic Logic Gates: Symbols 

Logic gates, as we have mentioned, electronically perform the equivalent of a Boolean 
operation on the input signals. The response of such units are defined, therefore, by truth 
tables. Figure 16.1 shows the truth tables for the common gates NOT, AND, OR and 
their negations along with their electronic symbols. For simplicity we have considered the 
case of just two input signals A and B, and the output of the gate C. Gates with more 
than two inputs are, of course, possible but it is an easy matter to extend the truth tables. 

The NOT or negation is the simplest operation and is effectuated by simply invert­
ing the state of the signal from 1 to 0 or vice-versa. Mathematically, the negation is 
symbolized by a bar over the signal, e. g., "NOT A" is written as A. In an electronic 
logic diagram, the single negation operation is symbolized by an op-amp triangle with a 
small circle at its output. This circle signifies that the signal at that point is changed to 
the opposite logic state. 

The NOT gate may be combined with any number of other gates to form new gates. 
Two often used combinations are the NAND (NOT AND) and NOR (NOT OR) which 
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Fig. 16.1. Truth tables and electronic symbols of some common logic gates 

are also shown. Note the negating circle at the output of the gates. Signals at the input 
of these gates may also be inverted. If one input of an AND is negated, for example, we 
then have an anticoincidence or inhibit gate as can be seen by working out the truth 
table. 

Mathematically, the AND gate is similar to a multiplication, as can be seen from its 
truth table, so that it is often written as such. For example, A and B is written as A . B 
or simply AB. Similarly, the OR is equivalent to an addition and the operation A OR B 
is written as A + B. Note that two different OR gates are defined: the inclusive OR, 
which yields a positive response for A, B or both, and the exclusive OR in which a posi­
tive response is output only for A, B but not both. Their symbols are also indicated in 
Fig. 16.1. The usual OR is the inclusive case. The exclusive OR is expressed as an encir­
cled plus as indicated in Fig. 16.1. 
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16.2 Boolean Laws and Identities 

We shall review here some of the fundamental laws of Boolean logic and show how 
these can be directly translated into the more concrete terms of electronics. These laws 
are summarized in Table 16.1 for the three basic operations: AND, OR, and NOT. As 
we shall see, these three are sufficient, but not necessary, to build all other logic opera­
tions. In fact, only the NOT and either the AND or OR gate are required. 

Let us see, for example, how we can construct an OR gate from the NOT and AND. 
The key is given by DeMorgan's Law: 

(16.1) 

If we apply this to NOT-A and NOT-B, we find 

AB=A+B. (16.2) 

Electronically, this is performed .Qr)nverting the inputs of the AND gate to obtain A 
and B and the output to obtain AB. This is shown in Fig. 16.2 a. 

Given the NOT and OR gates, we can also construct the AND in a similar fashion. 
For this, we use the other relation of DeMorgan, 

which, when applied to the inverses, yields the equivalence in Fig. 16.2 b. 

Table 16.1. Boolean identities and laws 

Operations 

OR 

A+O=A 
A + 1 = 1 
A+A=A 
A+A = 1 

AND NOT 

AO=O A+A = 1 
Al =A AA =0 
AA =A A=A 
AA =0 

Associative laws 
(A + B) + C = A + (B + C) 

(AB)C = A (BC) 

Commutative laws 
A+B=B+A 

AB=BA 

Distributive laws 
A(B+ C) =AB+AC 

__ DeMorgan's laws 
ABC ... =A+B+C+ .. . 
A+B+C ... =ABC .. . 

Other identities 
A+AB=A 

A+AB=A+B 
(A+B)(A+C)=A+BC 

XOR 

A<OBO=A 
A<OBl =A 
A<OBA=O 
A<OBA=1 

(16.3) 
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Fig. 16.2. (a) Constructing an OR from NOT and AND; 
(b) building an AND from NOT and OR 

Fig. 16.3. Building an EXCLUSIVE OR from AND, ~ 
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Let us continue in this vein and consider how an exclusive OR circuit may be con­
structed from the basic gates. For convenience we will henceforth consider both the 
AND and OR as given, even though one may be constructed from the other as we have 
seen above. Algebraically, an exclusive OR may be written as 

C = (A + B)(AB) (16.4) 

i.e., A or B but NOT (A and B). The reader can verify that this indeed satisfies the 
truth table in Fig. 16.1. We can implement this using two AND gates and one OR gate 
as shown in Fig. 16.3 a. 

Using DeMorgan's Laws on AB, we can also rewrite (16.4) as 

C = (A +B)(A +B) . (16.5) 

This immediately suggests another implementation which is shown in Fig. 16.3 b. 
Another way of formulating the exclusive OR is to notice that only the case A '* B is 

accepted, i.e., (A AND NOT B) or (B AND NOT A). Mathematically, this is written as 

C=AB+BA, (16.6) 

which gives us yet another implementation (Fig. 16.3 c). Applying DeMorgan's Laws 
results in a fourth possibility which we leave to the reader to do as an exercise. The 
point here, however, is that there is generally more than one way to implement a logical 
function. While logically this makes no difference, on the practical level it allows one a 
choice in terms of hardware components. 

We have seen now a few examples of how a logic operation on paper can be imple­
mented in terms of electronic components. In the following sections, we will consider 
more specific examples relative to nuclear and particle physics experiments. 
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In many systems, the arrival of an event triggers a series of processes, for example, a 
digitization by an ADC, followed by a writing of this and other information onto some 
recording medium, all of which requires a certain amount of time. During this period, 
it is necessary to block the system from any further events which might arrive and per­
turb the processing. A simple method is to use a BUSY or INHIBIT signal in conjunc­
tion with an AND gate. This is illustrated in Fig. 16.4. The arrival of the signal(s) 
passes through a coincidence (AND) gate which is kept open by the presence of the 
BUSY signal. After passing through, the signal resets a flip-flop which removes the 
BUSY signal. Any events arriving are then blocked by the coincidence requirement of 
the AND gate. When processing of the first event is finished, a CLEAR signal can be 
sent to the flip-flop which is set, thereby opening the gate once again. 

Since the INHIBIT signal essentially controls the onloff state of the system, it also 
provides a means of measuring the live time (or dead time) of the system. As will be 
seen in Chap. 17, time can be measured by counting the total number of pulses from a 
fixed frequency generator (or clock) with a scaler. The total counts accumulated is then 
directly proportional to the time period elapsed. The live time, of course, is only that 
period during which the system is sensitive to arriving events. Therefore, we only want 
the scaler to count when the system is ready, i.e., when there is no INHIBIT. This sug­
gests using the INHIBIT signal to gate the scaler (or conversely, the clock) on and off. 
This is illustrated in Fig. 16.5. Note the general CLEAR signal which resets the scaler as 
well as the flip-flop when starting data-taking. The CLEAR from the processing sys­
tem, on the other hand, only resets the flip- flop leaving the contents of the scaler intact. 

16.4 Triggers 

Let us now consider the problem of triggers. In practically all physics experiments, one 
is generally faced with selecting out a particular reaction from background andlor 
other competing events which occur simultaneously. To do this, one must impose cer­
tain criteria which identify the reaction, e.g., coincidence among two or more detec­
tors, number of outgoing particles, etc. The criteria, of course, depend on the detector 
set-up being used. Events satisfying these criteria, then activate other operations, e.g., 
recording instruments, etc., in the system. The electronic logic required for this selec­
tion is called the trigger in current nuclear and high-energy parlance. In many high-en-
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ergy experiments, several different triggers are often present allowing an experiment to 
record more than one type of reaction at the same time. We will present a number of sim­
ple triggers for some simple detector setups to illustrate some of the general concepts. 

16.4.1 One-Body Scattering 

Consider the problem of i-body scattering, i.e., reactions in which there is only one 
outgoing particle. A simple example is the elastic scattering of alpha particles from 
gold, the classic Rutherford experiment. A simple set-up for such an experiment is 
shown in Fig. 16.6. Here, a beam of alpha particles is incident upon a gold foil (of the 
appropriate thickness) and the scattered particle detected by a single detector located at 
an angle () behind the foil. Since gold nuclei are much more massive compared to the al­
pha particle, the energy of the scattered particle should not be too different from its in­
cident energy. This provides one criteria for elastic scattering. Using an SCA, we can 
set values for the upper and lower discriminators to select out this energy range and 
eliminate all other events. This then provides a rejection of background events. 

A 

B 

Detector A 

Collimated L 
Source 

~___ e.----{I 

7)7//1 Target Detector B 

SCALER 
Fig. 16.6. Simple set-up for Rutherford 
scattering 

Still, this criteria does not reject all the background. Indeed, particles scattered 
from other parts of the apparatus will also have close to the same energy and may also 
be accepted. A stricter requirement can be made by using a second detector located be­
hind the target directly in the beam line. A true scattering therefore should give a signal 
in the first detector but not in the second. The logic for this trigger is now AB, i.e., an 
anticoincidence. This circuit is shown in Fig. 16.6. 

16.4.2 Two-Body Scattering 

Consider now the case of two-body scattering in which we have two bodies which leave 
the target. Some examples are elastic electron scattering, elastic pp scattering, etc. The 
detection of such events immediately suggests the use of at least two detectors placed at 
appropriate angles with respect to the incident beam. And since they detect particles as­
sociated with the same event, we immediately think of placing the detectors in coinci­
dence. The signature of a good event is thus AB. Figure 16.7 illustrates the beam and 
counter set-up. 

We can make an even stricter selection by adding a third counter as we did in the 
case of Rutherford scattering. The trigger then would be ABC. A more common proce-
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dure in scattering experiments is to add beam defining counters. This is done by placing 
two or more thin transmission counters of small surface area into the beam. Aligning 
them with respect to the target and requiring their coincidence in the trigger, the incom­
ing particle trajectories can be better determined. If we call these counters SI and S2, 
the trigger condition would then be SIS2ABC. This circuit is illustrated in Fig. 16.7. 

16.4.3 Measurement of the Muon Lifetime 

Let us now turn to a more difficult experiment: the measurement of the muon lifetime. 
One easy source of muons are from cosmic rays. Muons are formed from the decay of 
pions which are created in the upper atmosphere by incident cosmic ray protons. Be­
cause the muons are more penetrating, they manage to reach the surface of the earth 
without being absorbed. They eventually stop in matter and decay via 

,u-+e+v+v 

with a lifetime of about 2 JlS. 
A set-up for measuring this decay time is shown in Fig. 16.8. The incoming muons 

are detected by the counters A and B which are thin enough to allow the muons to pass 
through. After B, the muons encounter a slab of lead in which some eventually stop 

A 

Plastic 

Pb __ B_[..:~~~~~~~~;~;~;~;~;~~~;'~~~~~~~;~;'~;'~;'~;'~;'~;'~;;;~ Fig. 16.8. Detector set-up for measuring muon life-
C 1_ 1 time 
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and decay. The emitted electron is then detected by the surrounding counters B or C. 
What we would like to measure therefore is the time interval between the signal for a 
stopped muon and the detection of the emitted electron. 

What is the criteria for identifying a stopped muon? The arrival of a muon (or some 
other charged particle) is given by the coincidence AB, but this does not tell us if the 
muon stops. For this we must not have a signal from C. Thus, the trigger is ABC. This 
can be used now to start a timing module such as a TAC (see Chap. 17 for a description 
of timing methods). To determine the STOP signal, we must consider the signature for 
an exiting electron. If the electron is emitted in the forward direction, then one signa­
ture is CA. In the backward direction, however, we can have BA or BA, i.e., 
(BA + BA) = B. The STOP signature is thus CA or B. The presence of B alone, how­
ever, is probably too loose a condition as events other than decay electrons, e.g., other 
incident muons, background events, noise in the B counter, etc., would also trigger a 
STOP signal. This would then lead to many false events which would increase the sig­
nal-to-noise ratio of the measurement. To be more selective, therefore, we will choose 
the STOP to be B or C but not A, i.e., (C + B)A. This limits the solid angle of detection 
for the electron which decreases the efficiency but should give a better signal-to-noise 
ratio. Figure 16.9 shows how this logic is implemented. Although they are not shown in 
the diagram, delays in the circuit are most likely necessary in order to adjust the coinci­
dences. Figure 16.9, of course, is not the only implementation of the STOP and we 
leave it to the reader to imagine others. 
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Fig. 16.9. Electronic logic for muon lifetime mea­
surement 



17. Timing Methods and Systems 

Timing in nuclear and particle physics refers to the measurement of very small time in­
tervals. Examples of its use include measurements of lifetimes of excited nuclear states 
or elementary particles, time-of-flight, etc. In this list also, we should include the deter­
mination of coincidences, which is essentially the determination of a zero time interval. 
The intervals we will be discussing, therefore, range from as little as a few pico-seconds 
to as large as a few micro-seconds. 

Accurate measurements 01 very small time intervals require special techniques. In 
this chapter, we will review some of the basic problems encountered in timing, describe 
the current methods used for overcoming them, and illustrate some electronic tech­
niques and systems for time-interval measurement. 

17.1 Walk and Jitter 

The most important factor in any timing system is its resolution, i.e., the smallest time 
interval that can be measured with accuracy. The resolution of a system can be mea­
sured in a number of ways. One method is to measure the time difference of two exactly 
coillcident signals, i.e., the coincidence curve discussed in Chap. 15. As we saw, it is 
limited by fluctuations which occur in the time relation between the two signals. The 
major source of these variations occurs in the generation of the timing logic signal by 
the discriminator or SCA. Two principal effects arise: walk and jitter. 

The walk effect is caused by variations in the amplitude and/or risetime of the in­
coming signals. Consider, for example, two signals of differing pulse height but exactly 
coincident in time as shown in Fig. 17.1. Suppose we introduce these signals into a dis­
criminator with some fixed threshold. Because of the difference in amplitude, signal A 
will trigger the discriminator at time ta and signal B at time tb , although both are exact­
ly coincident. This dependency on amplitude or rise-time causes the logic signal to walk 
about. Walk is a strong function of the triggering method used, in this case, leading­
edge triggering. To minimize walk, a number of different triggering or time-pickoff 
methods have been developed. These are discussed in more detail below. 

A second source of walk, although very much smaller in effect, is the finite amount 
of charge necessary to trigger the discriminator. In general, after reaching the discrimi­
nator threshold, a certain amount of charge must be integrated on a capacitor before a 
logic signal is emitted. This is represented by the shaded areas in Fig. 17.1. Because of 
the risetime and amplitude difference, this will also result in a walk effect. 

Timing fluctuations are also caused by noise and statistical fluctuations in the origi­
nal detector signal. Because of these random fluctuations, two identical signals will not 
always trigger at the same point, giving instead a time variation dependent on the am­
plitude of the fluctuations. This effect is usually referred to as time jitter and is illus­
trated in Fig. 17.2. 
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Fig. 17.1. Walk in a discriminator or SCA. Coincident signals with different amplitudes cross the threshold 
at different times. An additional walk effect occurs because of the finite charge which must be integrated on 
a capacitor to trigger the discriminator or SCA 

Fig. 17.2. Timing jitter. The timing error caused by jitter depends on the slope of the signal at the triggering 
point 

In PM systems, for example, jitter is influenced by factors such as: (1) variations in 
the number of photons created in the scintillator, (2) the transit time of the photons and 
the electrons through the scintillator and PM, (3) gain variations in the electron multi­
plier, etc. Unlike walk, therefore, jitter arises from the intrinsic detection process itself. 
The effect of noise and statistical fluctuations on the timing resolution is easily calcu­
lated from Fig. 17.2. If (Tn is the variance in V due to noise and statistics, projecting this 
region onto the horizontal time scale yields the rms fluctuation in time, 

(17.1) 

Thus the rms timing resolution depends inversely on the slope of the signal - the 
faster the risetime, the better the timing jitter. In detectors with variable risetimes such 
as semiconductors or ionization instruments, this also suggests setting the triggering 
threshold at the point of greatest risetime to obtain the best results. 

17.2 Time-Pickoff Methods 

17.2.1 Leading Edge Triggering (LE) 

The simplest method for deriving a timing logic signal is leading-edge (LE) triggering. 
This is the technique illustrated in Fig. 17.1 and, as we have seen, the logic signal is gen­
erated at the moment the analog pulse crosses the threshold. In SeA's this signal is gen­
erally delayed until the maximum of the pulse signal is first tested. An alternate method 
also used in some cases is to trigger on the falling edge. 
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This method is inherently subject to problems of walk, but can be used with good 
results if the amplitudes are restricted to a small range. With a 1 to 1.2 amplitude range, 
for example, resolutions as low as :::::0.4 ns can be obtained with a well-designed system 
of fast organic scintillators. At a 1 to 10 range, however, the walk effect balloons to as 
much as ± 10 ns. 

Walk can also be minimized by using as low a threshold as permitted by the elec­
tronic noise. This is easily verified by lowering the threshold line in Fig. 17.1. In low A -------,U.-----­
noise systems, the leading edge may even be amplified, so as to get closer to the begin-
ning of the signal. However, noise jitter is then increased as given by (17.1). B Ur ----

17.2.2 Fast Zero-Crossing Triggering 

The fast zero-crossing technique was developed mainly to overcome the walk problem 
inherent in the LE method. Here, the pulse is first transformed into a bipolar pulse 
(through double delay line shaping, for example) and the trigger made on the zero­
crossing point of the resulting bipolar pulse. This is illustrated in Fig. 17.3 which shows 
two pulses of differing amplitudes after being doubly differentiated. As can be seen, 
the two crossing points are precisely related in time and independent of the pulse ampli­
tudes. As with LE timing, a maximum resolution of ::::: 0.4 ns is obtained if the ampli­
tude range is restricted to 1: 1.2; however, at 1: 10, this maximum resolution only in­
creases to :::::0.6 ns, an enormous improvement! Unfortunately, this method requires 
that the signals be of constant shape and rise-time. It is thus unsuited for signals from 
large volume semiconductor detectors or very large scintillators where such variations 
may occur. 

17.2.3 Constant Fraction Triggering (CFT) 

Probably the most efficient and versatile method available today is the constant frac­
tion triggering technique. In this method, the logic signal is generated at a constant 
fraction of the peak height to produce an essentially walk-free timing signal. The basis 
for this idea arose from empirical tests which showed the existence of an optimum trig­
gering level [17.1] for the best timing resolution. Depending on the type of signal, this 
level occurs at a certain fraction of the pulse height independent of the amplitude. Fig­
ure 17.4 shows how this works at a constant fraction of 50070. 

The technique by which CFtriggering is achieved is illustrated in Fig. 17.5. The in­
coming pulse Va is first split into two with one part (Vct ) delayed by a time Tct equal to 
the time it takes for the pulse to rise from the constant fraction level to the pulse peak. 
The other part is inverted and attenuated by a factor k to give a pulse Vc = - k Va. The 
two are then summed to produce a bipolar pulse, VOU!' The point at which the signals 
cancel, i.e., the zero-crossing point, is then at a constant fraction k of the original sig­
nal height. 

Unlike the zero cross-over technique, the eFT method does not require a bipolar 
pulse at the input, however, a constant rise-time is necessary. The efficiency of this 
technique is, nevertheless, very high yielding walk as little as ± 20 ps over an amplitude 
range of 100 to 1. 

17.2.4 Amplitude and Risetime Compensated Triggering (ARC) 

As we have seen, the constant fraction method produces an essentially walk-free signal 
but requires that all pulses have the same rise time. This latter requirement can be re-

Fig. 17.3. Zero-crossing timing. 
Variations in the cross-over point 
are known as zero-crossing walk 

50°1 

A----i 

B-----,U 

Fig. 17.4. Constant fraction dis­
crimination 
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Fig. 17.5. Technique for constant fraction trig­
gering. In order for this technique to work rise 
times of all signals must be the same. The 
dotted line shows the result with a different 
rise time signal 
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Fig. 17.6. Amplitude and risetime compensation 
(ARC) triggering. The zero-crossover occurs before 
the signal peak is reached 

moved with a variant of CFT known as amplitude and risetime compensation (ARC) 
triggering. The difference is simply in the delay Td. In the true CFT method, Td must be 
long enough to allow the undelayed signal to reach its peak. In the ARC method, Td is 
made smaller than the rise time so that the summed signal crosses before the signal 
maximum is reached. The zero-crossing time thus depends only on the early portion of 
the signal where differences between pulse shapes are at a minimum. This is illustrated 
in Fig. 17.6. ARC triggering is the most precise method available today and is most use­
ful with large volume semiconductor detectors where the pulses vary in shape as well as 
amplitude. 

17.3 Analog Timing Methods 

Assuming that the proper choice of time-pickoff method is chosen, let us now consider 
some electronic techniques for measuring the time difference between two signals. We 
divide these into analogic and digital techniques. 
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17.3.1 The START-STOP Time-to-Amplitude Converter 

The primary example of analogic time interval measurement is the START -STOP time­
to-amplitude converter. The basic method is to relate the time interval between two 
events to the quantity of charge discharged by a capacitor during this period. As shown 
in Fig. 14.22, the arrival of the first signal (START) gates on the capacitor which dis­
charges at a constant rate until the arrival of the STOP signal. The total charge collect­
ed thus forms an output signal whose height is proportional to the time difference be­
tween the START and STOP signals. The capacitor is then recharged and the next 
event awaited. If no STOP signal arrives, however, the output signal reaches its maxi­
mum amplitude which then causes an overflow condition. Such events, of course, cause 
a great deal of dead time. To remedy this, some START-STOP TAC's include addi­
tional logic circuits at the beginning to test for the presence of a STOP within the al­
lowed time window before discharging of the capacitor begins. This technique, some­
times known as START-READY-STOP, is illustrated in Fig. 17.7. 

Referring to the timing diagram, an arriving START signal is first shaped and 
delayed by a period Lit! equal to the time window. When a STOP pulse arrives, a time 
window signal of width Lit2(= Litj ) is generated which is then tested for coincidence 
with the delayed START. It is easy to see, now, that this coincidence is TRUE if the 
STOP has arrived within the time window and FALSE otherwise. In this manner, bad 
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events with STOP signals falling outside the defined time window are sorted out. The 
coincidence now activates the charging circuit which is subsequently stopped by the end 
of the time window signal. As can be seen on the timing diagram, the resulting charge 
on the capacitor is then proportional to 

T = Istop +LI 12 -Istan -LI 11 = Istop -Istart . (17.2) 

17.3.2 Time Overlap TAC's 

An alternate method reminiscent of coincidence circuits is the time-overlap technique. 
In this scheme, the overlap between two wide START and STOP pulses is measured 
and the difference taken. This is illustrated in Fig. 17.8. The capacitor is charged 
during the overlap period yielding a pulse whose height is proportional to 

T-T, (17.3) 

where T is the time interval to be measured and T is the full width of the pulse. Knowing 
T, the period T then follows. This method, of course, is restricted only to periods small­
er than the pulse width T. Intervals larger than this provoke an overflow signal or no 
signal at all. Note also that without further auxiliary logic, the method does not distin­
guish between which pulse arrives first. 

17.4 Digital Timing Methods 

17.4.1 The Time-to-Digital Converter (TDC) 

To obtain a time interval measurement in digital form, one obvious method is to digi­
tize the TAC using an ADC. However, more direct methods are available using count-
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ing techniques and stable oscillators. The basic principle here is to use the START sig­
nal to gate on a scaler which counts a constant frequency oscillator (or clock). At the 
arrival of a second STOP signal, this scaler is gated off to yield a number proportional 
to the time interval between the pulses. 

Counting-type TDC's are easily constructed from simple logic modules found in the 
laboratory. Figure 17.9 illustrates one such system using AND and OR gates, simple SR 
flip-flops and timers. Here, the arrival of the START sets a flip-flop (Busy) which in­
hibits any further STARTs which may arrive while the TDC is in operation. At the 
same time, a gate signal is generated for the scaler, and a timer, set to a maximum time 
window, triggered. The scaler may be stopped in either of two ways: (1) by a true STOP 
which arrives within the defined time window, or, (2) by the end of this window. A true 
STOP is defined by the requirement that the timer still be running when the signal ar­
rives. This is tested by the first AND gate in the STOP channel. If this condition is met, 
both the scaler and the window timer are gated off. An interrupt signal is then generat­
ed to trigger the readout system. After the value of the scaler is read and safely stored, 
the readout system generates a CLEAR signal which then resets the scaler and the 
BUSY flip-flop. The system then awaits the next event. If no STOP arrives within the 
time window, the end marker from the timer then automatically triggers a STOP and 
CLEAR without interrupting the readout system. 

One must consider the possibility of events in which both a START and STOP sig­
nal arrive at the same time. Such an event is prohibited by the SR flip-flop logic and 
may cause the flip-flop to "hang-up" in an indeterminate state, blocking the system. 
This may be remedied by using a second "watchdog" timer which is triggered by each 
CLEAR, and reset by each START. The period of the timer should be set to a value 
large compared to the time between events. If no START arrives in such a long period, 
then the system is most likely blocked, and a CLEAR signal issued. 

System 
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The resolution of the counting TDC depends on the frequency of the clock used: the 
higher the frequency, the smaller the time interval measured. For a given frequency 
however, this resolution can be doubled by using two clocks synchronized on opposite 
phases. This method is shown in Fig. 17.10. 

17.4.2 The Vernier TDC 

A second counting method is the vernier technique. The basic principle is illustrated in 
Fig. 17.11. Two oscillators of slightly different frequencies'!1 andi2, are used. The ar­
rival of a START gates on the first clock while the second remains off. The moment the 
STOP arrives, the second clock is gated on and continues oscillating along with the first 
clock until the two are in phase. At this point, both are stopped. The contents of the 
two scalers are then related by 
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Fig. 17.11. Working principle 
of the vernier TDC 
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where n1 and n2 are the number of pulses counted, T1 and T2 are the periods of the two 
clocks and r is the time interval to be measured. Solving for r then is trivial, and 

(17.5) 

For time intervals smaller than the period of the clocks, n1 = n2 = n, so that, 

r = n (;1 -;2) = n f~~ . (17.6) 

From the above, we see immediately, then, that the resolution depends on the frequency 
difference LJj In most vernier TDC's this is usually 1 % although this can be improved. 

Like the normal counting TDC discussed above, the vernier TDC may also be easily 
constructed from simple logic modules. One such set-up is shown in Fig. 17.12. 

17.4.3 Calibrating the Timing System 

Once a timing system has been chosen and constructed, it is necessary to calibrate the 
time scale and also to have a measure of system linearity and resolution. A simple 
method for calibrating the absolute channel width is to use a single source such as a fast 
pulse generator or a photomultiplier to drive both the START and STOP channels. The 
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Fig. 17.13. Time scale calibration with a single source Fig. 17.14. Measuring differential and integral linearity using a clock and 
radioactive source 
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output signal is split in two with the STOP channel signal passing through a variable 
delay. Simple cable delays are the easiest and most accurate delay devices. The distance 
between peaks produced by the different delays then gives a calibration of the time 
scale. The width of each peak serves also as a measure of the time resolution. This is il­
lustrated in Fig. 17.13. 

In order to measure the linearity of the system, a source of random events uniform­
ly distributed in time is necessary. While random pulse generators are commercially 
available, a simpler method is to use photomultiplier pulses produced by a radioactive 
source and a pulse generator with a frequency comparable to the counting rate. The 
clock pulses are applied to the START channel while the photomultiplier pulses are 
used for the STOP channel (see Fig. 17.14). The time intervals thus produced are uni­
formly distributed on the time scale and, within statistical errors, should produce the 
same number of counts in each channel. The degree of uniformity then provides a mea­
sure of the differential linearity of the system. From this, the integral linearity can be 
obtained by plotting the integral counts versus channel number. The accuracy of this 
method is generally very good and is only limited by the amplitude walk inherent in the 
triggering system used. An improvement can be made, however, by restricting accepted 
pulses to a small amplitude range. As described in Chap. 5, this method may also be 
used to determine the dead time of the system. 



18. Computer Controlled Electronics: CAMAC 

All (or almost all) experiments in nuclear and particle physics experiments today em­
ploy computer controlled data acquisition systems of some kind or another. Indeed, 
the quantity and rate as well as the complexity of the data which are generated in mod­
ern experiments make such systems mandatory. And in fact many experiments would 
be utterly impossible otherwise. The advantages of computer control are manifold. Be­
sides simple data acquisition, systems can be made to monitor the apparatus, which 
may consist of hundreds or even thousands of detectors. Calibration procedures, for 
example, counter plateaux, timing curves, etc. may be performed automatically during 
system set-up. Online reconstruction and/or preliminary analyses of the raw data may 
also be performed allowing the physicist to examine events as they arrive, etc. 

Installing a computer controlled system, of course, requires interfacing the instru­
ments of the computer. However, because of the variety of computer architectures, a 
different interface would have to be built for each instrument and each computer. This 
of course, brings us back to the problem of instrument compatibility first mentioned in 
Chap. 12. To alleviate this problem, a number of standardized systems have been de­
veloped. For nuclear and particle physics, the two standard systems are CAMAC and 
FASTBUS. 

The CAMAC system was designed to complement the NIM system for nuclear elec­
tronics when it became clear that NIM was inconvenient for computer based systems. 
Introduced in 1969 by the European Standards on Nuclear Electronics (ESONE) Com­
mittee, CAMAC was designed simply as a standard system for the transmission of 
digital data, although its application to computer based systems was quite obviously 
in mind. It was quickly adopted by the U.S. NIM Committee and is now used world­
wide in areas such as medical research, industry, in addition to nuclear-particle 
physics. 

Since the advent of CAMAC, however, the complexity and the volume of data gen­
erated in high-energy physics experiments have grown such that the capabilities of 
CAMAC are now also reaching their limits and it has become clear that future experi­
ments will require an even faster system capable of handling even larger volumes of 
data. Consequently a new system, FASTBUS, first proposed in the late 1970's is now 
making its appearance on the commercial market. The system is much more complex 
and is still in the development stages, much as CAMAC was in the early 1970's. 

On the opposite end of the spectrum, the explosion in microcomputer technology in 
recent years has also made possible the computerization of many smaller experiments 
for which systems such as CAMAC or F ASTBUS are much too complicated and expen­
sive to implement. For these experiments, a number of different data transfer systems 
are available. Among these are the GPIB bus (IEEE Std. 488), Multibus, VME, etc. 
The VME bus appears to be one of the more interesting offering speed and flexibility 
and has been used in conjunction with CAMAC and F ASTBUS in some very large ex­
periments. 
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As an introduction to computer control in nuclear and particle physics, we will con­
sider the CAMAC system here in some detail. Much effort has been put into this stan­
dard over the years and the system is now well established both in terms of hardware 
and software. In contrast, F ASTBUS, as we have already mentioned, is still in develop­
ment and will not be treated here. The interested reader, however, may find several ref­
erences in the bibliography. 

18.1 CAMAC Systems 

Like NIM, CAMAC is a modular system, the essential components of which are a crate 
and plug-in type modules. As shown in Fig. 18.1, the crate is composed of slots or sta­
tions into which the modules are inserted. At the rear of the module is a card-type con­
nector which mates with a corresponding connector at the back of the slot. This con­
nector contains 86 contact points (43 on each side) which couple the module to a series 
of parallel wires running along the backplane of the crate, linking each of the stations. 
This series of wires is known in CAMAC terminology as the dataway and is the essen­
tial feature of the CAMAC system. In more modern terms, the dataway would be 
known a backplane bus. This bus allows digital signals to be transmitted to or from 
plug-in modules which may be added on to the bus as desired. When the dataway is 
interfaced to a computer's data bus, the modules may then be accessed for control or 
readout by the computer processor. Also included in the dataway are power lines which 
supply the necessary operating voltages to the module. The function and characteristics 
of the dataway lines will be discussed in more detail in the following sections. 

All communication within a CAMAC crate is overseen by a special module known 
as the crate controller (CC). This module acts essentially as a communication center 
managing the flow of information on the crate data way. Commands or data issued by a 
computer to a module or vice versa must therefore pass through the crate controller. In 
general, within a given crate, the CC is the only module which can issue commands and 
is thus the master of the dataway. All other modules are slaves to the CC. Because of its 

Fig. 18.1. A CAMAC 
crate and modules 
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special function, the crate controller always occupies the last two stations of the crate 
(numbers 24 and 25) which are specifically reserved for this purpose. 

CAMAC systems may be configured in a variety of ways and at various levels of 
complexity. The basic system consists of one crate connected to a host computer. The 
interface to the computer is then usually included in the crate controller. The number 
of modules that can be used is then limited to those which can fit into one crate only. A 
larger and more complicated system might consist of several crates connected to the 
same computer. These crates can be linked to each other either in series or in parallel 
along a branch highway, which like the dataway, is a bus which carries signals to and 
from different crates. Analogous to the crate controller, a special unit known as a 
branch driver is needed to manage the flow of data along the branch highway. Still 
larger systems can be formed by configuring a multi-branch system. At this point it 
may also be necessary to couple more than one computer to the CAMAC system in or­
der to handle the ever increasing quantity of data! 

With the advent of microprocessors, compact systems may now also be formed by 
incorporating the microprocessor in a plug-in module or within the crate controller. 
The computer host then resides in the crate itself forming a stand-alone system. For 
small applications requiring a few applications modules, such systems offer an eco­
nomical and more flexible alternative to more specialized apparatus performing the 
same function. Crate resident microprocessors may also be used advantageously in 
larger systems for a variety of purposes. They can be used, for example, to preprocess 
raw information directly from the crate modules without intervention from the main 
computer. Upon completion of the analysis, this reduced information can then be 
transferred to the main system computer for recording on disk or magnetic tape for 
further treatment. This minimizes the amount of data transfers and computing time 
on the system computer, thereby increasing speed. Microcomputers may also be used 
as auxiliary crate controllers for local control or processing. Here they may be incor­
porated into the crate controller itself or located in a normal CAMAC station. Figure 
18.2 illustrates some of these configurations schematically. 
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Fig. IS.2. CAMAC system configurations 
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18.2 The CAMAC Standard 

The specifications for the CAMAC standard are described in a number of separate 
publications issued by the ESONE committee in Europe and the U.S. Government 
Printing Office in the United States. The principal documents are: 

1) EUR 4100 (Europe) or TID-25875 (USA) 
This is the basic document describing mechanical and electrical standards for the 
CAMAC dataway and modules. 

2) EUR 4600 (Europe) or TID-25876 (USA) 
This publication describes the electrical standard for multicrate systems using the 
parallel branch highway and crate controller Type A-1. 

3) ESONE/SR/01 (Europe) or DOE/EV-0016 (USA) 
This report outlines a set of standard CAMAC software subroutines for use with 
high-level programming languages. 

Most of these documents have been combined into a two-volume publication, EUR 
8500en, available from the Commission of European Communities, Luxembourg and 
in a hardcover ANSI/IEEE publication SH-08482 (1982). In the following sections we 
will try to outline the basic features of CAMAC with a few illustrations so as to give the 
reader a more workable introduction to the system. For further details the reader is re­
ferred to the documents above. 

18.2.1 Mechanical Standards 

The standard single-width CAMAC module has dimensions of 221.5 mm in height and 
305 mm in depth. Its width is exactly half that of a standard NIM module or 17 mm. 
CAMAC modules may also come in multiples of this single width. 

The CAMAC crate is 19 inches in width and is equipped with 25 connector slots 
with slots 24 and 25 specifically reserved for the crate controller. 

18.2.2 Electrical Standards: Digital Signals 

The transmission of digital signals along the dat~way in a CAMAC crate is performed 
through TTL logic signals. The required signals levels for this logic family are given in 
Table 18.1. A discussion of the actual signals available on the dataway and the protocol 
used is given in the next section. 

Table 18.1. Dataway signal levels 

Input must accept 
Output must generate 

Logic 0 

+2.0 to 5.5 V 
+ 3.5 to 5.5 V 

18.3 The CAMAC Dataway 

Logic 1 

o to +0.8 V 
o to +0.5 V 

The dataway is the nervous system of the CAMAC system. It consists of a series of par­
allel wires running along the backplane of the crate connecting each of the slots. Com-
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Fig. 18.3. Schematic diagram of the CAMAC dataway (Reprinted by permission from Kinetic Systems 
Corp., Lockport, Ill. [18.1]) 

munication between modules, crate controller and host computer is made via these 
lines. Three types of wiring make up the dataway: 

1) Power Lines. These lines are bussed to each station (i.e., each station is connected in 
parallel along these lines) and supply standard voltages of ± 6 V and ± 24 V. On 
some crates ± 12 V may also be found along with 117 V AC and 200 V AC. 

2) Bussed Signal Lines. These include lines for data transfer, addressing, commands, 
and specific control signals. Most of the dataway lines are of this type. Their specific 
functions are discussed in more detail below. 

3) Point to Point Lines. These are separate, dedicated lines connecting each crate 
station to station 25, the controller station. There are only two such lines: the crate 
address (N) and the Look-at-Me (L). 

Figure 18.3 provides a schematic sketch of the dataway wiring. The dataway signals 
available may be classified into 6 categories: control, addressing, timing, data, status, 
and command. Some or all of these signals may be used by plug-in modules depending 
on their design and application. Table 18.2 briefly summarizes these signals and their 
functions. 

Table 18.2. CAMAC dataway signals 

Signal 

Common control signals 
Initialize 

Inhibit 

Clear 

Symbol 

z 

I 

C 

Function 

Sets module to a defined, initi­
al state particularly when 
power is turned on (accom­
panied by the S2 and B sig­
nals) 
Disables features for duration 
of signal 
Clears registers, resets flip­
flops, etc. (accompanied by the 
S2 and B signals) 

I 

( 

Crate 
Controller 

t 
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Table 18.2 (continued) 

Signal 

Status signals 
Look-at-Me (LAM) 

Response 

Command accepted 

Busy 

Timing signals 
Strobe 1 

Strobe 2 

Data signals 
Read 

Write 

Address signals 
Station number 

Subaddress 

Command signals 
Function 

18. Computer Controlled Electronics: CAMAC 

Symbol 

L 

Q 

X 

B 

S1 

S2 

R1-R24 

W1- W24 

N 

A 1,2,4,8 

F1,2,4,8,16 

Function 

A signal from a module to the 
crate controller requesting service 
or attention. This is a dedicated 
point-to-point line. The presence 
of a LAM may be tested by using 
function F(8) 
A one-bit reply signal issued by 
the module in response to certain 
commands from the crate con­
troller 
Indicates that the module is able 
to perform the action required by 
the command 
Indicates dataway operation is in 
progress 

Signal used to control first phase 
of a dataway operation. At the 
issuance of S 1 all signals must be 
settled on their respective lines 
Governs phase two of dataway 
operation. At issuance of S2, 
dataway signals may change 

Signals for carrying data from a 
module. Twenty-four parallel uni­
directional lines are allocated 
allowing a 24 bit-parallel word to 
be transferred in a single 
operation 
Signals used for carrying data to a 
module. Twenty-four parallel uni­
directional lines are allocated 

Selects module in crate. This is a 
dedicated point-to-point line 
Selects a specific section of the 
module. This depends on the 
structure of the module. Four 
lines are allocated to the sub ad­
dress thus allowing 16 possible 
subaddresses 

Defines the function to be execut­
ed by the module. The value of F 
corresponds to specific functions 
defined in the following section. 
Five lines are allocated so that 32 
code values are possible 

Note: It is common practice to refer to the individual signal lines in a multiple-bit signal, for example, A or F, 
by the notation An or Fn where n is the corresponding bit number of the line, i.e., n = 1,2,4,8, .... The 
value of A or F which is issued on the lines, on the other hand, is indicated by surrounding the value with 
parentheses, i.e., A (m) or F(m) where m is the decimal value of A or F. 
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18.3.1 Common Control Signals (Z, C, I) 

The common control signals, Initialize (Z), Clear (C), and Inhibit (I) are generated by 
the crate controller, and are received by all units connected to the dataway (unad­
dressed operation). Their functions are as indicated in Table 18.2. The Z signal has pri­
ority over all other signals and is always accompanied by the Busy (B), Inhibit (l) and 
82 signals. This is also the case for Clear. The Clear and Inhibit signals are free to be 
used as desired by the module designer for whatever features he wishes. 

18.3.2 Status Signals 

A Look-at-Me (LAM) signal is a request by a module to indicate that it needs servicing 
of some kind. An ADC may generate a LAM to indicate that it has finished converting 
a signal, for example, or a memory unit to indicate that it is full, etc. A LAM request 
may also have more than one origin inside a module. In some modules, a LAM register 
may be read containing information on the source or sources of the LAM request. Ap­
propriate actions may then be taken upon analysis of this information. The LAM sig­
nal can be tested, cleared, disabled and enabled using the command operations. 

The Busy signal is generated by the crate controller whenever a data way operation is 
in progress to inhibit any competing operation during the duration of the current cycle. 

The Q-response is a signal generated by a module in response to certain command 
operations requiring a yes/no type answer. Function F(8) to test the presence of a 
LAM, for example, results in Q = 1 if the LAM is set and Q = 0 if not. The Q signal is 
also used in block transfer operations. 

The X signal is generated by a module in response to a command operation to indi­
cate if it is capable of performing the requested operation. If yes, X = 1. If not, either 
because of a malfunction, nonexistence of the requested function, lack of power, etc., 
X = 0 is returned. 

18.3.3 Timing Signals 

To synchronize the sequence of events during a dataway operation, two strobe signals 
81 and 82 are generated by the crate controller to indicate when data and command 
signals are settled on their respective lines. Modules may then trigger certain actions 
upon activation of 81 and 82. 

18.3.4 Data Signals 

Data are carried to a module via 24 unidirectional READ lines and from a module via 
24 unidirectional WRITE lines. Data format is bit-parallel with a maximum word 
length of 24 bits. The READ and WRITE lines are activated using command opera­
tions. 

18.3.5 Address Signals 

These signals are used for addressing modules during a command operation. See Sect. 
18.4 for further details. 
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Table 18.3 (from LeCroy catalog [13.1)) 

Pin Allocation at Normal Station 
(Stations 1·24) 

Bus·line Free Bus·line Pl B Busy Bus·line 
Bus-line Free Bus·line P2 F16 Function Bus·line 
Individual patch contact P3 F8 Function Bus·line 
Individual patch contact P4 F4 Function Bus·line 
Individual patch contact P5 F2 Function Bus·line 
Bus-line Command Accepted X Fl Function Bus·line 
Bus·line Inhibit I A8 Sub·address Bus·line 
Bus·line Clear C A4 Sub·address Bus·line 
Individual line Station Number N A2 Sub·address Bus·line 
Individual line Look·at·Me L Al Sub·address Bus·line 
Bus·line Strobe 1 Sl Z Initialize Bus·line 
Bus·line Strobe 2 S2 Q Response Bus·line 

W24 W23 
W22 W21 
W20 W19 
W18 W17 

24 Write Bus Lines W16 W15 
W14 W13 

WI = least significant bit W12 Wl1 
W24 = most significant bit Wl0 W9 

W8 W7 
W6 W5 
W4 W3 
W2 Wl 
R24 R23 
R22 R2l 
R20 R19 
R18 R17 

24 Read Bus Lines R16 R15 
R14 R13 

Rl = least significant bit R12 Rll 
R24 = most significant bit Rl0 R9 

R8 R7 
R6 R5 
R4 R3 
R2 Rl 

{ -12Vd, 
-12 -24 

-24Vd. } +200Vd.c. +200 -6 -6Vd.c. 

Power 117V a.C. Live ACL ACN 117V a.c. Neutral Power 
Bus·lines Reserved VI E Clean Earth Bus·lines +12V d.c. +12 +24 +24V d.c. 

Reserved V2 +6 +6V d.c. 
OV (Power Return) 0 0 OV (Power Return) 

(VIEWED FROM FRONT OF CRATE) 

18.3.6 Command Signals 

These signals are use to command addressed modules to perform certain functions. A 
five-bit code is used to indicate the desired function. The functions are discussed in 
more detail in Sect. 18.4. 

18.3.7 Pin Allocations 

Plug-in modules, as we have mentioned, obtain access to the dataway via an 86-pin PC 
card connector. These connectors are much more delicate than those on NIM modules, 
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Table 18.4 (from LeCroy catalog [13.1)) 

Pin Allocation at Control Station 

I ndividual patch contact 
Individual patch contact 
Individual patch contact 
Individual patch contact 
Individual patch contact 
Bus-line 
Bus-line 
Bus-line 
Individual patch contact 
Individual patch contact 
Bus-line 
Bus-line 

Command Accepted 
Inhibit 
Clear 

Strobe 1 
Strobe 2 

24 Individual Look-at-Me Lines 
L 1 from Station 1, etc. 

{ 
-12V dc. 
+200V d.c. 

Power 
117V a.c. Live 

Bus-lines 
Reserved 
+12V d.c. 
Reserved 
OV (Power Return) 

(Station 25) 

P1 
P2 
P3 
P4 
P5 
X 
I 
C 
P6 
P7 
S1 
S2 
L24 
l23 
l22 
L21 
l20 
L19 
L18 
L17 
L16 
L15 
L14 
L13 
L12 
L 11 
L10 
L9 
L8 
17 
L6 
L5 
L4 
L3 
L2 
L11 
-12 
+200 
ACL 
Y1 
+12 
Y2 
0 

B 
F16 
FB 
F4 
F2 
F1 
A8 
A4 
A2 
A1 
Z 
Q 

N24 
N23 
N22 
N21 
N20 
N19 
N18 
N17 
N16 
N15 
N14 
N13 
N12 
N11 
N10 
N9 
N8 
N7 
N6 
N5 
N4 
N3 
N2 
N1 
-24 
-6 
ACN 
E 
+24 
+6 
0 

Busy Bus-line 

Function Bus-line 

Function Bus-line 

Function Bus-line 

Function Bus-line 

Function Bus-line 

Sub-address Bus-line 

Sub-address Bus-line 

Su b-address Bus-line 
Sub-address Bus-line 

Initialize Bus-line 
Response Bus-line 

24 I ndividual Station Number Lines 
N 1 to Station 1, etc. 

-24V d.c. 

} -6V d.c. 
117V a.c. Neutral 

Power 
Clean Earth 

Bus-lines 
+24V d.c. 
+6V d.c. 
OV (Power Return) 

(VIEWED FROM FRONT OF CRATE) 

so that CAMAC modules should be handled with more care. Table 18.3 lists the pin lo­
cations and definitions for a normal crate station slot. Station 25, which is reserved for 
the crate controller, has a different pin configuration and these are listed in Table 18.4. 

18.4 Dataway Operations 

A typical dataway operation generally involves a transfer of signals between a module 
or modules on one end and the crate controller on the other. The operations which can 
be made are of two types: command or unaddressed. A command operation involves a 
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command signal which is to be sent to a specific module. An address for the module 
must therefore be specified. An unaddressed operation involves the issuance of com­
mon control signals, i.e., Initialize (Z), Inhibit (J) or Clear (C), which operate on 
all modules connected to these dataway lines. In both cases a Busy signal (B) is issued 
simultaneously by the crate controller to indicate that a data way operation is in pro­
gress. 

The basic form of a command operation is the set of signals NAF, where NA is the 
address and F is the command function code. The address is composed of N, the num­
ber of the crate station occupied by the module and a subaddress, A, which may take 
on values from 0 to 15. The subaddress refers to an internal part of the module and its 
significance depends on the specific construction of the module. In an eight-fold ADC, 
for example, (i.e., a module containing 8 ADC's with separate inputs), the subaddress 
may refer to the specific ADC section in the module, in which case, only A (0) to A (7) 
would be available. In another module, A may refer to a specific register containing 
certain information, etc. Note that since the address of the module corresponds to its 
location in the crate, changing the position of a module would require changing its ad­
dress in the controlling computer program if the module is to be correctly accessed. 

On the dataway of a crate, the N number is carried by dedicated point to point lines 
connecting each station to the crate controller station 25. For a given N, the crate con­
troller will activate the N line corresponding to the station addressed. Simultaneously, 
the A subaddress is placed on the A lines which in contrast to the N lines are bussed to 
all stations as are the F lines which are also activated at same time. 

The F code may take on any value from 0 to 31 and is the means by which com­
mands may be transmitted to the module. The F values correspond to specific functions 
which can be performed by the plug-in module. Table 18.5 lists the values of F and the 
standard function definitions. 

There are essentially three groups of commands. F(O) to F(8) are READ commands 
which use the R lines while F(16) to F(23) are WRITE commands using the W lines. 
F(8) to F(15) and F(24) to F(31), on the other hand, are control commands requiring 
either a yes/no response or none at all. In these cases, the Rand Ware not used and all 
necessary responses are given by the status of the Q line. To read the contents of a regis­
ter in an ADC, for example, one would use the code F(O). Similarly, to test if the Look­
at-Me signal is set, F(8) would be used. The response is then be given by the state of the 
Q signal. It should be noted that only a certain number of the code values have been 
standardized and that room has been provided for ad hoc functions to be defined by 
the module designer, if required. Moreover, for a given module, only those function 
codes relevant to the module's function will be implemented. The CAMAC functions 
available on any module, are generally given on the module's specification sheet. 

Each addressed module during a command operation must generate an X signal in 
response. If the module recognizes the command and is able to execute it, an X = 1 re­
sponse is generated. If the module is unable to perform the function because it is either 
not present, not equipped to execute the desired function, unpowered, unconnected, 
etc., X = 0 is returned. 

18.4.1 Dataway Timing 

Let us now look at what happens electronically during a dataway operation. Because 
each operation involves a series of signals, synchronization is very important and cor­
rect timing must be rigorously maintained in order to assure correct transfer of infor-
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Table 18.5. CAMAC function codes 

Code F() 

o 
1 
2 
3 
4 

5 
6 
7 

8 
9 

10 
11 
12 
13 
14 
15 

16 
17 
18 
19 
20 
21 
22 
23 

24 
25 
26 
27 
28 
29 
30 
31 

Function 

Read group 1 register" 
Read group 2 register 
Read and clear group 1 register 
Read complement of group 1 register 
Nonstandard 
Reserved 
Nonstandard 
Reserved 

Test look-at-me 
Clear group 1 register 
Clear look-at-me 
Clear group 2 register 
Nonstandard 
Reserved 
Nonstandard 
Reserved 

Overwrite group 1 register 
Overwrite group 2 register 
Selective set group 1 register 
Selective set group 2 register 
Nonstandard 
Selective clear group 1 register 
Nonstandard 
Selective clear group 2 register 

Disable 
Execute 
Enable 
Test status 
Nonstandard 
Reserved 
Nonstandard 
Reserved 

" Registers in CAMAC modules may be divided into two sets: 
groups 1 and 2, which are accessed by separate commands. Within 
each group a particular register is selected using the subaddress A, 
so that up to 32 registers may be accessed in a module. Information 
concerning system status, configuration etc. are generally be held in 
group 2. 
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mation. The timing diagram in Fig. 18.4. illustrates the sequence of events for a com­
mand operation. 

At time to, the beginning of the operation, the NAF and B signals are simultaneous­
ly activated along with any R or W signals. Since it is difficult to have a perfect syn­
chronization between the signals, timing margins are allowed. These are indicated by 
the shaded areas in the diagram. Thus, by time t 1, the NAF and B signals must all have 
reached the appropriate voltage levels. Between tl and t2 , the addressed module must 
react and initiate the Q and X status signals and at time t3 , these and the R or W signals 
must be at the required voltage levels. Here now, we see more clearly the significance of 
the strobe signals S1 and S2. S1 is initiated at t3 and must be stable by t4. At this time 
all command and data signals must be settled on their respective lines. Using S1, there-
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,?r Data lines are the same for the immediately preceding or 
following operations. 

Fig. 18.4. Dataway timing 
for a command operation 
(from [18.2]) 

fore, gates may be opened on the module or at the computer interface to receive the da­
ta signals. At f6' the strobe S2 is initiated and data or status signals may now change. 
Note that the LAM signal mayor may not be present during this operation. From Fig. 
18.4, we also see that the minimum cycle time for one complete CAMAC operation is 
1 microsecond. 

The sequence for an unaddressed operation is somewhat simpler and shorter. This 
is illustrated in Fig. 18.5. At time fo, the B and either the Cor Z and I signals are initiat­
ed and settled by time fl' Between fl and f6, the signals are processed in the modules if 
required. At f6, the S2 line is activated. Note that in unaddressed operations, only the 
S2 strobe is required. However, S 1 may be optionally generated if desired. The mini­
mum time for an unaddressed cycle is 750 ns. 

18.4.2 Block Transfers 

In the preceding sections we saw that the minimum time for a single CAMAC data 
transfer was 1 /lS. Under program control, the actual time is usually many times great-
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Fig. 18.5. Timing for unad­
dressed operations (from 
[18.2]) 

er, however, because the time needed by the computer to execute and issue the com­
mand must also be counted. Execution times by the central processor of the computer 
can be quite long and may vary from hundreds of microseconds to milliseconds. This 
proves to be highly disadvantageous when large blocks of data must be transmitted. 
Suppose, for example, we want to read the contents of a memory containing 4 K words 
of storage. Using simple command operations, we would have to execute the READ 
command 4 K times. Assuming a typical execution time by the processor to be on the 
order of 1 ms, the total time required to transfer the entire block would be on the order 
of several seconds! 

To overcome this problem, most CAMAC systems today are equipped with Direct 
Memory Access (DMA) capability. The DMA unit is essentially a controller unit which 
makes a direct transfer of data between the CAMAC device and the computer memory 
or peripheral without intervention from the central processor. In a DMA transfer, a 
starting memory address corresponding to the beginning of the data block to be trans­
ferred is usually given along with the total number of data words to be transferred. The 
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final address of the data block may also be given. These data are stored in memory reg­
isters. The function (READ or WRITE) is then defined and the DMA operation initiat­
ed. The DMA unit then takes control of the data bus, transfers the first word of the 
block, increments the address register and decrements the word counter. The cycle is 
then repeated until the word count is zero. In this manner an efficient transfer of a 
block of data is enabled with no commands from the computer processor. 

Block transfers may be performed in one of three modes: Address Scan, Repeat or 
Stop mode. The Address Scan mode is used when a block of registers or modules are to 
be read (or written onto) sequentially. The modules involved need not be located at 
consecutive addresses, however, subaddresses within a given module must be so. The 
Q-response is used to determine if an address is occupied or not. For occupied N, Q = 1 
is returned. With N held constant, the sub address is then incremented and transfers 
made until Q = 0 is returned. A is then reset to A (0) and N is incremented, etc. 

Repeat mode is used to read a single register a fixed number of times. The readiness 
of the register for a read or write transfer is determined by the state of the Q-response. 
If Q = 1, the register is ready and an operation is made. If Q = 0, the register is not 
ready and repeated trials are made until Q = 1. The repeat mode is an inherently dan­
gerous mode since it is possible for the DMA channel to "hang up" waiting for a posi­
tive Q response when none is forthcoming. Some additional criteria, such as a limit on 
the total number of tries waiting for a Q-stop, must therefore be imposed to protect 
against such occurrences. 

The Stop mode is used for reading or writing a block of data whose size is deter­
mined by the CAMAC device. Sequential reads or writes are performed until an end­
of-block condition is reached. This is signaled by a Q = 0 response. 

Variations on these three modes are also possible which may be more useful for cer­
tain types of data acquisition. 

18.5 Multi-Crate Systems - The Branch Highway 

As we have already mentioned, CAMAC systems may contain more than one crate. In 
such cases, the crates are organized into branches with the crates on each branch being 
linked together along a data bus which in CAMAC terminology is known as a branch 
highway. And like the dataway, each branch is controlled by a branch driver which 
manages and coordinates the signal flow. Two types of branch highway are possible: 
parallel or serial. 

The parallel highway is the more complicated of the two but offers the highest rate 
of data transfer. This is usually the choice for data acquisition systems. Crates gain ac­
cess to the highway through ports in special crate controllers which contain the neces­
sary circuitry for receiving and decoding the branch highway signals. These crate con­
trollers, Type A-J, are standardized in document EUR 4600en. An enhanced version, 
Type A-2, may also be used and is discussed in document EUR 6500en. A maximum of 
7 crates may be connected to the highway usually in the chain configuration shown in 
Fig. 18.2. Other configurations may be possible, however. The length of a parallel 
highway, is limited to relatively short distances of about 30 to 40 m. If longer distances 
are required, additional signal drivers must be inserted. 

The parallel highway consists of a 132-wire bus (65 signal lines and their ground re­
turns plus grounded shielding) and has a structure very similar to the dataway. Separate 
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READ and WRITE lines are available, along with address, control, timing, service de­
mand and function lines. 

In a multi-crate system, the address must be extended to include the crate number 
(C), so that the complete address is given by CNA. Multi-crate systems can have up to 7 
crates to that C may take on values between 1 and 7. In a multi-branch system, the ad­
dress must also include the branch number B, bringing the complete address to BCNA. 

Along a parallel highway, the crate number C is carried by dedicated lines while N 
and A are bussed. N is decoded by the crate controller which then activates the appro­
priate station line in the crate, while A is simply retransmitted along the data way lines. 

Command operations along a branch are executed in a manner similar to a dataway 
operation although the timing gets somewhat more complicated. Among the unad­
dressed operations, however, only the Branch Initialize (BZ) is possible. Service de­
mands on the branch highway, on the other hand, are more extensive and complicated. 
Here there are two types: the Branch Demand (BD) and the Graded LAM (GL). The 
Branch Demand is a general demand signal generated by the crate controllers indicating 
that one or more modules along the branch have set their LAMs and require service of 
some kind. In response to BD, the branch driver may then issue a request for more in­
formation by initiating a Graded LAM operation. A graded LAM is a 24-bit word 
whose bit-pattern allows the branch driver to identify the type of servicing being re­
quested. During a GL operation, each crate controller identifies and tallies the LAMs 
in its respective crate and forms a GL word whose pattern corresponds to the types of 
LAMs set. The GL words from all crates are then combined and sent to the branch 
driver. Based on the GL pattern, appropriate services and actions may then be taken. 

In contrast to the parallel highway, the serial highway offers a much lower rate of 
data transfer. However, it is a much simpler bus which may be extended to long dis­
tances without the need of signal boosters. As well, up to 62 crates may be connected to 
the serial highway. 

All "messages" transmitted along the serial highway are organized as sequences of 
8-bit bytes. Transmission of the bytes is performed in synchronism to a system clock 
which may have a maximum rate of 5.0 MHz. The information itself, however, may be 
transmitted bit by bit (bit-serially) along 1 signal line and an accompanying clock line 
or byte-serially along 8 parallel lines plus a clock line. In both cases, each sequence of 8-
bits is preceded by a START bit and followed by a STOP bit to mark the beginning and 
end of each byte. Within each byte also, only bits 1 - 6 may be used for data. Bit 7 is 
used as a delimiter bit to indicate the beginning and end of the message while bit 8 may 
be used as a parity bit. 

Like the parallel highway, the serial highway requires a serial driver and special 
Type L-2 crate controllers. The latter have been standardized and further details may 
be found in the document EUR 6100 or ANSI/IEEE Std. 595 (1982). 

18.6 CAMAC Software 

While CAMAC has essentially resolved the hardware interface problem by introducing 
the dataway, the software to run CAMAC presents a more difficult problem. At the 
most basic level, software drivers are needed to control input-output operations at the 
CAMAC interface. This is highly machine dependent software, usually written in as­
sembly language, as it must take into account the architecture and operating system of 
the computer as well as the CAMAC interface. Many manufacturers offering CAMAC 
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interfaces also offer software driver packages along with higher-level languages for 
some of the more common computers and operating systems. For the computer not fit­
ting into any of these categories, writing a CAMAC driver could mean a considerable 
investment of time and effort for the non-system programmer. 

Once a driver is installed, applications programs may be written. This is best done 
in a high-level language (such as FORTRAN) where the logic is more easily seen and 
followed. To make the hardware and interface of the CAMAC system as transparent as 
possible to the user, a number of CAMAC routines, coded in assembly language for 
speed, and callable by the higher-level language are usually written to perform basic 
command and unaddressed operations. The user writing an acquisition program then 
need only make reference to these routines in order to perform any CAMAC opera­
tions. 

At this level some standardization is possible, so that programs written in a higher 
level language can be more or less transportable from computer to computer. As a re­
sult, the ESONE/NIM committee in 1978, issued a recommended set of standard 
CAMAC subroutines for the non-specialist user programming in a high-level language. 
These routines were designed to buffer the programmer from unnecessary details of the 
interface and controller and to maximize transportability of the software. Only the re­
quired actions of these routines are specified so that they may be used with any high­
level computer language. The actual implementation of the routines for a given com­
puter and CAMAC interface is left to the CAMAC system programmer. 

In the following paragraphs we will illustrate some of the routines offered by the 
standard. The entire set may be found in the document ESONE/SR/01 or DOE/EV-
0016. Since FORTRAN is the most common programming language among physicists, 
we will use this language in the examples. Software implementations in other languages 
will, of course, show differences, however, the general ideas remain the same. 

The subroutines are classified into three levels. The level A routines are the most 
fundamental performing simple CAMAC command operations: 

Call CDREG(IREG,IB,IC,IN,IA) Declare a register 

This routine associates a variable IREG to a CAMAC address BCNA for later use in 
the program. Thereafter, all references to this address are made by simply using IREG 
rather than BCNA: 

Call CFSA(IF,IREG,IDATA,IQ) Perform a Command Action 

Call CSSA(IF,IREG,IDATA,IQ) 

These routines perform a command operation on the address IREG, where IF is the 
function code and IQ the returned Q-response. Data transferred during the operation 
(READ or WRITE) is contained in the array IDAT A. The routine CFSA assumes a full 
24-bit word while CSSA assumes a shorter 16-bit word. 

The level B routine set consists of the level A routines plus routines performing un­
addressed operations, such as: 

Call CCCZ(IREG) 

Call CCCqIREG) 

Call CCCI(IREG,L) 

Initialize crate 

Clear Crate 

Set or Clear Inhibit 

These routines perform the unaddressed operations on the crate addressed by IREG. 
The CCCI routine sets an Inhibit if L is true and clears it if L is/alse. Also included in 
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level B are LAM declaration and handling routines for such functions as testing, clear, 
enable, etc. For example: 

Call CDLAM(LAM,IB,IC,IN,IA,INTA) Declare LAM 

This routine declares a LAM source in a manner similar to the register declaration rou­
tine. Through this routine the variable LAM is associated with the BCNA source. 
INT A is an array containing servicing information, etc. and is system dependent. Some 
of the handling routines are: 

Call CCLM(LAM,L) Enable/Disable LAM 

Call CCLC(LAM) Clear LAM 

Call CTLM(LAM,L) Test LAM 

where L is a logical variable. 
The third level C consists of additional routines initiating block transfers, such as: 

Call CFMAD(IF,IADD,IARRAY,ICB) DMA in Address Scan Mode 

Call CFUBR(IF,IREG,IARRAY,ICB) Q-Repeat Mode 

Call CFUBC(IF,IREG,IARRAY,ICB) Stop Mode 

where IADD, IARRAY and ICB are all arrays. IADD contains the starting and stop­
ping addresses of the scan mode, IARRAY the CAMAC data array and ICB control in­
formation, such as the word count, the number actually transferred, etc. A general ac­
tion routine is also defined to execute a sequence of CAMAC commands: 

Call CFGA(IFA,IADR,INTC,IQA,ICB) Perform sequence of commands 

where FA is an array of CAMAC functions, IADR an array of CAMAC addresses at 
which the command will be executed, IQA an array of Q-responses and ICB an array 
containing various control information. 

At level C, all the necessary routines are present for writing efficient data acquisi­
tion and control programs. In any implementation, also, there will be some system de­
pendent routines which take account of special features, etc. This is particularly true 
for LAM handling and block transfer operations where efficiency is of paramount im­
portance. 

Let us now consider a few simple examples using the standard routines to illustrate 
CAMAC data acquisition. As above, we will assume a knowledge of FORTRAN. In 
the first program, we will read a scaler and print out the results: 

PROGRAM SCALER 
C 
C First define scaler in branch 2, crate 1, slot 7 
C 

CALL DREG(ISCAL,2,1,7,O) 
C 
C Now reset scaler and clear INHIBIT 
C 

CALL CCCC(ISCAL) 
CALL CCCI(ISCAL,.FALSE.) 

C 
C Read 16-bit scaler register 
C 



352 18. Computer Controlled Electronics: CAMAC 

Call CSSA(O,ISCAL,IDATA,IQ) 
C 
C Print IDATA and Q-response 
C 

PRINT 10, IDATA,IQ 
10 FORMAT(' DATA = ',110, ' IQ = " 110) 

C 
END 

In the following program we illustrate simple LAM handling with an ADC. After 
setting up the ADC, a LAM, indicating the end of a conversion is awaited by entering 
into a loop. When the LAM test is positive, the contents of the ADC are read and printed. 

C 
C 

C 
C 

C 

PROGRAM ADC 

INTEGER INTA(2) 
LOGICAL L 

DATA INTAlO, 0/ 

C Define ADC address (B = 2, C = 1, N = 3) 
C 

CALL CDREG(IADC,2,l,3,O) 
C 
C Define LAM source 
C 

CALL CDLAM(LAM,2,1,3,0,INTA) 
C 
C Clear and Enable LAM 
C 

CALL CCLC(LAM) 
CALL CCLM(LAM,.TRUE.) 

C 
C Wait for LAM by looping 
C 

1 CALL CTLM(LAM,L) 
IF(L.EQ •• FALSE.) GO TO 1 

C 
C LAM detected, read result and print out 
C 

CALL CSSA(O, IADC, I DATA, IQ) 
C 

PRINT 10, IDATA,IQ 
10 FORMAT(' DATA = " 110, , Q = ',11) 

C 
END 

Because of their greater complexity, setting up and troubleshooting CAMAC sys­
tems are generally much more difficult than NIM systems. Indeed, not only is the hard­
ware more complicated, one must also deal with software problems as well. And sepa­
rating the two is not always easy! On the hardware side, more attention must be paid to 
contact problems than usual. Connectors should be clean and in good order. Because 
of its construction, some attention should be paid to alignment when modules are in­
serted into their slots or when connectors are mated. If a module meets resistance while 
being inserted into its slot, do not force it. It is easy to damage the card-connector; 
moreover, it is probably an indication of some mechanical misalignment. It is sufficient 
for the connector to be off by 2 or 3 mm to have intermittent problems. As a general 
safety rule also, CAMAC crates should first be turned off before inserting or removing 
modules. This is because of the proximity of the GND and voltage pins on the back 
connector. 



Appendix 

A. A Review of Oscilloscope Functions 

A.t Basic Structure 

Despite its apparent complexity, the oscilloscope, in its most frequent application, may 
simply be considered as a voltmeter which visually displays the input voltage signal as 
a curve in time. To understand its operation, a schematic diagram of its basic structure 
is presented in Fig. A.i. 

Visual representation of the signal is provided by means of a cathode-ray tube 
(CRT) and two pairs of deflecting electrode plates which control the vertical and hori­
zontal movement of the CRT electron beam. When a signal appears at the input, it is 
first amplified then split in two. One part is applied to the vertical-deflection plates, 
while the other is used to trigger a generator which applies a linear ramp voltage to the 
horizontal deflection plates. This latter voltage causes the beam to be swept horizontal­
ly across the screen at a constant speed. Since the beam is now also being deflected ver­
tically in proportion to the input signal, a curve representing the waveform of the signal 
in time is produced. This is the simplest operation mode of the oscilloscope. Examples 
of further applications are given later in this appendix. 

A.1.t Bandwidth and Risetime 

One of the most important operating characteristics of the oscilloscope is the band­
width of the vertical amplifier. As explained in Sect. 11.4, this parameter essentially 
governs how fast a signal can be accepted and correctly displayed by the oscilloscope 
without distortion. This is especially important for signals from detectors such as or­
ganic scintillators which emit pulses of a few nanosecond rise time. 

Ext. ~---_-O.."-b._-I 

vertical 
deflection 

plates 

CRT 

horizontal 

deflection 
plates 

Fig. A.I. Schematic diagram of the oscillo­
scope 
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Because of the finite bandwidth of the amplifier, the oscilloscope has an intrinsic 
risetime of its own, that is, a signal with a perfectly vertical rising flank (0 risetime) will 
be displayed as a signal with a flank with a finite risetime tose' A rough relation between 
the bandwidth and this rise time is given by the formula 

350 
t [nsj-----
ose - i3dB[MHzj , 

(A.l) 

where iJdB is the bandwidth of the oscilloscope in Megahertz. The risetime displayed 
for a signal with a risetime tpulse will thus be a combination of the risetime of the pulse 
and the oscilloscope risetime. An approximate formula for tdisp is given by 

2 2 2 
t disp = t pulse + t osc . (A. 2) 

A 3 ns risetime pulse on a 100 MHz oscilloscope (=> 3.5 ns risetime) will thus be dis­
played as a pulse with a 4.6 ns risetime. Similarly, if a 10 ns risetime is measured on the 
same oscilloscope, the true risetime of the signal is 

(A.3) 

A.2 Controls and Operating Modes 

A.2.1 Inpnt Con piing 

As in any good voltmeter, the input impedance of the oscilloscope is very high, usually 
1 MO, in parallel with a small capacitance on the order of 10 - 20 pF. For fast signal 
viewing from 50 Q cables, some oscilloscopes also provide a switch which allows selec­
tion of a 50 Q input impedance so as to obviate cable termination. On most oscillo­
scopes also, two, sometimes more inputs, are available allowing the simultaneous dis­
play of several signals. Depending on how triggering is performed, this allows a visual 
comparison of two or more signals. At each input, the type of coupling may be select­
ed: 

AC - In this mode any constant dc level is suppressed and only nonzero ac frequencies 
are displayed. 

DC - dc constant levels, as well as ac frequencies are displayed. Thus varying signals 
superimposed onto a constant dc level may be seen. 

GND - The input signal is directly shunted to ground. 

A.2.2 Vertical and Horizontal Sensitivity 

VERTICAL SENSITIVITY - This controls the vertical scale. On most oscilloscopes a 
vernier control is available which allows a continuous adjustment between the in­
dicated markings. Note that these markings are only valid when the vernier is in the 
calibrated position! 

TIME - This determines the speed at which the beam is swept across the screen and 
thus the horizontal scale. Again, the indicated settings are only valid when in the cali­
brated position. 

DELAYED SWEEP - In this mode, the time sweep is made after a certain delay time 
determined by the delay setting dial. 
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EXTERNAL X - When in this position, the time base generator is disconnected al­
lowing the horizontal deflection of the beam to be controlled by an external voltage 
applied at the EXT-X or channel-2 input. 

A.2.3 Triggering (Synchronization) 

Triggering or synchronization is the most important adjustment to be made when using 
the oscilloscope. As we have seen, the horizontal sweep of the oscilloscope is activated 
only when there is a triggering signal satisfying certain conditions. This triggering sig­
nal may be the input signal itself or some other external signal, depending on the mode 
selected. The conditions for a trigger include the slope of the signal and its amplitude. 
In this manner a precise point on the signal may be selected for the beginning of the 
sweep. For a repetitive signal such as a sine wave, for example, this produces a steady 
trace on the display screen, always starting at the same point on the signal. 

Signal Source 

INTERNAL - Triggering is done by the input signal itself as outlined above. This is 
the normal mode of operation. 

EXTERNAL - Triggering is made by an externally applied signal at the EXT. Trig. 
input. 

LINE - Triggerjng is made on the ac line voltage. 

Trigger Conditions 

SLOPE - Selects the slope of the signal on which triggering should be made. Normal­
ly, positive signals are triggered on the positive slope and negative signals on the neg­
ative slope. 

LEVEL or THRESHOLD - This defines the voltage level at which triggering of the 
sweep begins. Signals not reaching this minimum level are therefore not displayed. 
For most beginners, failure to obtain a trace is usually due to setting this level incor­
rectly. 

Trigger Modes 

NORMAL - In the normal mode, no sweep is made unless a triggering signal satisfy­
ing the desired conditions is present. At all other times the screen remains blank. 

AUTO - A continuous sweep is performed even if no signal is present at the input. 
This is useful for finding the trace and adjusting its positioning on the screen. When a 
signal is present, synchronization is as in the normal mode. 

SINGLE SWEEP - Only one single sweep is made. 
EXTERNAL or X-input - In this position, the internal ramp generator is disconnect­

ed and the horizontal movement of the beam controlled by the voltage at the X-in­
put. 

A.2.4 Display Modes 

CHANNEL 1 - Displays channel 1 only. 
CHANNEL 2 - Displays channel 2 only, etc. 
AL TERNA TE - Displays channels 1 and 2 on alternate sweeps, i.e., one full sweep is 

made alternatively for each channel. This mode is useful for comparing the relation 
between two signals. 
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for fast signals 

Fig. A.2. Normal signal viewing 

Trig. on A 
source: int 

Mode: normal 

or 
auto 

Appendix 

CHOP - In this mode, the display is alternated between channels 1 and 2 during a 
sweep. This is usually done at a high frequency on the order of 500 kHz. The two sig­
nals are thus "chopped" in appearance. 

ADD - The signals in channels 1 and 2 are added and displayed. 

A.3 Applications and Examples 

A.3.t Signal Viewing 

Figure A.2 shows the scheme for normal signal viewing. If no signal is observed, check 
the following points (not necessarily in the order listed!) 

1) Check slope and trigger level. 
2) Check that the trigger is on internal (or external, if that is what you are using). 
3) Is the trace positioned on the screen? Put on Auto (if not already) and position trace 

with the horizontal and vertical position knobs. If there is still no trace, check the in­
tensity. 

4) Check the horizontal and vertical scales. Are they about the right order of magnitude 
for the signal you are observing? 

5) Check that the input is not on OFF or GND. 
6) Are you sure of your input signal? Try one that you know exists. 

A.3.2 Comparison of Signals 

Signals may be compared in time and amplitude using the setup in Fig. A.3. The oscil­
loscope sweep is triggered by either A or B according to the selection on the trigger 

~'---:-~-----~ 

Trig. on A 

or B whichever 

is earlier 

Source: in! 

Mode: normal 

Fig. A.3. Setting a coincidence with the oscilloscope 

Trig. on ext. 

Ext. 

L".p'---:.,L-__ ---,'L-.----,,~...J T rig. 

on A Mode: 

normal 

Fig. A.4. Using the external trigger 
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o 
o 

Fig. A.S. Setting the levels of a discriminator or 
SCA 

OA 0 
A Cy B frt 

Trig. on B 

Delay 

Disc. 
or 

SeA 

Mode: normal 

source. With the display on Alternate, the relation in time of the second signal can be 
seen. This is the usual method for setting coincidences. 

If the oscilloscope is not equipped with two channels an alternate scheme is to use 
the external trigger. This is shown in Fig. A.4. 

A second example of signal comparison is checking the threshold of a discriminator 
or setting the levels of an SeA. This is shown in Fig. A.5. The output of the SeA or 
discriminator is used to trigger the scope for viewing the linear signal. Note that a delay 
must be added in order to take into account the processing time of the SeA or discrimi­
nator. Quite obviously only those linear signals which pass through the discriminator 
will be displayed since only these signals will have a trigger. In this way a certain ampli­
tude may be selected or the level of the discriminator checked with respect to the noise. 

B. Physical and Numerical Constants a 

Avogadro's number 
Speed of light 
Planck's constant 

Electronic charge 
Boltzmann's constant 

Classical electron radius 
Fine structure constant 

Electron mass 
Proton mass 
Neutron mass 
Deuteron mass 
Alpha particle mass 
Muon mass 
Charged pion mass 

1 Joule = t07 erg 

NA = 6.022045 X 1023 mol- 1 

c = 2.997925 X tOlO cm/s 

h = 6.626176xl0- 27 erg-s 
h = hl2n= 6.582173 xl0- 22 MeVs 
hc = 1.973285 X 10- 11 MeV cm 
e = 1.602189xtO- 19 Coul 
k =8.61735xl0- 11 MeV/K 

= 1.380662xl0- 16 erg/K 
re = e2 /mec2 = 2.817938 x to- 13 cm 
a =e2 Ihc=1/137.036 

me = 0.511003 MeV = 9.109534 x 10- 28 g 
mp = 938.2796 MeV = 1.672648 x 10- 24 g 
mn = 939.5731 MeV 
md = 1875.6280 MeV 
ma = 3727.33 MeV 
mp = 105.65916MeV 
mrr = 139.5685 MeV 

1 eV Ic2 = 1.782676 X 10- 33 g 
1 MeV = 1.602189 x 10- 6 erg 
1 amu = 931.5016 MeV 

O°C = 273.15 K 1 inch = 2.54 cm 
1 Tesla = 104 Gauss 1 barn = 10-24 cm2 

a Source: Review of Particle Properties, Phys. Lett. 1708 (1986) 
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C. Resistor Color Code 

Resistance values are coded by 4 colored bands around the resistor as shown below 

abc d 

------ill I II Fig. C.l. Resistor code 

The value of the resistance is then 

where the colors have the following number values: 

0 Black 
1 Brown 
2 Red 
3 Orange 
4 Yellow 
5 Green 
6 Blue 
7 Violet 
8 Gray 
9 White 
51l7o Gold 

10ll7o Silver 
20% No band 

Example C.l If the resistor has the band colors 

a green 
b orange 
c orange 
d gold 

then the resistance is R = 53 X 103 Q with a tolerance of 5070. 
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Pulse inverter 299 
Pulse shape discrimination 158, 171, 175, 314 ff. 
Pulse shaping networks 280 ff. 

CR-RC 281 
CR-RC-CR (double differentiation) 282-283 
delay line 283, 300 
semi-Gaussian 283 

Pulse splitter circuit 298 - 299 
Pulse stretcher 284 

Q-value in beta decay 4, 5 
Quenching 122, 129, 140, 141, 168, 173 
Quality factor 71 
Quality of fit see Chi-square 
Quantum efficiency 178, 179, 180 

Rad 70 
Radiant cathode sensitivity 178 
Radiation, biological effects of 74ff. 

effects of high doses 75 
effects of low doses 76 
maximum permissible dose 77 
protection and safety 78 - 79 
radiation weighting factor 73 
risk per unit dose 76, 77 
tissue weighting factor 71, 72 

Radiation length 
defined 41 
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formula for compounds and mixtures 42 
for various materials 42 

Radioactive decay 
decay chains 12-13 
decay constant 10, 12 
decay law 10 
fluctuations in 11, 12 
half-life 11 
mean lifetime 11 

Radioisotope production 14 -15 
Raether limit 136 
Random errors see Errors 
Random variable 81 
Range of charged particles 

for compounds and mixtures 33 
empirical formulae 32-33 
extrapolated (practical) range, defined 31 
for electrons and positrons 42 - 43 
for heavy charged particles 30 - 33 
mean range 31 
number-distance curve 31, 43 
scaling laws 33 
straggling 31 

Ratemeter 294 - 295 
Rayleigh scattering 57 
Recombination 

of electrons and holes in semiconductors 219, 
230 

of electrons and ions in gases 132 
Reduced electric field 134 
Reflection coefficient 269 - 270 
Reflective paint for light guides 200 - 201 
Regeneration effects in PM's 209, 213 
Registers see Latch 
Relative biological effectiveness 71 
Rem (roentgen-man-equivalent) 72 
Resistive feedback preamplifier 279 
Response function 119 
"Ringing" in pulse signals 208, 250 
Risetime, defined 250 
Roentgen, defined 69 
Rounding off numbers 112-113 
Rutherford scattering 44, 46, 322 

Scalers 294 
Schottky barrier junction 232 
Schottky effect see Shot noise 
Scintillation detector 

adjustment and operation 208-209, 213, 277 
coupling between scintillator and PM 201-202 
detection efficiency for various particles 173 ff. 
mounting 205 ff. 
plateau 209 ff., 304 

Scintillators 
average energy required for photon crea­

tion 167 
decay time, defined 158 
decay times for various materials 160 - 161, 

162, 163, 164, 165, 173 
gases 166 
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glass 167 
inorganic crystals 165 - 166 
light output response and linearity 167 ff. 
light outputs for various materials 160ff., 163 
liquid 163 -164 
organic crystals 160 - 161, 162 
plastic 39, 160, 164-165, 172,208 
scintillation mechanisms 159 ff., 166 

Secondary emission factor 181, 184, 185, 186 
Secular equilibrium 13 
Semiconductor detector see a/so Germanium 

detectors, Silicon detectors 
basic operating principle 215 
bias voltage 243 
charge collection 219, 226, 228, 229, 232, 233 
efficiency and sensitivity 230 - 231 
energy resolution 229 
Fano factor 229 
leakage current 229-230, 245, 246 
linearity 229 
noise 244 
operation 243 ff. 
preamplifiers for 243 ff" 278 
pulse signal shape 231 - 232 
radiation damage 245 - 246 
temperature effects 245 

Semiconductor junction 223 ff. 
capacitance 226 
depletion depth 224-225, 227 
np junction 223 
reverse-biased 226 - 227 

Semiconductor properties 
average energy required for electron-hole crea-

tion 228 
charge carrier concentration 217 - 218 
compensation 222 - 223 
conductivity (resistivity) 219, 222 
doping 220 
electronic structure 216 - 217 
intrinsic semiconductor 216ff. 
mobility of charge carriers 218 - 219 
recombination and trapping 219-220, 230 

"Shallow" impurity level in semiconductor 220 
Shell correction 24, 25 - 26 
Shielding 78 
Shot noise (Schottky effect) 193 
Sievert 72 
Silicon, physical properties 218, 223 
Silicon detectors 

CCD's (charge-coupled devices) 239 
diffused junction diodes 233 
drift chamber 238, 239 
ion-implanted 234 - 235 
lithium drifted [Si(Li)] 235 
micro-strip 237 - 238 
plasma effects 246-247 
position sensitive 235 - 236 
surface barrier (SSB) detectors 233 - 234, 243, 

244 
Silicone grease 202, 205 
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Simplex method for function minimization 
109 

Single channel analyzer (SCA) 287 ff., 313 - 314 
calibration 305 - 306 
differential linearity 289 
integral linearity 288 

Single electron spectrum see Photomultipliers 
Single scattering 44, 46 
Skewness 83 
Skin effect 273, 274, 276 
"Slow" component of scintillator light 159, 162, 

171,172 
Slow pulse signals 252-253, 255, 299 
Sodium-22 e2Na) source 7, 66, 299, 305, 311 
Sodium iodide (Nal) detector 41, 42, 48, 117, 

165,167,170,171, 174,175,201,208,241,308 
Soft atomic collisions 21 
Space charge saturation 

in gaseous ionization detectors 148, 152 
in PM's 188 

Specific ionization 70, 168 
90Sr beta source 5, 13 
Standard deviation 11, 83, 86, 87, 97, 106 
Standard error of the mean 95, 97 
Statistical errors see Errors 
Statistical noise 190, 192, 193 
Stilbene 162, 163, 172 
Stopping power see Bethe-Bloch formula 
Strip detector 236 
Strong interaction 17 
Successive approximation ADC 290 
Sum effect in gamma spectroscopy 242 
Surface density units see Mass thickness, defined 
Survival probability 19 - 20 
Systematic error see Errors 

Tail pulse 208, 279, 280, 281 
Termination of cables see Coaxial cables 
Thomson scattering 57 
"Tilt" in a pulse signal, defined 250 
Time interval distribution between counts 100 
Time-to-amplitude converters (TAC) 294, 315, 

316 
calibration 333 - 334 
linearity measurement 333 
Start-Stop TAC 329 
time overlap TAC 330 

Time-to-digital converters (TDC) 330ff. 
calibration 333 - 334 
linearity measurement 333 
Start-Stop TDC 330- 331 

Subject Index 

vernier TDC 332-333 
Time pickoff methods 325, 326ff. 
Time projection chamber (TPC) 127, 151 ff. 

basic design and operating principle 151 - 152 
liquid argon 156 
particle identification 153 
readout system 154 

Timing methods 325 - 326 
Timing SCA 289, 313 
Townsend avalanche coefficient 135 
Transient equilibrium 13 
Transmission detector 118, 234 
Transmission gate 284-285 
Transmission line 263,266,267,272 see also 

Coaxial cables 
Triggers 321 ff. 
TTL logic signals 261 

"Undershoot" in a pulse signal, defined 250, 
281, 282 

Unipolar signals 250, 281 

Valence band 166, 216 
Variance 

of binomial distribution 85 
of chi-square distribution 88 
defined 83 
of Gaussian distribution 87 
of maximum likelihood estimators 93, 94, 95, 

96 
of Poisson distribution 86, 98 
of a sample 92 

Vavilov formula see Energy loss straggling 
Venetian blind PM 182, 183, 185 
Voltage sensitive preamplifier see Preamplifiers 

Walk 289, 313, 316, 325-326 
Wavelength shifters 163, 166 
Weak interaction 4, 17 
Weighted mean 96ff. 
Well-type germanium detector 239, 240 
Wilkinson ADC 289 - 290 
Window mode in SCA 287 - 288 
Work function 178, 180, 193 

X-rays 2, 53 

90y beta source 5, 13 

Zener diodes in PM voltage dividers 187 
Zero-crossing triggering 315, 327 
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