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Preface to the Second Edition

Not quite six years have passed since the appearance of the first edition of this book.
This is not a long period. Yet the rapid pace of scientific and technological development
today is such that any book on experimental technique must be wary of becoming ob-
solete in some way or another even in such a short span of time. Thus, when the
publisher Springer-Verlag informed me of the need for a new printing of this book, I
decided it was an opportune moment to update some of the chapters as well as to include
some new material. The result is this second edition.

The most notable changes have been in Chapters 2 and 3. In the latter, which con-
cerns radiation protection, most of the sections have been rewritten to take into account
the new recommendations from the International Commission on Radiation Protection,
the most important of which are the new dose limits for exposure to ionizing radiation.
In addition, emphasis has now been put on the use of SI units in dosimetry, i.e., the
Gray and Sievert, which have now become standard.

In Chapter 2, new material has been added in addition to updated information. In
particular, Cherenkov radiation and electron-photon shower production are now treated
more thoroughly. These are not phenomena normally encountered in a student laborato-
ry, but they are presented here so as to provide a foundation for understanding detectors
based on these effects. Hopefully this will increase the usefulness of this book especially
for those entering high-energy physics. The section on multiple scattering in the Gaussian
approximation has also been updated with a new and more accurate empirical formula.

Throughout these chapters and indeed the entire book, an updating of the references
has also been made. During this period, of course, many new papers and books on
various experimental techniques have appeared, most of a very specific nature. I have
had to be selective therefore and have included only those which bear directly on the
more general aspects of a technique or method, or provide new data. However, I can
in no way claim to have included all possible new references and I apologize for those
that I have missed.

Finally, I have included a number of new examples in the text which I hope will
enhance understanding of the material. Like the rest of the examples, these are all based
on real problems which have been encountered either by myself or by students that I
have taught.

That I am writing this preface to the second edition at all is a pleasant surprise for
me as it attests to the success of the first edition. For this I am infinitely grateful to the
people who have helped with its realization, not the least of which are the readers who
have written to me with their comments, suggestions and corrections to the first edition.
Where possible, I have tried to incorporate these in one way or another in this edition.
Hopefully, I have not disappointed them. Last but not least, my deepest gratitude is due
to Prof. Catherine Leluc for her invaluable aid and advice once again, and to my wife
and children for their infinite patience.

La Tour de Peilz, November 1993 William R. Leo



Preface to the First Edition

This book is an outgrowth of an advanced laboratory course in experimental nuclear
and particle physics the author gave to physics majors at the University of Geneva
during the years 1978 — 1983. The course was offered to third and fourth year students,
the latter of which had, at this point in their studies, chosen to specialize in experi-
mental nuclear or particle physics. This implied that they would go on to do a
“diplom” thesis with one of the high- or intermediate-energy research groups in the
physics department.

The format of the course was such that the students were required to concentrate on
only one experiment during the trimester, rather than perform a series of experiments
as is more typical of a traditional course of this type. Their tasks thus included planning
the experiment, learning the relevant techniques, setting up and troubleshooting the
measuring apparatus, calibration, data-taking and analysis, as well as responsibility for
maintaining their equipment, i.e., tasks resembling those in a real experiment. This
more intensive involvement provided the students with a better understanding of the
experimental problems encountered in a professional experiment and helped instill a
certain independence and confidence which would prepare them for entry into a
research group in the department. Teaching assistants were present to help the students
during the trimester and a series of weekly lectures was also given on various topics in
experimental nuclear and particle physics. This included general information on detec-
tors, nuclear electronics, statistics, the interaction of radiation in matter, etc., and a
good deal of practical information for actually doing experiments.

Many of the chapters in this book are essentially based on notes which were
prepared for these lectures. The information contained in this book, therefore, will
hopefully provide the reader with a practical “guide” to some of the techniques, the
equipment, the technical jargon, etc., which make up the world of current experimental
nuclear and particle physics but which never seem to appear in the literature. As those
in the field already know, the art of experimental physics is learned through a type of
“apprenticeship” with a more experienced physicist or physicists, not unlike medieval
artisans. It is to these “apprentices” that I address these chapters.

The book is laid out in three parts. The first four chapters treat some of the funda-
mental background knowledge required of experimental nuclear or particle physicists,
such as the passage of radiation through matter, statistics, and radiation protection.
Since detailed descriptions of the theory can be found elsewhere, these chapters only
summarize the basic ideas and present only the more useful formulae. However, refer-
ences are provided for the reader desiring more information. In this form, then, these
chapters may serve as a reference. A basic understanding of quantum mechanics and
fundamental nuclear physics is assumed throughout.

Chapters 5 — 10 are primarily concerned with the functioning and operation of the
principal types of detectors used in nuclear and particle physics experiments. In addi-
tion to the basic principles, sections dealing with modern detectors such as the time-
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projection chamber or silicon microstrip detectors have also been included. It might be
argued, of course, that some of these detectors are too specialized or still too novel to
be included in a textbook of this level. However, for the student going on to more ad-
vanced work or the experienced researcher, it is these types of detectors he will most
likely encounter. Moreover, it gives the student an idea of the state of the art and the in-
credible advances that have been made. Hopefully, it will provide food for thought on
the advances that can still be made!

The final chapters, 11 — 18, are concerned with “nuclear electronics” and the logic
which is used in setting up electronics systems for experiments. This has always been a
difficult point for many students as most approaches have been from a circuit design
point of view requiring analysis of analog circuits, which, of course, is a subject unto
itself. With the establishment of standardized systems such as NIM and CAMAC and
the availability of commercial modules, however, the experimental physicist can func-
tion very well with only a knowledge of electronic logic. These chapters thus treat the
characteristics of the pulse signals from detectors and the various operations which can
be performed on these signals by commercially available modules. Chapter 18 also
presents an introduction to the CAMAC system, which, up to a few years ago, was
used only in high-energy physics but which now, with the advent of microcomputers,
may also be found on smaller experiments undertaken by students.

Although this book is based on a specific laboratory course, the treatment of the
topics outlined above is general and was made without specific reference to any par-
ticular experiment, except, perhaps, as an example. As such I hope the book will also
be of use to researchers and students in other domains who are called upon to work
with detectors and radiation.

I would like to thank the many people who have at some point or another helped
realize this book. In particular, my very special thanks are due to Dr. Rene Hausam-
mann, Dr. Catherine Lechanoine-Leluc, Dr. Jacques Ligou, and Dr. Trivan Pal for
having read some of the chapters and for their helpful comments and suggestions. I am
also grateful to J.-C. Bostedeche and J. Covillot who helped construct, establish and
maintain the experiments in the laboratory, to C. Jacquat for the many hours spent on
the drawings for this book and to the many authors who have kindly allowed me to use
figures from their articles or books. Finally, I would like to thank Elisabeth, who,
although not a physicist, was the first to have the idea for this book.

Lausanne, March 1987 William R. Leo
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1. Basic Nuclear Processes in Radioactive Sources

Radioactive sources provide a convenient means of testing and calibrating detectors
and are essential tools in both the nuclear and high energy physics laboratory. An
understanding of the basic nuclear processes in radioactive sources is a necessity, there-
fore, before beginning to work in the laboratory. We shall begin this book then by
briefly reviewing these processes and describing the characteristics of the resulting
radiations. A more detailed discussion, of course, is better suited for a nuclear theory
course and we refer the reader to any of the standard nuclear physics texts for more in-
formation.

Nuclei can undergo a variety of processes resulting in the emission of radiation of
some form. We can divide the processes into two categories: radioactivity and nuclear
reactions. In a radioactive transformation, the nucleus spontaneously disintegrates to a
different species of nuclei or to a lower energy state of the same nucleus with the emis-
sion of radiation of some sort. The majority of radiation sources found in the labora-
tory are of this type. In a nuclear reaction, the nucleus interacts with another particle or
nucleus with the subsequent emission of radiation as one of its final products. In many
cases, as well, some of the products are nuclei which further undergo radioactive dis-
integration.

The radiation emitted in both of these processes may be electromagnetic or cor-
puscular. The electromagnetic radiations consist of x-rays and y-rays while the cor-
puscular emissions include ¢-particles, S-electrons and positrons, internal conversion
electrons, Auger electrons, neutrons, protons, and fission fragments, among others.
While most of these radiations originate in the nucleus itself, some also arise from the
electron cloud surrounding the nucleus. Indeed, the nucleus should not be considered
as a system isolated from the rest of the atom. Excitations which arise therein may, in
fact, make themselves directly felt in the electron cloud, as in the case of internal con-
version, and/or indirectly as in the emission of characteristic x-rays following electron
capture. Except for their energy characteristics, these radiations are indistinguishable
from those arising in the nucleus.

Table 1.1 summarizes some of the more common types of radiation found in labo-
ratory sources. Each radiation type is characterized by an energy spectrum which is in-
dicative of the nuclear process underlying it. Note also that a radioactive source may
emit several different types of radiation at the same time. This can arise from the fact
that the nuclear isotope in question undergoes several different modes of decay. For
example, a 137Cs nucleus can de-excite through either y-ray emission or internal conver-
sion. The output of a given 3’Cs sample, therefore, will consist of both photons and
electrons in a proportion equal to the relative probabilities for the two decay modes. A
more common occurrence, however, is that the daughter nucleus is also radioactive, so
that its radiation is also added to the emitted output. This is the case with many S-
sources, where the g-disintegration results in an excited daughter nucleus which then
immediately decays by y-emission.
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Table 1.1. Characteristics of nuclear radiations

Type Origin Process Charge Mass Spectrum
[MeV] (energy)
a-particles Nucleus Nuclear +2 3727.33 Discrete
decay or [MeV]
reaction
B~ -rays Nucleus Nuclear -1 0.511 Continuous
decay [keV —MeV)
BT -rays Nuclear Nuclear +1 0.511 Continuous
(positrons) decay [keV —MeV]
y-rays Nucleus Nuclear 0 0 Discrete
deexcitation [keV — MeV]
X-rays Electron Atomic 0 0 Discrete
cloud deexcitation [eV —keV]
Internal Electron Nuclear -1 0.511 Discrete
conversion cloud deexcitation [high keV]
electrons
Auger Electron Atomic -1 0.511 Discrete
electrons cloud deexcitation [eV —keV]
Neutrons Nucleus Nuclear 0 939.57 Continuous
reaction or discrete
[keV —MeV]
Fission Nucleus Fission =20 80—160 Continuous
fragments 30-150 MeV

1.1 Nuclear Level Diagrams

Throughout this text, we will be making use of nuclear energy level diagrams, which
provide a compact and convenient way of representing the changes which occur in
nuclear transformations. These are usually plotted in the following way. For a given
nucleus with atomic number Z and mass A, the energy levels are plotted as horizontal
lines on some arbitrary vertical scale. The spin and parity of each of these states may
also be indicated. Keeping the same mass number A4, the energy levels of neighboring
nuclei (Z—-1, A), (Z+1, A), ... are now also plotted on this energy scale with Z or-
dered in the horizontal direction, as illustrated in Fig. 1.1. This reflects the fact that
nuclei with different Z but the same A may simply be treated as different states of a sys-
tem of A nucleons. The relation of the energy levels of a nucleus (Z, A) to other nuclei
in the same A system is therefore made apparent. With the exception of a-decay, radio-
active decay may now be viewed as simply a transition from a higher energy state to a
lower energy state within the same system of A nucleons. For example, consider the f-
decay process, which will be discussed in the next section. This reaction involves the
decay

(Z,A) > (Z+1,A)+e +V,

where the final state in the nucleus (Z+ 1, A) may be the ground state or some excited
state. This is shown in Fig. 1.1 by the arrow descending to the right. The atomic num-
ber Z increases by one, but A remains constant. The changes that occur can be immedi-
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(Z+2.A)

Energy
relative
to ground

Fig. 1.1. Nuclear level diagrams conveniently repre-

Y Branching ratio sent the transitions which can occur between nuclei.

Spin—/(o' 0 995, For a system of A nucleons, energy is represented on

parity (Z,A) the vertical scale while atomic number is on the hori-
— zontal scale

ately seen: for example, the energy available for the reaction as given by the difference
in height between the two levels, the spin and parity changes, etc. If it is possible for the
same initial state to make transitions to several different final states, this can also be
represented by several arrows emanating from the initial state to the various possible
final states. The relative probability of each decay branch (i.e., the branching ratio)
may also be indicated next to the corresponding arrow.

In a similar way, transitions which follow the first may also be diagrammed. For
example, suppose the final state of the above example is an excited state of the (Z+1,
A) nucleus, it may then make a gamma transition to the ground state or to another
excited state. This type of transition is indicated by a vertical line since Z remains un-
changed (see Fig. 1.1). Other transitions, such as a further f-decay or some other pro-
cess, may be represented in a similar manner. In this way, the types of radiation emitted
by a particular radioactive source and their origins may be easily displayed.

Several tabulations of the radioactive isotopes and their level diagrams as deduced
from experiment are available for reference purposes. The most complete of these is the
Table of Isofopes edited by Lederer and Shirley [1.1] which is updated periodically. We
urge the reader to become familiar with their interpretation.

1.2 Alpha Decay

Alpha particles are “He nuclei, i.e., a bound system of two protons and two neutrons,
and are generally emitted by very heavy nuclei containing too many nucleons to remain
stable. The emission of such a nucleon cluster as a whole rather than the emission of
single nucleons is energetically more advantageous because of the particularly high
binding energy of the a-particle. The parent nucleus (Z, A) in the reaction is thus trans-
formed via

(Z,A)»(Z-2,A—-4+a. 1.1)

Theoretically, the process was first explained by Gamow and Condon and by Gurney as
the tunneling of the o-particle through the potential barrier of the nucleus. Alpha
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particles, therefore, show a monoenergetic energy spectrum. As well, since barrier
transmission is dependent on energy, all a-sources are generally limited to the range
=4 — 6 MeV with the higher energy sources having the higher transmission probability
and thus the shorter half-life. For this reason also, most a-decays are directly to the
ground state of the daughter nucleus since this involves the highest energy change.
Decays to excited states of the daughter nucleus are nevertheless possible, and in such
nuclei, the energy spectrum shows several monoenergetic lines each corresponding to a
decay to one of these states. Some of the more commonly used sources are listed below
in Table 1.2.

Table 1.2. Characteristics of some alpha emitters

Isotope Half-life Energies [MeV] Branching
MAm 433 yrs. 5.486 85%
5.443 12.8%
U0pg 138 days 5.305 100%
#2cm 163 days 6.113 74%
6.070 26%

Because of its double charge, + 2e, alpha particles have a very high rate of energy
loss in matter. The range of a 5 MeV a-particle in air is only a few centimeters, for
example. For this reason it is necessary to make « sources as thin as possible in order to
minimize energy loss and particle absorption. Most a-sources are made, in fact, by de-
positing the isotope on the surface of a suitable backing material and protecting it with
an extremely thin layer of metal foil.

1.3 Beta Decay

Beta particles are fast electrons or positrons which result from the weak-interaction
decay of a neutron or proton in nuclei which contain an excess of the respective
nucleon. In a neutron-rich nucleus, for example, a neutron can transform itself into a
proton via the process

nop+e +7, (1.2)

where an electron and antineutrino are emitted. (The proton remains bound to the
nucleus.) The daughter nucleus now contains one extra proton so that its atomic num-
ber is increased by 1.

Similarly, in nuclei with too many protons, the decay

p-on+et+y 1.3

can occur, where a positron and a neutrino are now emitted and the atomic number is
decreased by 1. Both are mediated by the same weak interaction.

A basic characteristic of the S-decay process is the continuous energy spectrum of
the f-particle. This is because the available energy for the decay (the Q-value) is shared
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between the B-particle and the neutrino (or antineutrino) which usually goes undetect-
ed. A typical spectrum is shown in Fig. 1.2. If the small recoil energy of the daughter
nucleus is ignored, the maximum energy of this spectrum should correspond to the Q-
value for the reaction. For most beta sources, this maximum value ranges from a few
tens of keV to a few MeV.

In very many S-sources, the daughter nucleus is left in an excited state which decays
immediately with the emission of one or more y photons (see Sect. 1.5). This is il-
lustrated in the level diagram shown in Fig. 1.3. These sources, therefore, are also emit-
ters of y radiation. Most S-sources are of this type. Pure f-emitters exist but the list is
astonishingly short as is seen in Table 1.3.

Table 1.3. List of pure f~ emitters

Source Half-life E ax [MeV]
SH 12.26 yr 0.0186

l4c 5730 yr 0.156

3p 14.28 d 1.710

3Bp 24.4d 0.248

g 87.9d 0.167

3¢ 3.08x10° yr 0.714
4Ca 165 d 0.252

OBNj 92 yr 0.067
90gr/NVy 27.7yr/64h 0.546/2.27
PT¢ 2.12x10° yr 0.292
147pm 2.62yr 0.224
2041 3.81yr 0.766

Some f sources may also have more than one decay branch, i.e., they can decay to
different excited states of the daughter nucleus. Each branch constitutes a separate S-
decay with an end-point energy corresponding to the energy difference between the
initial and final states and is in competition with the other branches. The total f-spec-
trum from such a source is then a superposition of all the branches weighted by their
respective decay probabilities.

Since electrons lose their energy relatively easily in matter, it is important that §-
sources be thin in order to allow the §’s to escape with a minimum of energy loss and
absorption. This is particularly important for positron sources since the positron can
annihilate with the electrons in the source material or surrounding container. A too

72+ 27yr

soNi 137Ba
712= 270d 3+ 26yr
* 22
2 1.277
0+ Y1 0 Fig. 1.3. Nuclear level diagrams of a few common gamma

2ZNe sources

Intensity

Energy E max

Fig. 1.2. Typical continuous ener-
gy spectrum of beta decay elec-
trons
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thick B* source will exhibit a distorted % spectrum and an enormous background of
511 keV annihilation photons.

1.4 Electron Capture (EC)

As an alternative to f* emission, proton-rich nuclei may also transform themselves via
the capture of an electron from one of the atomic orbitals

€ +p—-n+v. (1.4)

This reaction is essentially the same as *-decay but with the g particle transposed to
the left side. The nuclear level diagram for EC is therefore identical to that for #* emis-
sion. Since only the neutrino is emitted, electron capture would seem to be a reaction
almost impossible to observe, given the well-known difficulty of detecting such a
particle! The capture of the electron, however, leaves a hole in the atomic shell which is
filled by another atomic electron, giving rise to the emission of a characteristic x-ray or
Auger electrons (see Sect. 1.8). These radiations are, of course, much more amenable
to detection and can be used to signal the capture reaction. In general, it is the K elec-
tron which is most likely captured, although, L-capture is also possible but with a much
smaller probability.

1.5 Gamma Emission

Like the electron shell structure of the atom, the nucleus is also characterized by
discrete energy levels. Transitions between these levels can be made by the emission (or
absorption) of electromagnetic radiation of the correct energy, i.e., with an energy
equal to the energy difference between the levels participating in the transition. The
energies of these photons, from a few hundred keV to a few MeV, characterize the high
binding energy of nuclei. These high-energy photons were historically named p-rays,
and, like atoms, show spectral lines characteristic of the emitting nucleus. Level
diagrams illustrating the specific energy structure of some typical y-ray sources are
shown in Fig. 1.3.

Most y-sources are “placed” in their excited states as the result of a S-disintegra-
tion, although excited nuclear states are often created in nuclear reactions also. Since
electrons and positrons are more easily absorbed in matter, the f-particles in such
sources can be “filtered” out by enveloping them with sufficient absorbing material,
leaving only the more penetrating p-ray.

1.5.1 Isomeric States

Although most excited states in nuclei make almost immediate transitions to a lower
state, some nuclear states may live very much longer. Their de-excitation is usually
hindered by a large spin difference between levels (i.e., a forbidden transition) resulting
in lifetimes ranging from seconds to years. A nuclide which is “frapped” in one of these
metastable states will thus show radioactive properties different from those in more
normal states. Such nuclei are called isomers and are denoted by an m next to the mass
number in their formulae, e.g.**"Co or ™Zn.
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1.6 Annihilation Radiation

Another source of high-energy photons is the annihilation of positrons. If a positron
source such as *’Na is enclosed or allowed to irradiate an absorbing material, the posi-
trons will annihilate with the absorber electrons to produce two photons, each with an
energy equal to the electron mass: 511 keV. In order to conserve momentum, these two
photons are always emitted in opposite directions. The y spectrum from a thick posi-
tron source will thus show a peak at 511 keV (corresponding to the detection of one of
the annihilation photons) in addition to the peaks characteristic of transitions in the
daughter nucleus. Figure 1.4 shows the spectrum observed with a thick »*Na source.

22Na

ANNIHILATION
PEAK
051 MeV

Fig. 1.4. Gamma-ray spectrum of a 22Na source
as observed with a Nal detector. Because of
positron annihilation in the detector and the
127 MeV source itself, a peak at 511 keV is observed corre-
sponding to the detection of one of the annihila-
- tion photons

Intensity

Pulse height

1.7 Internal Conversion

While the emission of a y-ray is usually the most common mode of nuclear de-excita-
tion, transitions may also occur through internal conversion. In this process, the
nuclear excitation energy is directly transferred to an atomic electron rather than emit-
ted as a photon. The electron is ejected with a kinetic energy equal to the excitation
energy minus its atomic binding energy. Unlike f-decay, therefore, internal conversion
electrons are monoenergetic having approximately the same energy as the competing
y’s, i.e., a few hundred keV to a few MeV.

While the K-shell electrons are the most likely electrons to be ejected, electrons in
other orbitals may also receive the excitation energy. Thus, an internal conversion
source will exhibit a group of internal conversion lines, their differences in energy being
equal to the differences in the binding energies of their respective orbitals.

Internal conversion sources are one of the few nuclear sources of monoenergetic
electrons and are thus very useful for calibration purposes. Some internal conversion
sources readily found in the laboratory are given in Table 1.4.

Table 1.4. Some internal conversion sources

Source Energies [keV]
207gj 480, 967, 1047
3¢y 624
3gy 365

133, 266, 319
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1.8 Auger Electrons

As in internal conversion, an excitation which arises in the electron shell can also be
transferred to an atomic electron rather than to a characteristic x-ray. Such a process
can occur after a reaction such as electron-capture, for example. The electrons emitted
are called Auger electrons and are monoenergetic. Like internal conversion lines they
can occur in groups, however, their energies are more typical of atomic processes being
not more than a few keV. They are thus very susceptible to self-absorption and are dif-
ficult to detect.

1.9 Neutron Sources

While it is possible to artificially produce isotopes which emit neutrons, natural
neutron emitters which can be used practically in the lab do not exist. Laboratory
neutron sources, instead, are based on either spontaneous fission or nuclear reactions.

1.9.1 Spontaneous Fission

Spontaneous fission can occur in many transuranium elements with the release of
neutrons along with the fission fragments. These fragments, as well, can promptly
decay emitting £ and y radiation. If the fission source is enveloped in a sufficiently
thick container, however, much of this latter radiation can be absorbed leaving only the
more penetrating neutrons.

The most common neutron source of this type is *>Cf which has a half-life of
265 years. The energy spectrum of the neutrons is continuous up to about 10 MeV and
exhibits a Maxwellian shape. Figure 1.5 shows this spectrum. The distribution is de-
scribed very precisely by the form [1.2]

igiz VE exp <—‘TE > (1.5)
where 7= 1.3 MeV for ®*Cf.

1.9.2 Nuclear Reactions

A more convenient method of producing neutrons is with the nuclear reactions (a, n) or
(, n).! Reactions of this type occur with many nuclei, however, only those with the
highest yield are used. Such sources are generally made by mixing the target material
with a suitably strong « or y emitter. The most common target material is beryllium.
Under bombardment by «’s, beryllium undergoes a number of reactions which lead to
the production of free neutrons:

! A common method for denoting nuclear reactions is A (x, y) B where x is the bombarding particle, A the
target nucleus, B the resulting nucleus and y the the outgoing particle or particles. Note that the ingoing and
outgoing particles are always on the inside of the parentheses. The abbreviated notation (x, y), therefore, in-
dicates any nuclear reaction in which x is the incident particle and y the resulting, outgoing particle.
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"C®4n o 2420m/Be
a+°Be » 3C* 5 { ®Be+a+n (1.6) m
3o+n.

Here the excited compound nucleus *C* is formed which then decays through a variety
of modes depending on the excitation energy. In general, the dominant reaction is the
decay to 12C or to the 4.44 MeV excited state of >)C. With 2’Am as an a-source, a
neutron yield of about 70 neutrons per 10 &’s [1.3] is generally obtained. With 2*’Cm,
which emits ¢’s at a higher energy, the yield is =106 neutrons/10%¢ [1.3]. Other (a, n)
neutron sources include **Pu/ Be, 226Ra/Be and ?’Ac/Be. T argets such as B, F, and Li 0 L
are also used although the neutron yields are somewhat lower. The half-life of these 0 4 8
sources, of course, depends on the half-life of the a-emitter. Energy [MeV]

For incident o’s of a fixed energy, the energy spectrum of neutrons emitted in these A
sources should theoretically show monoenergetic lines corresponding to the different 3r 24am/Be
transitions which are made. In mixed sources, however, there is a smearing of the alpha-
particle spectrum due to energy loss, so that a large smearing in neutron energy results.
There is also considerable Doppler broadening which can amount to as much as 2 MeV.
Figure 1.6 shows the energy spectrum of neutrons for several sources of this type.

In the case of the photo-reaction (y, n), only two target materials are suitable: beryl-
lium and deuterium. The respective reactions are

Relative intensity

Relative intensity

Be+y — *Be+n, 1.7) o
0 4 8

H +y>'H +n. (1.8) Energy [MeV]
. Fig. 1.6. Neutron energy spec-

These sources have the advantage of emitting neutrons which are more or less mon-  trum from 22Cm/Be and (above)
oenergetic since the y’s are not slowed down as in the case of o’s. The neutrons are, of ?fr;gm L‘Z‘r“c‘;]:te afb‘[":";]'; sources
course, not strictly monoenergetic if one works out the kinematics; however, the spread Y
is generally small. The disadvantage of these sources is that the reaction yield per p is
1—2 orders of magnitude lower than that of the a-type sources. As well, the nonreact-
ing gammas are not absorbed as easily as a-particles, so that these sources are also ac-
companied by a large background of y radiation.

A more detailed description of these and other neutron sources may be found in the
article by Hanson [1.4].

1.10 Source Activity Units

The activity or strength of a radioactive sample is defined as the mean number of decay
processes it undergoes per unit time. This is an extrinsic quantity which depends on the
amount of source material contained in the sample — the larger the sample the greater
the total number of decays. Moreover, it should be noted that the activity of a source is
not necessarily synonymous with the amount of radiation emitted per unit time by the
source, although it is certainly related to it. For example, some nuclear transformations
result in an unstable daughter nucleus which also disintegrates. Its radiations would
then appear with the radiation from the original decay, but would not be included in
the activity. Similarly, some nuclides decay through several competing processes, for
example, 87 -emission or electron capture, where only a fraction of the decays appears
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as a particular emitted radiation. The relation between radiation output and activity, in
fact, depends on the specific nuclear decay scheme, and only in the case of a unique
radiative transition is the activity identical to the radiation output.

Activity has traditionally been measured in units of Curies (Ci). Originally defined
as the activity of 1 g of pure radium-226, this unit is equivalent to

1 Curie (Ci) = 3.7 x 10" disintegrations/s (dps). 1.9)

This is, in fact, a very large unit and one generally works in the laboratory with sources
on the order of tens or hundreds of microCuries (uCi).
Because of its rather awkward definition in terms of dps, the Becquerel, defined as

1 Becquerel (Bq) = 1 disintegration/s (1.10)

is now recommended instead.

For the beginning student, it is important to distinguish units of activity from those
of dose such as the Gray or the Sievert. These latter units essentially measure the effects
of radiation received by an object or person, whereas the Curie or Becquerel are con-
cerned with the disintegrations in the source itself. Units of dose will be treated in
Chap. 3.

1.11 The Radioactive Decay Law

The radioactive decay law was first established experimentally near the beginning of the
century by Rutherford and Soddy and states that the activity of a radioactive sample
decays exponentially in time. In terms of modern quantum mechanics, this can easily
be derived by considering the fact that a nuclear decay process is governed by a transi-
tion probability per unit time, A, characteristic of the nuclear species. If a nuclide has
more than one mode of decay, then A is the sum of the separate constants for each
mode

/1=/11+/12+... . (111)

In a sample of N such nuclei, the mean number of nuclei decaying in a time dt would
then be

dN= - ANdt, (1.12)

where N is the number of nuclei and A is the decay constant. We have assumed here that
N is large so that it may be considered as continuous. Equation (1.12) may be consid-
ered as the differential form of the radioactive decay law. Integrating (1.12) then results
in the exponential,

N(t)=N@)exp(—Ap), (1.13)

where N(0) is the number of the nuclei at £ = 0. The exponential decrease in activity of
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a radioactive sample is thus governed by the constant A. In practice, it is more habitual
to use the inverse of A,

tn=1/1, (1.14)

which is known as the mean lifetime. This is just the time it takes for the sample to
decay to 1/e of its initial activity. Equally in use is the half-life, Ty,,, which is defined
as the time it takes for the sample to decay to one-half of its original activity. Thus,

T=exp(—4Ty,), (1.15)

which implies

T1/2=%1n2=‘[m1n2. (1.16)

1.11.1 Fluctuations in Radioactive Decay

Consider now the number of decays undergone by a radioactive source in a period of
time At which is short compared to the half-life of the source. The activity of the
source may then be considered as constant. If repeated measurements of the number of
decays, n, in the interval A¢ are now made, fluctuations will be observed from mea-
surement to measurement. This is due to the statistical nature of the decay process; in-
deed, from quantum mechanics we know that the exact number of decays at any given
time can never be predicted, only the probability of such an event. From the radioactive
decay law, it can be shown, in fact, (see Segre [1.5], for example) that the probability of
observing 7 counts in a period A¢ is given by a Poisson distribution,

mn

n!

P(n, At) = exp(—m), 117

where m is the average number of counts in the period A¢. The standard deviation of
the distribution is then

o=)m (1.18)

as is characteristic of Poisson statistics.

Example 1.1 A source is observed for a period of 5 s during which 900 counts are ac-
cumulated by the detector. What is the count rate per second and error from this mea-
surement?

Take the measurement as a single trial for the determination of the mean count rate
in 5s, i.e., m =900 for A¢t=5s. The standard deviation is then

g = ]/900 = 30.
The count rate per second is then

rate/s = (900 % 30)/5 = (180+6) cts/s .
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Example 1.2 A weak radioactive source is found to have a mean count rate of
1 counts/s. What is the probability of observing no counts at all in a period of 4 s? One
count in 4 s?

For a period A4t =45, the mean count rate is obviously m = 4. Using the Poisson
distribution, we find

P=@PCD _ 60183
0!
Similarly, the probability of observing 1 count in 4 s is

P=4

1&1('_ﬂ —0.0733.

1.11.2 Radioactive Decay Chains

A very often encountered situation is a radioactive decay chain in which a nuclide
decays to a daughter nucleus which itself disintegrates to another unstable nucleus and
so on. In the simple case of a three-nucleus chain, i.e.,

A-B-C,

where C is stable, application of the radioactive decay law gives the equations

dN,
a - Ml
Ny _ AaNy— ANy, (1.19)
dN,
= 1Ny,
dr bi¥b

where 4, and 4, are the corresponding decay constants. For longer chains, the equa-
tions for the additional nuclides are derived in the same manner. If initially
Ny (0) = N.(0) =0, solution of (1.19) results in

N, (1) = N, (0) exp(— 4,7) ,
Aa

b~ 2a

Ny (1) = N, (0) [exp(—Aa7) —exp(—Ap1)], (1.20)

Nc(t)zNa(O){l"' [Aaexp(—'Abt)_/lbexD(—/lat)]}-

b~ Aa

The behavior in time of the three nuclear species is graphed in Fig. 1.7. Note that the
activity of B here is not given by dN,/dt but A, N,. This is because dN,/dt now also
includes the rate of B created by 4. We might note also that N, goes through a
maximum. By setting the derivative to zero, we find
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Fig. 1.7. Radioactive decay of a three nucleus chain

Fig. 1.8. Ratio of daughter to parent radionuclide activity. Curve (a) shows the condition known as transient
equilibrium, while curve (b) illustrates secular equilibrium

In Ao

__ta (.21
Ao— 1,

fmax
At this point, the activity of B is a maximum equal to
Ao Np(tmax) = AaNa(fmax) (1.22)

as seen from from (1.20). This is known as ideal equilibrium. At any other time, the
ratio of the activity of B to A (or the ratio of any daughter to its immediate parent in
longer chains) is given by

=—" {1—-exp[-(Ap— )11} . (1.23
N T el e A )

Three cases may be distinguished:

1) If A, > Ay, then the ratio increases with time.

2)If A, > A,, then (1.23) becomes almost constant >1 at large ¢. This is known as
transient equilibrium.

3) If A, > A,, then the ratio rapidly levels off to =1 and reaches a state of secular
equilibrium.

These three cases are illustrated in Fig. 1.8. In secular equilibrium, note that the
number of daughter nuclei B stays constant relative to A. This means that the rate of
disintegration of B is the same as its rate of creation. An example is the S-decay of Sy

90 B~ o B~ 90
Sr 28y Y 64.8h Zr
where the end-point energies for the two §’s are 0.546 MeV and 2.27 MeV respectively.
Since the number of *°Y nuclei is kept constant by regeneration from sy, we essential-
ly have a *°Y source with a half-life of 28 yrs rather than 65 hours!
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1.11.3 Radioisotope Production by Irradiation

A useful application of our example above is in the production of radioactive isotopes
by irradiation of a stable element. In such a case, we have the nuclear reaction

Ax,y)B-C,

where the isotope B is produced and decays to C with some constant . If (4 — B) is
the reaction cross section, F, the flux of irradiating particles x and N,, the number of
nuclei A4, then the radioactive decay equations result in

dN,

= —Fa(A - B)N,= — 1,N,
dr

(1.24)
dN,

= —ApNp+ 4Ny,

which is in strict analogy to our example above. The maximum yield of isotope B,
therefore, is obtained at a time ?,,,, given by (1.21).

Example 1.3 Ordinary copper consists of =69% %Cu and 31% %Cu. When irradi-
ated by slow neutrons from a reactor, for example, radioactive #*Cu and %Cu are
formed. The half-lives of these two isotopes are 12.7 h and 5.1 min respectively. What
is the activity of each of these isotopes if 1 g of ordinary copper is irradiated in a
thermal neutron flux of 10° neutrons/cm?*s for 15 min?

From the isotope tables, we find the thermal capture cross sections

a(B3Cu+n - %Cu) = 4.4 barns

a(®Cu + n - %Cu) = 2.2 barns.

The rate at which #*Cu and ®®Cu are formed is then

10°x(4.4x10"*) =4.4x10"Ps~! %cCu
Aa=Fa= 9 24 15_-1 66
10°x(2.2x10" ) =2.2x10" s~ %Cy

and the rate at which they decay is

In2 _oosan-! Sy
1 1 12.7
b=_=
Tm 15“12 —0.136min~' ®Cu.

The activity of each isotope after a time ¢ is then ANy (¢) where Ny(¢) is given by
(1.20). Since A, < A, and 4,7 < 1, we can approximate (1.20) to obtain

Ao Np(£) =N, (0) A,[1 —exp(— Ap?)] .

Since N, (0) = (6.02 x10%/A4) x (abundance) x (1 g), we have
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3.86x 10°Bq = 10.43 uCi for %*Cu

Ay Ny (15 min) =
b {5.62><106 Bq=152uCi  for “Cu .

It is interesting also to calculate the optimum time #,,x. From (1.21) then

_ |16.8days for %Cu
e 34h for %Cu.

The corresponding activities at this time are then 28.79 MBq (778 nCi) and 6.48 MBq
(175 uCi) respectively.



2. Passage of Radiation Through Matter

This chapter concerns the basic reactions which occur when radiation encounters mat-
ter and the effects produced by these processes. For the experimental nuclear or particle
physicist, knowledge of these interactions is of paramount importance. Indeed, as will
be seen in the following chapters, these processes are the basis of all current particle
detection devices and thus determine the sensitivity and efficiency of a detector. At the
same time, these same reactions may also interfere with a measurement by disturbing
the physical state of the radiation: for example, by causing energy information to be
lost, or deflecting the particle from its original path, or absorbing the particle before it
can be observed. A knowledge of these reactions and their magnitudes is thus necessary
for experimental design and corrections to data. Finally, these are also the processes
which occur when living matter is exposed to radiation.

Penetrating radiation, of course, sees matter in terms of its basic constituents, i.e.,
as an aggregate of electrons and nuclei (and their constituents as well!). Depending on
the type of radiation, its energy and the type of material, reactions with the atoms or
nuclei as a whole, or with their individual constituents may occur through whatever
channels are allowed. An alpha particle entering a gold foil, for example, may scatter
elastically from a nucleus via the Coulomb force, or collide electromagnetically with an
atomic electron, or be absorbed in a nuclear reaction to produce other types of radia-
tion, among other processes. These occur with a certain probability governed by the
laws of quantum mechanics and the relative strengths of the basic interactions in-
volved. For charged particles and photons, the most common processes are by far the
electromagnetic interactions, in particular, inelastic collisions with the atomic elec-
trons. This is not too surprising considering the strength and long range of the
Coulomb force relative to the other interactions. For the the neutron, however, pro-
cesses involving the strong interaction will preferentially occur, although it is also sub-
ject to electromagnetic (through its magnetic moment!) and weak processes as well.
The type of processes allowed to each type of radiation explain, among other things,
their penetrability through matter, their difficulty or ease of detection, their danger to
biologial organisms, etc.

The theory behind the principal electromagnetic and neutron processes is well de-
veloped and is covered in many texts on experimental nuclear and particle physics. In this
chapter, therefore, we will only briefly survey the relevant ideas and concentrate instead
on those results useful for nuclear and particle physics. As well, we restrict ourselves only
to the energy range of nuclear and particle physics, i.e., a few keV and higher.

2.1 Preliminary Notions and Definitions

To open our discussion of radiation in matter, we first review a few basic notions con-
cerning the interaction of particles.
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2.1.1 The Cross Section

The collision or interaction of two particles is generally described in terms of the cross
section. This quantity essentially gives a measure of the probability for a reaction to oc-
cur and may be calculated if the form of the basic interaction between the particles is
known. Formally, the cross-section is defined in the following manner. Consider a
beam of particles / incident upon a target particle 2 as shown in Fig. 2.1. Assume that
the beam is much broader than the target and that the particles in the beam are uni-
formly distributed in space and time. We can then speak of a flux of F incident particles
per unit area per unit time. Now look at the number of particles scattered! into the
solid angle d€ per unit time. Because of the randomness of the impact parameters, this
number will fluctuate over different finite periods of measuring time. However, if we
average many finite measuring periods, this number will tend towards a fixed dN,/dQ,
where N is the average number scattered per unit time. The differential cross section is
then defined as the ratio

40 g oy LN @.1)
o F do

that is, da/d2 is the average fraction of the particles scattered into d€2 per unit time per
unit flux F. In terms of a single quantum mechanical particle, this may be reformulated
as the scattered probability current in the angle dQ2 divided by the total incident
probability passing through a unit area in front of the target.

I
— ké\—\:->

——— ——
— UNIT AREA Fig. 2.1. Definition of the scattering cross section

Note that because of the dimensions of F, dg has dimensions of area, which leads to
the heuristic interpretation of do as the geometric cross sectional area of the target in-
tercepting the beam. That fraction of the flux incident on this area will then obviously
interact while all those missing do will not. This is only a visual aid, however, and
should in no way be taken as a real measure of the physical dimensions of the target.

In general, the value of do/dQ will vary with the energy of the reaction and the
angle at which the particle is scattered. We can calculate a foral cross section for any
scattering whatsoever at an energy E defined as the integral of da/d$2 over all solid
angles,

do
E)=\dQ —. 2.2
o(E)={ o (2.2)

! By scattering here, we mean any reaction in which an outgoing particle is emitted into €. The incident
particle need not retain its identity.
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While the above example is easily visualized, it is not a practical case. In real situa-
tions, of course, the target is usually a slab of material containing many scattering cen-
ters and it is desired to know how many interactions occur on the average. Assuming
that the target centers are uniformly distributed and the slab is not too thick so that the
likelihood of one center sitting in front of another is low, the number of centers per
unit perpendicular area which will be seen by the beam is then N dx where N is the
density of centers and Jx is the thickness of the material along the direction of the
beam. If the beam is broader than the target and A is the total perpendicular area of the
target, the number of incident particles which are eligible for an interaction is then F'A.
The average number scattered into dQ per unit time is then

do
N (Q2)=FAN{x—. 2.3
(£2) 0 (2.3)

The total number scattered into all angles is similarly
Noy=FANéxo. (2.4

If the beam is smaller than the target, then we need only set A equal to the area covered
by the beam. Then FA — ny,., the total number of incident particles per unit time. In
both cases, now, if we divide (2.4) by FA, we have the probability for the scattering of
a single particle in a thickness dx,

Prob. of interaction in dx = Ng dx . 2.5)

This is an important quantity and we will come back to this probability later.

2.1.2 Interaction Probability in a Distance x. Mean Free Path

In the previous section, we discussed the probability for the interaction of a particle
traveling through a thin slab of matter containing many interaction centers. Let us con-
sider the more general case of any thickness x. To do this, we ask the opposite question:
what is the probability for a particle not to suffer an interaction in a distance x? This is
known as the survival probability and may be calculated in the following way. Let

P(x): probability of not having an interaction after a distance x,
wdx: probability of having an interaction between x and x + dx.

The probability of not having an interaction between x and x + dx is then

P(x+dx)=Px)1—wdx),

P(x)+£11dx =P—-Pwdx,
dx

dP= —wPdx, (2.6)

P=Cexp(-wx) ,

where C is a constant. Requiring that P(0) = 1, we find C = 1. The probability of the
particle surviving a distance x is thus exponential in distance. From this, of course,
we see immediately that the probability of suffering an interaction anywhere in the
distance x is just
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Pip(x) =1—-exp(—wx), (2.7

while the probability of the particle suffering a collision between x and x+ dx after
surviving the distance x is

F(x)dx =exp(—wx)wdx. (2.8)

Now let us calculate the mean distance, A, traveled by the particle without suffering
a collision. This is known as the mean free path. Thus,
xP(x)dx
j = JxP@dx

L, (2.9)
fPeydx w

Intuitively, A must be related to the density of interaction centers and the cross-section,
for as we have seen, this governs the probability of interaction. To find this relation, let
us return to our slab of material. For a small thickness Jx, the interaction probability
(2.7) can then be approximated as

Po=1-(1-2%4 . )=2%, 2.10)
A A

where we have expanded the exponential and kept only the first order term. Comparing
with (2.5), we find,

A=1/Ng, @2.11)

so that our survival probability becomes
P(x) = exp <‘TX> = exp(—=Nox), 2.12)

and the interaction probabilities

Pip(x) =1—exp <_Tx> =1-exp(—Nox), (2.13)

F(x) dx = exp <_}x_> % = exp(—Nox) Nadx. (2.14)

2.1.3 Surface Density Units

A unit very often used for expressing thicknesses of absorbers is the surface density or
mass thickness. This is given by the mass density of the material times its thickness in
normal units of length, i.e.,

mass thickness 2 p- ¢ (2.15)

with p: mass density, : thickness, which, of course, yields dimensions of mass per area,
e.g. g/cm>.

For discussing the interaction of radiation in matter, mass thickness units are more
convenient than normal length units because they are more closely related to the density
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of interaction centers. They thus have the effect of normalizing materials of differing
mass densities. As will be seen later, equal mass thicknesses of different materials will
have roughly the same effect on the same radiation.

2.2 Energy Loss of Heavy Charged Particles by Atomic Collisions

In general, two principal features characterize the passage of charged particles through
matter: (1) a loss of energy by the particle and (2) a deflection of the particle from its
incident direction. These effects are primarily the result of two processes:

1) inelastic collisions with the atomic electrons of the material
2) elastic scattering from nuclei.

These reactions occur many times per unit path length in matter and it is their cumula-
tive result which accounts for the two principal effects observed. These, however, are
by no means the only reactions which can occur. Other processes include

3) emission of Cherenkov radiation
4) nuclear reactions
5) bremsstrahlung.

In comparison to the atomic collision processes, they are extremely rare, however, and
with the exception of Cherenkov radiation, will be ignored in this treatment.

For reasons which will become clearer in the following sections, it is necessary to
separate charged particles into two classes: (1) electrons and positrons, and (2) heavy
particles, i.e., particles heavier than the electron. This latter group includes the muons,
pions, protons, a-particles and other light nuclei. Particles heavier than this, i.e., the
heavy ions, although technically part of this latter group, are excluded in this discus-
sion because of additional effects which arise.

Of the two electromagnetic processes, the inelastic collisions are almost solely
responsible for the energy loss of heavy particles in matter. In these collisions
(6=10"1-10"'cm?!), energy is transferred from the particle to the atom causing an
ionization or excitation of the latter. The amount transferred in each collision is
generally a very small fraction of the particle’s total kinetic energy; however, in
normally dense matter, the number of collisions per unit path length is so large, that a
substantial cumulative energy loss is observed even in relatively thin layers of material.
A 10MeV proton, for example, already loses all of its energy in only 0.25 mm of
copper! These atomic collisions are customarily divided into two groups: soft collisions
in which only an excitation results, and Aard collisions in which the energy transferred
is sufficient to cause ionization. In some of the hard reactions, enough energy is, in
fact, transferred such that the electron itself causes substantial secondary ionization.
These high-energy recoil electrons are sometimes referred to as d-rays or knock-on
electrons.

Elastic scattering from nuclei also occurs frequently although not as often as elec-
tron collisions. In general very little energy is transferred in these collisions since the
masses of the nuclei of most materials are usually large compared to the incident
particle. In cases where this is not true, for example, an g-particle in hydrogen, some
energy is also lost through this mechanism. Nevertheless, the major part of the energy
loss is still due to atomic electron collisions.
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The inelastic collisions are, of course, statistical in nature, occurring with a certain
quantum mechanical probability. However, because their number per macroscopic
pathlength is generally large, the fluctuations in the total energy loss are small and one
can meaningfully work with the average energy loss per unit path length. This quantity,
often called the stopping power or simply dE/dx, was first calculated by Bohr using
classical arguments and later by Bethe, Bloch and others using quantum mechanics.
Bohr’s calculation is, nevertheless, very instructive and we will briefly present a simpli-
fied version due to Jackson [2.1] here.

2.2.1 Bohr’s Calculation — The Classical Case

Consider a heavy particle with a charge ze, mass M and velocity v passing through
some material medium and suppose that there is an atomic electron at some distance b
from the particle trajectory (see Fig. 2.2). We assume that the electron is free and
initially at rest, and furthermore, that it only moves very slightly during the interaction
with the heavy particle so that the electric field acting on the electron may be taken at
its initial position. Moreover, after the collision, we assume the incident particle to be
essentially undeviated from its original path because of its much larger mass (M'> m.).
This is one reason for separating electrons from heavy particles!

M.ze Ly Fig. 2.2. Collision of a heavy charged particle with an atomic
~ V] electron

Let us now try to calculate the energy gained by the electron by finding the
momentum impulse it receives from colliding with the heavy particle. Thus

I=Sth=e§Eldt=ejEl%dx=e§Eld—x, (2.16)
X v

where only the component of the electric field E, perpendicular to the particle trajec-
tory enters because of symmetry. To calculate the integral §E ' dx, we use Gauss’ Law
over an infinitely long cylinder centered on the particle trajectory and passing through
the position of the electron. Then

{E,2nbdx=4nze, jEldx=-2%e—, 2.17)
so that
2
7= 2ze (2.18)
bv

and the energy gained by the electron is

I? 2z%e*
AE(D) = = . 2.19
) 2m. mev’b? ( )
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If we let N, be the density of electrons, then the energy lost to all the electrons
located at a distance between b and b+ db in a thickness dx is

2 4
4nze N. db

—dE(b) = AE(b) N, dV = .
mev b

dx, (2.20)

where the volume element dV = 2 b db dx. Continuing in a straight forward manner,
one would at this point be tempted to integrate (2.20) from b = 0 to o to get the total
energy loss; however, this is contrary to our original assumptions. For example,
collisions at very large b would not take place over a short period of time, so that our
impulse calculation would not be valid. As well, for b = 0, we see that (2.19) gives an
infinite energy transfer, so that (2.19) is not valid at small b either. Our integration,
therefore, must be made over some limits by, and b, between which (2.19) holds.
Thus,

2 4
_dE _AmzTe N bmax 2.21)
dx m.v bmin

To estimate values for by, and b, we must make some physical arguments.
Classically, the maximum energy transferable is in a head-on collision where the
electron obtains an energy of Lm.(2 )2 If we take relativity into account, this becomes
292m.v?, where y= (1 - 8% ~""?and g = v/c. Using (2.19) then, we find

2z%e* ze?
= 2y2mvz, bpin =

(2.22)
mov*b2;, ymev

5 .

For b.«, we must recall now that the electrons are not free but bound to atoms with
some orbital frequency v. In order for the electron to absorb energy, then, the pertur-
bation caused by the passing particle must take place in a time short compared to the
period 7= 1/v of the bound electron, otherwise, the perturbation is adiabatic and no
energy is transferred. This is the principle of adiabatic invariance. For our collisions the
typical interaction time is t=5/v, which relativistically becomes ¢=¢/y = b/(yv), so
that

1
<t=—. (2.23)
v

Since there are several bound electron states with different frequencies v, we have used
here a mean frequency, v, averaged over all bound states. An upper limit for b, then, is

Binax = 1. (2.24)
v

Substituting into (2.21), we find

3

E 24 2
_d _ 4nz’e Nelny mv

_— 2.25
dx mev2 ze?y ( )

This is essentially Bohr’s classical formula. It gives a reasonable description of the
energy loss for very heavy particles such as the a-particle or heavier nuclei. However,
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for lighter particles, e.g. the proton, the formula breaks down because of quantum
effects. It nevertheless contains all the essential features of electronic collision loss by
charged particles.

2.2.2 The Bethe-Bloch Formula

The correct quantum-mechanical calculation was first performed by Bethe, Bloch and
other authors. In the calculation the energy transfer is parametrized in terms of
momentum transfer rather than the impact parameter. This, of course, is more realistic
since the momentum transfer is a measurable quantity whereas the impact parameter is
not. The formula obtained is then

dE s o Z 7P 2mey 0P W, 5
_'E—anaremeC pj?l:h’l <—_C_72—§_X_ —ZB . (2.26)

Equation (2.26) is commonly known as the Bethe-Bloch formula and is the basic ex-

pression used for energy loss calculations. In practice, however, two corrections are
normally added: the density effect correction &, and the shell correction C, so that

dE Z z? 2m.y o W, c
— = =2aN P mtp Ll I [ 25 L Tmax ) 982 62 |, (2.27
dx a’'e € pA ﬁZI: < 12 ﬁ Z ( )

with

2N, rim.c*=0.1535 MeVem?/g

r.: classical electron p: density of absorbing material
radius = 2.817 x10 " *cm z: charge of incident particle in

m.: electron mass units of e

N,: Avogadro’s B = v/c of the incident particle
number = 6.022 x 10* mol ™! y= 1/])1-8

I.  mean excitation potential J: density correction

Z: atomic number of absorbing C: shell correction
material W nax: maximum energy transfer in a

A: atomic weight of absorbing material single collision.

The maximum energy transfer is that produced by a head-on or krock-on collision. For
an incident particle of mass M, kinematics gives

2mec2;12
Wnax = 2,2
1+2s|/1+r1 +s

where s = m./M and n = By. Moreover, if M > m,., then

(2.28)

Wmax=2meC27]2 .

The Mean Excitation Potential. The mean excitation potential, 7, is the main parameter
of the Bethe-Bloch formula and is essentially the average orbital frequency v from
Bohr’s formula times Planck’s constant, A . It is theoretically a logarithmic average of
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v weighted by the so-called oscillator strengths of the atomic levels. In practice, this is a
very difficult quantity to calculate since the oscillator strengths are unknown for most
materials. Instead, values of I for several materials have been deduced from actual
measurements of dE/dx and a semi-empirical formula for I vs Z fitted to the points.
One such formula is

=12+leV Z<13
zZ

I
VA
(2.29)
1 -1.19
—=9.76+58.8Z eV Z=13.
VA
It has been shown, however, that I actually varies with Z in a more complicated manner
[2.2]. In particular, there are local irregularities or wiggles due to the closing of certain

atomic shells. Improved values of I are given in Table 2.1 for several materials. A more
extensive list may be found in the articles by Sternheimer et al. [2.2—3].

The Shell and Density Corrections. The quantities d and C are corrections to the Bethe-
Bloch formula which are important at high and low energies respectively.

The density effect arises from the fact that the electric field of the particle also tends
to polarize the atoms along its path. Because of this polarization, electrons far from the
path of the particle will be shielded from the full electric field intensity. Collisions with
these outer lying electrons will therefore contribute less to the total energy loss than
predicted by the Bethe-Bloch formula. This effect becomes more important as the
particle energy increases, as can be seen from the expression for b, in (2.24). Clearly
as the velocity increases, the radius of the cylinder over which our integration is per-
formed also increases, so that distant collisions contribute more and more to the total
energy loss. Moreover, it is clear that this effect depends on the density of the material
(hence the term “density” effect), since the induced polarization will be greater in con-
densed materials than in lighter substances such as gases. A comparison of the Bethe-
Bloch formula with and without corrections is shown in Fig. 2.3.

100 =
F —with corrections
s .
o ---without corrections
&
E
o
1
3 10 :
=
x
ho R
W
°
u Fig. 2.3. Comparison of the Bethe-Bloch formu-
la with and without the shell and density correc-
o 1 A T TR A tions. The calculation shown here is for copper

10' 10° 10°
Energy [MeV]
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Values for ¢ are given by a formula due to Sternheimer:

0 X< Xy
0=1+4.6052X+Cy+alX;-X)" X,<X<X, (2.30)
4.6052X+ C, X>X,,

where X = logo (B7).
The quantities X, X, Cy, @ and m depend on the absorbing material. The param-
eter Cy is defined as

Co= - 21nL+1 , (2.31)
hv,

where A v, is the so-called plasma frequency of the material, i.e.,

Nee2

T,

=1/80.617x 10°cm® N, Hz , (2.32)

where N, (density of electrons) = N, pZ/A. The remaining constants are determined by
fitting (2.30) to experimental data. Values for several materials are presented in Table
2.1. A more complete listing may be found in Sternheimer et al. [2.3].

The shell correction accounts for effects which arise when the velocity of the in-
cident particle is comparable or smaller than the orbital velocity of the bound electrons.
At such energies, the assumption that the electron is stationary with respect to the
incident particle is no longer valid and the Bethe-Bloch formula breaks down. The
correction is generally small as can be seen in Fig. 2.3. We give here an empirical for-
mula [2.4] for this correction, valid for # = 0.1:

C(, n) = (0.422377 n =2+ 0.0304043 ~*—0.00038106 n ~6) x 106>
+(3.850190 7 ~2—0.1667989 1 ~*+0.00157955  ~$)x10~° 1%,  (2.33)

where 7 = fy and [ is the mean excitation potential in eV.

Table 2.1. Constants for the density effect correction

Material I[eV] -Cy a m X X
Graphite

density = 2 78 2.99 0.2024 3.00 2.486 —-0.0351
Mg 156 4.53 0.0816 3.62 3.07 0.1499
Cu 322 4.42 0.1434 2.90 3.28 —0.0254
Al 166 4.24 0.0802 3.63 3.01 0.1708
Fe 286 4.29 0.1468 2.96 3.15 —0.0012
Au 790 5.57 0.0976 3.11 3.70 0.2021
Pb 823 6.20 0.0936 3.16 3.81 0.3776
Si 173 4.44 0.1492 3.25 2.87 0.2014
Nal 452 6.06 0.1252 3.04 3.59 0.1203
N, 82 10.5 0.1534 3.21 4.13 1.738
0, 95 10.7 0.1178 3.29 4.32 1.754
H,0 75 3.50 0.0911 3.48 2.80 0.2400
Iucite 74 3.30 0.1143 3.38 2.67 0.1824
Air 85.7 10.6 0.1091 3.40 4.28 1.742
BGO 534 5.74 0.0957 3.08 3.78 0.0456
Plastic

Scint. 64.7 3.20 0.1610 3.24 2.49 0.1464




2.2 Energy Loss of Heavy Charged Particles by Atomic Collisions 27

Other Corrections. In addition to the shell and density effects, the validity and ac-
curacy of the Bethe-Bloch formula may be extended by including a number of other
corrections pertaining to radiation effects at ultrarelativistic velocities, kinematic ef-
fects due to the assumption of an infinite mass for the projectile, higher-order QED
processes, higher-order terms in the scattering cross-section, corrections for the in-
ternal structure of the particle, spin effects and electron capture at very slow velocities.
With the exception of electron-capture effects with heavy ions, these are usually
negligible to within =1%. An outline of these additional factors may be found in the
articles by Ahlen [2.5—6]. For “elementary” particles, the Bethe-Bloch formula with
the shell and density corrections is more than sufficient however.

2.2.3 Energy Dependence

An example of the energy dependence of dE/dx is shown in Fig. 2.4 which plots the
Bethe-Bloch formula as a function of kinetic energy for several different particles. At
non-relativistic energies, dE/dx is dominated by the overall 1/4? factor and decreases
with increasing velocity until about v =0.96 ¢, where a minimum is reached. Particles at
this point are known as minimum ionizing. Note that the minimum value of dE/dx is
almost the same for all particles of the same charge. As the energy increases beyond this
point, the term 1/8% becomes almost constant and dE/dx rises again due to the
logarithmic dependence of (2.27). This relativistic rise is cancelled, however, by the
density correction as seen in Fig. 2.3.

For energies below the minimum ionizing value, each particle exhibits a dE/dx
curve which, in most cases, is distinct from the other particle types. This characteristic
is often exploited in particle physics as a means for identifying particles in this energy
range.

Not shown in Fig. 2.4, is the very low energy region, where the Bethe-Bloch formula
breaks down. At low velocities comparable to the velocity of the orbital electrons of the
material, dE/dx, in fact, reaches a maximum and then drops sharply again. Here, a
number of complicated effects come into play. The most important of these is the
tendency of the particle to pick up electrons for part of the time. This lowers the effec-
tive charge of the particle and thus its stopping power. Calculating this effective charge
can be a difficult problem especially for heavy ions.

100 —
'_g: L
& 10
£ B
(8]
1 L
3 L
= L
]
o 10
kel
Fig. 2.4. The stopping power dE/dx as
01 R ‘ LU L IR function of energy for different particles

107! 10' 10° 10°
Energy MeV]



28 2. Passage of Radiation Through Matter

[ Fig. 2.5. A typical Bragg curve showing the variation of dE/dx as
a function of the penetration depth of the particle in matter. The
particle is more ionizing towards the end of its path

dx

Penetration depth

From Fig. 2.4, it is clear that as a heavy particle slows down in matter, its rate of
energy loss will change as its kinetic energy changes. And indeed, more energy per unit
length will be deposited towards the end of its path rather than at its beginning. This ef-
fect is seen in Fig. 2.5 which shows the amount of ionization created by a heavy particle
as a function of its position along it slowing-down path. This is known as a Bragg
curve, and, as can be seen, most of the energy is deposited near the end of the trajec-
tory. At the very end, however, it begins to pick up electrons and the dE/dx drops. This
behavior is particularly used in medical applications of radiation where it is desired to
deliver a high dose of radiation to deeply embedded malignant growths with a
minimum of destruction to the overlaying tissue.

2.2.4 Scaling Laws for dE/dx

For particles in the same material medium, the Bethe-Bloch formula can be seen to be
of the form

_9E _ 2pp, (2.34)
dx

where f(B) is a function of the particle velocity only. Thus, the energy loss in any given
material is dependent only on the charge and velocity of the particle. Since the kinetic
energy 7= (y — 1)Mc?, the velocity is a function of T/M, so that B=9g(T/M). We can
therefore transform (2.34) to

dE 2 T
- =z =]. 2.35

dx M ( )
This immediately suggests a scaling law: if we know the dE/dx for a particle of mass
M, and charge z;, then the energy loss of a particle of mass M,, charge z, and energy 7,

in the same material may be found from the values of particle 1 by scaling the energy of
particle 2 to T = T>(M,/M,) and multiplying by the charge ratio (z,/z;) i.e.,

2
_4E, (Ty) = _% dE, TZ& . (2.36)
dx z1 dx M,

2.2.5 Mass Stopping Power

When dE/dx is expressed in units of mass thickness, it is found to vary little over a wide
range of materials. Indeed, if we make the dependence on material type more evident in
the Bethe-Bloch formula, we find
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dE 1 dE _

2 Z

o S dx 7~ SB. I, (2.37)
where de = pdx. For not too different Z, the ratio (Z/A), in fact, varies little. This is
also true of the dependence on I(Z) since it appears in a logarithm. dE/dg, therefore, is
almost independent of material type. A 10 MeV proton, for example, will lose about
the same amount of energy in 1 g/ cm? of copper as it will in 1 g/ cm? of aluminium or
iron, etc. As will also be seen, these units are also more convenient when dE/dx’s are
combined for mixed materials.

2.2.6 dE/dx for Mixtures and Compounds

The dE/dx formula which we have given so far applies to pure elements. What about
dE/dx for compounds and mixtures? Here, if accurate values are desired, one must
usually resort to direct measurements; however, a good approximate value can be
found in most cases by averaging dE/dx over each element in the compound weighted
by the fraction of electrons belonging to each element (Bragg’s Rule). Thus

1E=ﬂ<ﬂ> +ﬁ<d_5>+,_,, 2.38
p dx p \dx/i1 p\dx/)
where w;, w,, etc. are the fractions by weight of elements 1, 2, ... in the compound.

More explicitly, if @;is the number of atoms of the ith element in the molecule M, then

a;A;
I— T

Ap

(2.39

where A, is the atomic weight of ith element, A,,= Y a; A;.
By expanding (2.38) explicitly and regrouping terms, we can define effective values
for Z, A, I, etc. which may be used directly in (2.27),

Zegt= Y a;Z;, (2.40)
Agr= La;A;, (2.41)
Infy =y Szl (2.42)
YA
a;Z;6;
Oetf= L ———, (2.43)
eff
Ceff = Z a; Ci . (244)

Note here the convenience of working with the mass stopping power, 1/p(dE/dx),
rather than the linear stopping power dE/dx.

2.2.7 Limitations of the Bethe-Bloch Formula and Other Effects

The Bethe-Bloch formula as given in (2.27) with the shell and density effect corrections
is the usual expression employed in most dE/dx calculations. For elementary particles
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channeling in crystalline ma-
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and nuclei up to the a-particle, this formula generally gives results accurate to within a
few percent for velocities ranging from the relativistic region down to #=0.1. This ac-
curacy may be increased and extended to higher-Z nuclei up to Z = 26 by including the
charge-dependent corrections mentioned earlier [2.5—6].

For f# < 0.05, many of the assumptions inherent in the Bethe-Bloch formula are no
longer valid even with the corrections. Between 0.01 < 8 < 0.05, in fact, there is still no
satisfactory theory for protons. For heavier nuclei, this is even more the case because of
electron capture effects. Some empirical formulae for this energy range may be found
in [2.7]. Below §=0.01, however, a successful explanation of energy loss is given by
the theory of Lindhard [2.8].

2.2.8 Channeling

An important exception to the applicability of the Bethe-Bloch formula is in the case of
channeling in materials having a spatially symmetric atomic structure, i.e., crystals.
This is an effect which occurs only when the particle is incident at angles less than some
critical angle with respect to a symmetry axis of the crystal. As it passes through the
crystal planes, the particle, in fact, suffers a series of correlated small-angle scatterings
which guide it down an open crystal channel. Figure 2.6 illustrates this schematically.
As can be seen, the correlated scatterings cause the particle to follow a slowly oscillat-
ing trajectory which keeps it within the open channel over relatively long distances. The
wavelength of the trajectory is generally many lattice lengths long. The net effect of
this, of course, is that the particle encounters less electrons than it normally would in an
amorphous material (which is assumed by the Bethe-Bloch calculation). When the
particle undergoes channeling, therefore, its rate of energy loss is greatly reduced.
When working with crystalline materials, it is important therefore to be aware of the
crystal orientation with respect to the incident particles so as to avoid (or achieve, if
that is the case) channeling effects.

In general, the critical angle necessary for channeling is small (=1° for $=0.1) and
decreases with energy. It can be estimated by the formula [2.5]

P = V zZaAd (2.45)
16708)/y

where a, is the Bohr radius, and d the interatomic spacing. For ¢ > ¢., channeling does
not occur and the material may be treated as amorphous. A more detailed discussion of
channeling and the stopping power under such conditions can be found in the review by
Gemmell [2.8].

2.2.9 Range

Knowing that charged particles lose their energy in matter, a natural question to ask is:
How far will the particles penetrate before they lose all of their energy? Moreover, if we
assume that the energy loss is continuous, this distance must be a well defined number,
the same for all identical particles with the same initial energy in the same type of
material. This quantity is called the range of the particle, and depends on the type of
material, the particle type and its energy.

Experimentally, the range can be determined by passing a beam of particles at the
desired energy through different thicknesses of the material in question and measuring
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[ Fig. 2.7. Typical range number-distance curve. The
distribution of ranges is approximately Gaussian in
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the ratio of transmitted to incident particles. A typical curve of this ratio versus ab-
sorber thickness, known as a range number-distance curve, is shown in Fig. 2.7. As can
be seen, for small thicknesses, all (or practically all) the particles manage to pass
through. As the range is approached this ratio drops. The surprising thing, however, is
that the ratio does not drop immediately to the background level, as expected of a well
defined quantity. Instead the curve slopes down over a certain spread of thicknesses.
This result is due to the fact that the energy loss is not in fact continuous, but statistical
in nature. Indeed, two identical particles with the same initial energy will not in general
suffer the same number of collisions and hence the same energy loss. A measurement
with an ensemble of identical particles, therefore, will show a statistical distribution of
ranges centered about some mean value. This phenomenon is known as range
straggling. In a first approximation, this distribution is Gaussian in form. The mean
value of the distribution is known as the mean range and corresponds to the midpoint
on the descending slope of Fig. 2.7. This is the thickness at which roughly half the
particles are absorbed. More commonly, however, what is desired is the thickness at
which all the particles are absorbed, in which case the point at which the curve drops to
the background level should be taken. This point is usually found by taking the tangent
to the curve at the midpoint and extrapolating to the zero-level. This value is known as
the extrapolated or practical range (see Fig. 2.7).

From a theoretical point of view, we might be tempted to calculate the mean range
of a particle of a given energy, T, by integrating the dE/dx formula,

VAN
S(T)) = _ dE . 2.46
(To) £<dx> (2.46)

This yields the approximate pathlength travelled. Equation (2.46) ignores the effect of
multiple Coulomb scattering, however, which causes the particle to follow a zigzag
path through the absorber (see Fig. 2.14). Thus, the range, defined as the straight-line
thickness, will generally be smaller than the total zigzag pathlength.

As it turns out, however, the effect of multiple scattering is generally small for
heavy charged particles, so that the total path length is, in fact, a relatively good ap-
proximation to the straight-line range. In practice, a semi-empirical formula must be
used,



32 2. Passage of Radiation Through Matter

- === Fig. 2.8. Calculated range curves of different heavy
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where Ty, is the minimum energy at which the dE/dx formula is valid, and Ry(7 ) is
an empirically determined constant which accounts for the remaining low energy
behavior of the energy loss. Results accurate to within a few percent can be obtained in
this manner. 2 Figure 2.8 shows some typical range-energy curves for different particles
calculated by a numerical integration of the Bethe-Bloch formula. From its almost
linear form on the log-log scale, one might expect a relation of the type

RxEP". (2.48)

This can also be seen from the stopping power formula, which at not too high energies,
is dominated by the 872 term,

—dE/dx o< 7T, (2.49)
where T is the kinetic energy. Integrating, we thus find

RoT?, (2.50)

2 We might emphasize here that the range as calculated by (2.47) only takes into account energy losses due to
atomic collisions and is valid only as long as atomic collisions remain the principal means of energy loss. At
very high energies, where the range becomes larger than the mean free path for a nuclear interaction or for
bremsstrahlung emission, this is no longer true and one must take into account these latter interactions as
well.
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which is consistent with our rough guess. A more accurate fit in this energy range, in
fact, gives

RoT!7 (2.51)

which is not too far from our simple calculation. This is only one of many theoretical
and semi-empirical formulas which cover many energy ranges and materials. A discus-
sion of some of these relations is given in the article by Bethe and Ashkin [2.10].

Range-energy relations of this type are extremely useful as they provide an accurate
means of measuring the energy of the particles. This was one of the earliest uses of
range measurements. As we will see later, they are also necessary for deciding the sizes
of detectors to be used in an experiment or in determining the thickness of radiation
shielding, among other things.

Because of the scaling of dE/dx, a scaling law for ranges may also be derived. Using
(2.36), it is easy then to see

M, z} M
Ry(Ty)=—2=1R(T,—- (2.52)
M1 Zz Mz
for different particles in the same medium.
For the same particle in different materials, a rough relation known as the Bragg-
Kleeman rule also exists

Ry _p» Ay
Ri_P , 2.53)
R, m ]/A_2

where p and A are the densities and atomic numbers of the materials. For compounds,
a rough approximation for the range can also be found from the formula

A com

Rcomp = _;%/:f s (2.54)
i“1
) R,

where Ao, is the molecular weight of the compound, A; and R; are the atomic weight
and range of the ith constituent element, respectively, and a;is the number of atoms of
the ith element in the compound molecule.

Example 2.1 In an experiment involving cosmic ray muons, a 2 cm thick plastic scin-
tillation counter is used to detect the passage of these particles. What is the mean
energy deposited in the counter?

Cosmic ray muons are generally high energy particles, so that we can assume that
all are minimum ionizing. If we use our rule of thumb, muons become minimum ioniz-
ing at about vy, ion. = 0.96 ¢ which corresponds to an energy of about 300 MeV. This
can be confirmed by calculating the dE/dx for various energies in this energy region.
For plastic scintillator, the minimum ionizing value of dE/dx is = 1.9 MeV/g-cm?.

Since the dE/dx is almost constant here, we can calculate the energy loss as

X
]gdezfx—19x1 03x2=3.9MeV
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where we have assumed that the density of plastic scintillator is about 1.03 g/cm? (see
Table 7.1 for example).

Thus one should expect to see a peak in the signal pulse height spectrum coming
from the counter, since muons of energy greater than about 300 MeV will deposit about
the same amount of energy in the counter. This implies also that cosmic ray muons
might also be used for calibration purposes.

Example 2.2 A beam of 600 MeV protons can be “lowered” in energy by passing it
through a block of material such as copper and then “cleaned” using a series of analyz-
ing magnets. What thickness of copper would be required to lower the average energy
of this beam to 400 MeV?

To find the thickness for a given energy change, we must invert dE/dx and integrate
over energy. Thus,

500 -1
Ax = — <d—E> dE .
600 \ dx

In general, this must be integrated numerically. If we use a simple rectangular integra-
tion with energy intervals of 20 MeV and dE/dx evaluated in the middle of each inter-
val, we find a thickness of

-1
Range (MeV) 1—‘—15 Ax=AE <1 d—E>
pdx p dx

600 — 580 1.768 11.31

580—560 1.791 11.17

560 — 540 1.815 11.02

540—-520 1.841 10.86

520500 1.870 10.69

500—480 1.901 10.52

480 — 460 1.934 10.34

460 — 440 1.971 10.15

440 — 420 2.012 9.94

420 - 400 2.056 9.73

AxXyora = 105.73 g/cm? = 11.88 cm

Had we made an even simpler one step calculation taking the dE/dx at 500 MeV and
solving for 4x, we would have found Ax = 106.1 g/cm? = 11.92 cm, which, in fact, is
not very different!

Note that we are dealing with mean energy losses here. The energy of the protons
leaving the other side of the copper degrader will, in fact, be distributed in energy as
a Gaussian with 400 MeV as the mean (see Sect. 2.6). To produce a monoenergetic beam
of 400 MeV protons now would require selecting out the 400 MeV protons in the peak
of the distribution. This can be done using a magnetic field to “bend” the outgoing par-
ticles and keeping only those deflected at the correct angle.
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2.3 Cherenkov Radiation

Cherenkov radiation arises when a charged particle in a material medium moves faster
than the speed of light in that same medium. This speed is given by

fc=v=c/n (2.55)

where # is the index of refraction and c is the speed of light in a vacuum. A particle
emitting Cherenkov radiation must therefore have a velocity

Uparticle > €/1 . (2.56)

In such cases, an electromagnetic shock wave is created, just as a faster-than-sound air-
craft creates a sonic shock wave. This is illustrated in Fig. 2.9. The coherent wavefront
formed is conical in shape and is emitted at a well-defined angle

1
Bn(w)

cos fc =

(2.57)

with respect to the trajectory of the particle. Note that this angle is dependent on the
speed of the particle and the frequency of the emitted radiation.

The simple description above, however, is valid for a particle traveling in an infinite
radiating medium. A more realistic situation, of course, is when the particle traverses
a finite thickness of material. To calculate the frequency and angular distribution of
Cherenkov radiation in this case is somewhat more difficult, but only requires classical
electrodynamics (see, for example, [2.1], Chap. 14). For a particle of charge ze moving
uniformly in a straight line through a slab of material with thickness L, the energy
radiated per unit frequency interval per solid angle is found to be

dZ
E _ zzm_finﬂ2 sin® @

wlL sin &(0) 2
dwdQ2 c

2nfc E(O)

(2.58)

where a, is the fine structure constant, n, the refractive index of the medium and

wlL
=2~ (1- . 2.
4C)) 2pe (1—=pfBncos®) (2.59)

The term (sin £/¢)* may be recognized here as that describing Fraunhofer diffrac-
tion.* Cherenkov radiation is thus emitted in a pattern similar to diffraction, that is
with a large peak centered at cos 6 = (8n)~! followed by smaller maxima.*

For L large compared to the wavelength of the emitted radiation, the sin £/ term,
in fact, approaches the delta function d (1 — 8n cos 8) which requires that the radiation

3 For simplicity, we have limited ourselves to a calculation in two dimensions. In three dimensions, a Bessel
function appears in the place of the sine term.

4 If the radiation is being observed outside of the medium, one should not forget the effect of refraction.
Radiation emitted at angle & in the medium will be observed at an angle ¢ outside the medium where
sin ¢ = nsin #. We have assumed that the “outside” here is a vacuum and that the boundary between the
two media is a plane perpendicular to the line of motion. Obviously, for # = 1, there is not much difference.

\»
"

I vt 1

Fig. 2.9. Cherenkov radiation: an
electromagnetic shock wave is
formed when the particle travels
faster than the speed of light in
the same medium
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be emitted at the Cherenkov angle as given in (2.57). The threshold condition (2.56)
then follows since 8 must be greater than 1/n in order for . to be physically mean-
ingful. We thus recover the simple Cherenkov case outlined above. As L decreases,
however, the sharp central band begins to widen, so that the radiation is spread out
over a range of angles symmetrically centered around 6. Note also that, in general,
n is a function of w so that the angle of emission is different for different frequencies.
This also contributes to broadening if frequency is not considered.

To find the energy emitted per unit path length, we integrate over the solid angle
to obtain

-g@ =z? @k oL sin? Oc . (2.60)
«w C

Dividing by L and integrating over frequencies for which the condition f>1/n(w) is
satisfied then yields

t
“4E 2 e sin? 6 = 22 [ wdw - (2.61)
dx c c B n"(w)

where we have assumed L large compared to the wavelength of the radiation emitted.
The energy loss thus increases with 8. However, even at relativistic energies, this loss
is small compared to collision loss. Indeed, for condensed materials, the energy
radiated is only on the order of = 1073 MeV cm® g~ !, which is negligible with respect
to the collisional loss. For gases such as H, or He, this is somewhat higher ranging
from =~0.01—-0.2MeVcm?g~!, but is still quite small. We remark also that the
Cherenkov energy loss comes out naturally when a correct calculation of the dE/dx
formula is made, so that, in fact, it is already included in the Bethe-Bloch formula
2.27).

The threshold requirement for the emission of Cherenkov radiation and the depen-
dence of the emission angle on particle velocity are properties which are particularly
exploited by particle physicists in the form of Cherenkov counters. Such devices pro-
vide the most accurate measurement of particle velocities and are widely used in high-
energy physics experiments. General reviews of such counters, their design and con-
struction are given in [2.11].

Of interest for the design of these detectors is the number of photons emitted as
a particle passes through the radiating medium. This can be found by dividing (2.60)
by Aw and L. The number of photons emitted per unit frequency per unit length of
radiator is then,

ZN 2 2 1
LM AU ALY p—— (2.62)
dwdx ¢ c B n“(w)
or, in terms of the wavelength
d*N 2nz? 1
= ”ZZ (- — X (2.63)
dldx A B n*(A)

In most Cherenkov detectors, the Cherenkov radiation is generally detected by
photomultipliers which convert the photons into an electrical current pulse (see
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Chap. 8). A typical range of sensitivity for these devices (see Fig. 8.2, for example) is
between 350 nm and 550 nm. Integrating (2.63) over A and evaluating at these limits
then yields

'12
C;LV =27nz%q sin? 6c S % = 4757 sin? 0c photons/cm (2.64)
X A

which is not an enormous amount as one can see.

2.4 Energy Loss of Electrons and Positrons

Like heavy charged particles, electrons and positrons also suffer a collisional energy
loss when passing through matter. However, because of their small mass an additional
energy loss mechanism comes into play: the emission of electromagnetic radiation aris-
ing from scattering in the electric field of a nucleus (bremsstrahlung). Classically, this
may be understood as radiation arising from the acceleration of the electron (or
positron) as it is deviated from its straight-line course by the electrical attraction of the
nucleus. At energies of a few MeV or less, this process is still a relatively small factor.
However, as the energy is increased, the probability of bremsstrahlung quickly shoots
up so that at a few 10’s of MeV, loss of energy by radiation is comparable to or greater
than the collision-ionization loss. At energies above this critical energy, bremsstrahlung
dominates completely.

The total energy loss of electrons and positrons, therefore, is composed of two
parts:

_d£> _ d_E> . zzz) | 2.6
ax Jiot dx Jrad dx Jeoll

2.4.1 Collision Loss

While the basic mechanism of collision loss outlined for heavy charged particles is also
valid for electrons and positrons, the Bethe-Bloch formula must be modified somewhat
for two reasons. One, as we have already mentioned, is their small mass. The assump-
tion that the incident particle remains undeflected during the collision process is there-
fore invalid. The second is that for electrons the collisions are between identical
particles, so that the calculation must take into account their indistinguishability. These
considerations change a number of terms in the formula, in particular, the maximum
allowable energy transfer becomes W, = T./2 where T is the kinetic energy of the
incident electron or positron. If one redoes the calculation, the Bethe-Bloch formula
then becomes

2
~E pangmetp L D Z*D L py-s-25 ], (2.66)
dx A B 2(I/mqc”) zZ

where 7 is the kinetic energy of particle in units of m, c?,
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F(r)=1-p%*+ T fore™

2
F(r)=21n2—ﬂ— 23+ 14 + 10 =+ 4 - fore*
12 T+2 (t+2) (t+2)

The remaining quantities are as described previously in (2.27 —33).

2.4.2 Energy Loss by Radiation: Bremsstrahlung

At energies below a few hundred GeV, electrons and positrons are the only particles
in which radiation contributes substantially to the energy loss of the particle. This can
easily be seen from the bremsstrahlung cross-sections which we will present in the
following section. The emlssmn probablhty, in fact, varies as the inverse square of the
particle mass, i.e., oo:r = (e?/mc?)?*. Radiation loss by muons (m = 106 MeV), the
next lightest particle for example, is thus some 40000 times smaller than that for elec-
trons!

Since bremsstrahlung emission depends on the strength of the electric field felt by
the electron, the amount of screening from the atomic electrons surrounding the
nucleus plays an important role. The cross section is thus dependent not only on the in-
cident electron energy but also on its impact parameter and the atomic number, Z, of
the material.

The effect of screening can be parametrized by the quantity

100 mechv

éz——
EOEZ1/3

(2.67)

with Ejy: initial fotal energy of electron (or positron); E: final fotal energy of electron;
hv: energy of photon emitted, (Ey— E). This parameter is related to the radius of the
Thomas-Fermi atom and is small, & = 0, for complete screening and large, & » 1, for no
screening.

For relativistic energies greater than a few MeV, the bremsstrahlung cross section is
given [2.12] by the formula

do = 4erea—{(1+ )[""@ ;an—f(Z):‘
v

2(5) 1
200 1o sz ‘ , 2.68

with e: E/Ey, a: 1/137, f(Z): Coulomb correction, ¢, (&), ¢,(¢) are screening functions
depending on ¢&. This expression is the result of a Born approximation calculation and
is not valid at low energies.

For heavy elements (Z = 5), the screening functions ¢, and ¢, are usually calculated
using a Thomas-Fermi model of the atom and the values given numerically. A useful
approximation accurate to =0.5% is given [2.13] by the empirical formulae
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?1(&) = 20.863 —21In [1 +(0.55846 £)* 1 —4[1 - 0.6 exp(—0.9¢) — 0.4 exp(—1.5&)]

$2(8) = 01(E) -2 (1 +6.5E+6EH) 7, (2.69)
where
$1(0) = 92(0)+3 =41n 183 as&—0

B1(0) = () »19.19-41In¢  asé—oo.

The function f(Z) is a small correction to the Born approximation which takes into
account the Coulomb interaction of the emitting electron in the electric field of the
nucleus. Davies et al. [2.14] give the formula

f(Z)=a?[(1 +a*) ~1+0.20206 —0.0369a>+ 0.0083 a* - 0.0024°] , (2.70)

where a = Z/137.
In the limiting cases of no screening and complete screening, (2.68) can be expressed
in simpler analytic forms. For £ > 1 (no screening), (2.68) becomes

do=472r2q L (1462- 25 1n2—E‘;E__—i—f(Z) : (2.71)
v 3 mechv 2 i

For £ =0, (complete screening),

do=472q % {(1 + 82—%> [In(183Z 3= £(2)] +%} . 2.72)

v

The energy loss due to radiation can now be calculated by integrating the cross-sec-
tion times the photon energy over the allowable energy range, i.e.,

Y0
— d_E =N§ hvfl_G_(Eo, v)dv 2.73)
dx Jrad 0 dv

with N': number of atoms/cm?, N = pN,/A; vo=Ey/h.
We can rewrite this as

- <%£> = NEO ¢rad s where
X /rad (2.74)

dirad:thv_cT_(Eo, v)dv.
Ey dv

The motivation behind this is that da/dv is approximately proportional to v~!; the
integral @4 is therefore practically independent of v and is a function of the material
only.

For mec2<E0<137mec2Z_“3, £>1, we have no screening, so that integration
yields

Da=4Z"rla <ln ZE"Z -1 —f(Z)> : (2.75)
m.c 3
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Fig. 2.10. Radiation loss vs. collision loss
for electrons in copper. For comparison,
the dE/dx for protons is also shown
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For Ey»>137m.c*Z "~ 173 & = 0 (complete screening)

2.2 -1/3 1
g =427 o InUBZ7) +— /(D) |. (2.76)

At intermediate values of ¢, (2.73) must be integrated numerically.

It is interesting to compare (2.74) to the ionization loss formula in (2.66) (see Fig.
2.10). Whereas the ionization loss varies logarithmically with energy and linearly with
Z, the radiation loss increases almost linearly with E and quadratically with Z. This
dependence explains the rapid rise of radiation loss.

Another difference is that unlike the ionization loss which is quasicontinuous along
the path of the electron or positron, almost all the radiation energy can be emitted in
one or two photons. There are thus large fluctuations observed for a beam of mono-
energetic electrons or positrons.

2.4.3 Electron-Electron Bremsstrahlung

The above formulae represent the mean energy loss from radiation in the field of the
nucleus. There is, however, also a contribution from bremsstrahlung which arises in the
field of the atomic electrons. Formulas for electron-electron bremsstrahlung have been
worked out by several authors and it can be shown that the cross sections are essentially
given by those above except that Z Zis replaced by Z. This contribution can thus be ap-
proximately taken into account by simply replacing Z* by Z(Z + 1) in all of the above
cross-section formulae.

2.4.4 Critical Energy

As we have seen the energy loss by radiation depends strongly on the absorbing ma-
terial. For each material, we can define a critical energy, E., at which the radiation loss
equals the collision loss. Thus,

1E_> _ _d_é) for E=E,. @
dx rad dx coll
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Table 2.2. Critical energies of some materials

Material Critical energy
[MeV]
Pb 9.51
Al 51.0
Fe 27.4
Cu 24.8
Air (STP) 102
Lucite 100
Polystyrene 109
Nal 17.4
Anthracene 105
H,0 92

Above this energy, radiation loss will dominate over collision-ionization losses and
vice-versa below E_.. An approximate formula for E, given in [2.15] is,

Eczw , (278)
Z+1.2

Table 2.2 gives a short list of critical energies for various materials so as to give some
feeling for the order of magnitudes.

2.4.5 Radiation Length

A similar quantity known as the radiation length of the material is even more frequent-
ly used. This parameter is defined as the distance over which the electron energy is
reduced by a factor 1/e due to radiation loss only. Indeed, if we rearrange (2.74), we
get the differential equation

—dE/E = N ®,,4dx . (2.79)

Considering the high energy limit where collision loss can be ignored relative to radia-
tion loss, @,,4in (2.76) is independent of E, so that

E=Ejexp < L_x> . (2.80)

rad

where x is the distance travelled and L,,q= 1/N &,,4 is the radiation length. Using
(2.76), we thus find the formula

1 PN,

- }reza[ln(1832_1/3)—f(2)], (2.81)

= [4Z(Z+1)

rad

where we have included the contribution from electron-electron bremsstrahlung and
ignored the small constant term. Some values of L4 are given in Table 2.3 for several
materials.



42 2. Passage of Radiation Through Matter

Table 2.3. Radiation lengths for various absorbers

Material [gm/ cmz] [cm]

Air 36.20 30050
H,0 36.08 36.1
Nal 9.49 2.59
Polystyrene 43.80 42.9
Pb 6.37 0.56
Cu 12.86 1.43
Al 24.01 8.9
Fe 13.84 1.76
BGO 7.98 1.12
BaF, 9.91 2.05
Scint. 43.8 42.4

A useful approximation [2.15], convenient for quick calculations, is given by
716.4 g/cm* A
Z(Z+1)In 2871/V2)

where Z and A are the atomic number and weight of the material respectively. The
values obtained are accurate to within 2.5% except for helium where the result is about
5% too low.

The usefulness of the radiation length becomes evident when material thicknesses
are measured in these units. Clearly, if x is expressed in units of L.,4, then (2.74)
becomes

(2.82)

rad =

—(dE/dt) = E,, (2.83)

where ¢ is the distance in radiation lengths. Thus, the radiation energy loss when expres-
sed in terms of radiation length is roughly independent of the material type.

For compounds and mixtures, the radiation lengths may be computed by applying
Bragg’s rule. Expressing L4 in mass thickness units, we then have

1 1 1
=W1< >+W2< >+..., (2.84)
Ly Liog 1 Liaq /2

where w(, w,, ... are the fractions by weight of each element in the mixture as defined
in (2.39).

2.4.6 Range of Electrons

Because of the electron’s greater susceptibility to multiple scattering by nuclei, the
range of electrons is generally very different from the calculated path length obtained
from an integration of the dE/dx formula. Differences ranging from 20—400%
depending on the energy and material are often found. In addition, the energy loss by
electrons fluctuates much more than for heavy particles. This is due to the much greater
energy transfer per collision allowed for electrons and to the emission of bremsstrah-
lung. In both cases, it is possible for a few single collisions (or photons) to absorb the
major part of the electron’s energy. This, of course, results in greater range straggling
as illustrated by Fig. 2.11 which shows some measured range curves.
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Fig. 2.13

As for heavy particles, a number of empirical range-energy relations have been
formulated. Figure 2.12 presents some typical range-energy curves for electrons in vari-
ous materials as calculated assuming a continuous slowing-down process. A tabulation
of ranges for different materials is also given by Pages et al.[2.17].

2.4.7 The Absorption of f# Electrons

" Because of their continuous spectrum of energies, the absorption of f-decay electrons

exhibits a behavior which is very well approximated by an exponential form. This is il-
lustrated in Fig. 2.13 which shows the number-distance curves for different absorbers
plotted on a semi-logarithmic scale. As can be seen, the curves are almost linear and are

easily fit by

I=1Iyexp(—ux).

(2.85)
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The constant u is known as the B-absorption coefficient and is found to be directly
related to the endpoint energy of the f-decay. One of the earliest uses of this behavior
was, in fact, to measure 8 endpoint energies and the thicknesses of thin foils. It is im-
portant to note, however, that exponential absorption is not a general characteristic of
B-decay. Indeed, this behavior only holds in the case of simple allowed decays. In more
complicated forbidden decays where the shape of the f-spectrum is different, devia-
tions become apparent.

2.5 Multiple Coulomb Scattering

In addition to inelastic collisions with the atomic electrons, charged particles passing
through matter also suffer repeated elastic Coulomb scatterings from nuclei although
with a somewhat smaller probability. Ignoring spin effects and screening, these colli-
sions are individually governed by the well-known Rutherford formula

do _ 2222 (mec/pp)*
dQ ¢ 4sin*(6/2)

(2.86)
Because of its 1/sin* (6/2) dependence, the vast majority of these collisions result,
therefore, in a small angular deflection of the particle. We assume here that the nuclei
are much more massive than the incident particles so that the small energy transfer to
the nucleus is negligible. The particle thus follows a random zigzag path as it traverses
the material. The cumulative effect of these small angle scatterings is, however, a net
deflection from the original particle direction, as shown in Fig. 2.14.

In general, the treatment of Coulomb scattering in matter is divided into three
regions:

1) Single Scattering. If the absorber is very thin such that the probability of more than
one Coulomb scattering is small, then the angular distribution will be given by the
simple Rutherford formula in (2.86).

2) Plural Scattering. If the average number of scatterings N <20, then we have plural
scattering. This is the most difficult case to treat as neither the simple Rutherford
formula nor statistical methods can be simply applied. Some work in this region has
been done by Keil et al. [2.19] and the reader is referred there for further informa-
tion.

3) Multiple Scattering. If the average number of independent scatterings is N >20, and
energy loss is small or negligible, the problem can be treated statistically to obtain a
probability distribution for the net angle of deflection as a function of the thickness

Fig. 2.14. Multiple scattering of a charged parti-
cle. The scale and angles are greatly exaggerated
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of material traversed. This is the most common case encountered and we devote the
remainder of this section to this topic.

In general, rigorous calculations of multiple scattering are extremely complicated
and several formulations and formulae with different levels of sophistication exist.
These are reviewed by Scott [2.20] and by Hemmer and Farquahr [2.21]. Among the
most used are the small-angle approximations by Moliere and by Snyder and Scott.
Their formulations are essentially equivalent and have been demonstrated to be
generally valid for all particles up to angles of 6§=30° with the exception of slow elec-
trons (8<0.05) and electrons in very heavy elements.

Moliere expresses the polar angle distribution as a series

P(0)dQ = ndn <2exp(—n2)+ Fﬁ“ + Fz(f) +> (2.87)

where 77 = 6/(6,)/B) and 6, = 0.3965 (zQ/pf) |/ (pdx/A) .
The parameter B is defined by the equation:

g(B)=InB-B+Iny—0.154 =0, where

2pox zz YV
y=8831x10° L L% and 4=1.13+3.76- (- ) .
B2AA 1378

For a given p, B may be found numerically by using, for example, Newton’s
Method for finding the zeros of g(B). The functions Fj(#) are defined by the integral

1 -2\ |y A\
Fk(n)=F§Jo(ny)exp< ; >[—4—ln<—4->} ydy,

where J,= Bessel function. For convenience, some values of F; and F, for various
values of # are tabulated in Table 2.4.

Table 2.4. Values of Fy and F, for the Moliere distribution (from [2.21])

n Fi(n) Fy(m) n Fy(n) Fy(n)

0.0 0.8456 2.49 2.2 0.106 0.02

0.2 0.700 2.07 2.4 0.101 ~0.046
0.4 0.343 1.05 2.6 0.082 —0.064
0.6 —-0.073 —0.003 2.8 0.062 —0.055
0.8 —-0.396 —0.606 3.0 0.045 —-0.036
1.0 -0.528 -0.636 3.2 0.033 -0.019
1.2 —-0.477 ~0.305 3.5 0.0206 0.0052
1.4 —-0.318 0.052 4.0 0.0105 0.0011
1.6 —-0.147 0.243 5.0 0.00382 0.000836
1.8 0.000 0.238 6.0 0.00174 0.000345
2.0 0.080 0.131 7.0 0.00091 0.000157

The remaining variables are:
Z: atomic number of material
A: atomic weight of material
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T T T Fig. 2.15. Angular distribution of 15.7 MeV electrons
scattered from a thin Au foil (from Hanson et al.
T [2.23]). The experimental values are compared with
the Gaussian approximation to multiple scattering
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ox: thickness of scatterer [cm]

p:  density of scatterer [g/cm’]

p: momentum of incident particle [MeV/c]
B = v/c of incident particle

Z: charge of particle in units of e

0= {I/ Z(Z+1) for electron and positrons

zZ for other particles

_ | Z+1)Zz 173 for electrons and positrons
VA for other particles.

For most calculations, it is usually not necessary to go beyond the first three terms.
Figure 2.15 shows an example of this distribution for 15 MeV electrons passing
through a thin gold foil. At small angles, this space angle distribution (with respect to
solid angle!) is close to that of a Gaussian, but as angle increases, corrective terms come
into play to form a long broad tail. The deflections at larger angles are generally due to
one single, large angle Coulomb scattering in the material rather than to the cumulative
effect of many small angle scatterings. The broad tail, therefore, should roughly follow
that of the Rutherford 1/sin*(6/2) form for single scattering rather than that of a Gaus-
sian. The transition between the small and larger angle regions is governed by plural
scattering. This is given by Moliere as a correction to the small angle distribution.

2.5.1 Multiple Scattering in the Gaussian Approximation

If we ignore the small probability of large-angle single scattering, a good idea of the
effect of multiple scattering in a given material can be obtained by considering the dis-
tribution resulting from the small angle (< 10°) single scatterings only. In such a case,
as we have seen, the probability distribution is approximately Gaussian in form,

20 -6
PO) = — —— ) db (2.88)
@ =6 <<92>>
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where we have used the small-angle approximation d@ = 27 6d6. The parameter (62
represents the mean squared scattering angle, as can be shown by integrating S 6%P(6)dQ
from 8 =0 to . The square root 1/(19—2) is known as the rms scattering angle and
should be equal to the rms scattering angle of the full multiple scattering angle distribu-
tion. By comparing (2.88) to the first term of Moliere’s expansion in (2.87), this angle
should be approximately given by l/(()_z)z 0, I/E However, because of the Moliere
distribution’s long tail, the actual value, when including all terms, becomes infinite.

A better estimate may be obtained by using an empirical formula proposed by
Lynch and Dahl [2.24],

2
N Xe 1+v )
<0 >_2—_1+F2 [—v ln(1+v)—1] rad (2.89)

x2=2.007x10"°Z*3[1 +3.34(Zza/B)*)/p* .

The variable p is the momentum in MeV/c, x, the path length in g/cm?, z, the charge
of the particle, Z and A4, the atomic number and weight of the material, respectively
and «, the fine structure constant. The parameter F represents the fraction of the
Moliere distribution to be taken into consideration. A value less than 1 is necessary here
since, as we have noted, taking the entire distribution into account results in an infinite
value for (6%. Similarly, the parameter £ may be interpreted as the mean number of
scatters. For F anywhere in the range of 90% to 99.5% and 10< Q< 108, the above
formula yields results to better than 2%.

As an illustration let us calculate the standard deviations, o, of the two Gaussian
distributions shown in Fig. 2.15 using (2.89). Thus for 15.7 MeV electrons, we find

@ = 0.0023 rad®> x = 18.66 mg/cm?
0.0051 rad®> x=37.28 mg/cm?

By comparing (2.88) and the Gaussian form in (4.19), we see that ¢ = }/{(6%/2, so
that ¢ = 1.94° and 2.89° respectively. Comparing these values to the fits in Fig. 2.15,
we can see a good correspondance.

A sometimes useful quantity is the angular deflection projected onto a perpen-
dicular plane containing the incident trajectory (see Fig. 2.14). Here the distribution is
also approximately Gaussian

_ -62
P(6,)df, = 2nh2) " exp <2 : 02>> do, (2.90)

X
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where the mean squared projected scattering angle (9,2() is related to the space scatter-
ing angle by (8% =(6%/2.

From Fig. 2.14, there is also a lateral displacement of the particle. This is usually
very small, however, and if one calculates this distribution, one finds

_ 2,2
P(r)dr=6r(6%t> 'exp <<9_23>rt_2> dr (2.91)

with r: displacement; ¢ = x/L_,4: thickness in radiation lengths. By comparison, the
mean squared displacement is then

rdy =0%»tY/3 . (2.92)

Note also that the appearance of the radiation length is fortuitous here; it, of course,
has nothing to do with multiple scattering and is only used as a simplification.

2.5.2 Backscattering of Low-Energy Electrons

Because of its small mass, electrons are particularly susceptible to large angle deflec-
tions by scattering from nuclei. This probability is so high, in fact, that multiply scat-
tered electrons may be turned around in direction altogether, so that they are backscat-
tered out of the absorber. This is illustrated schematically in Fig. 2.16. The effect is
particularly strong for low energy electrons, and increases with the atomic number Z of
the material. Backscattering also depends on the angle of incidence. Obviously
electrons entering at obliques angles to the surface of the absorber have a greater
probability of being scattered out than those incident along the perpendicular.

The ratio of the number of backscattered electrons to incident electrons is known as
the backscattering coefficient or albedo. Figure 2.17 shows some measured coefficients
for various materials and electron energies. Backscattering is an important considera-
tion for electron detectors where depending on the geometry and energy, a large
fraction of electrons may be scattered out before being able to produce a usable signal.
For non-collimated electrons on a high-Z material such as Nal, for example, as much
as 80% may be reflected back.
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Fig. 2.17. Some measured electron backscattering coefficients for various materials. The electrons are per-
pendicularly incident on the surface of the sample (from Tabata et al. [2.24])
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2.6 Energy Straggling: The Energy Loss Distribution

Our discussion of energy loss up until now has been concerned mainly with the mean
energy loss suffered by charged particles when passing through a thickness of matter.
For any given particle, however, the amount of energy lost will not, in general, be equal
to this mean value because of the statistical fluctuations which occur in the number of
collisions suffered and in the the energy transferred in each collision. An initially
monoenergetic beam, after passing through a fixed thickness of material, will therefore
show a distribution in energy rather than a delta-function peak shifted down by the
mean energy loss as given by the dE/dx formula. We have already seen these fluctua-
tions in the form of range straggling. This, in fact, is the same problem viewed from a
different angle: instead of observing the fluctuations in energy loss for a fixed thickness
of absorber, we observe the fluctuations in thickness of pathlength for a fixed loss in
energy.

From a theoretical point of view, calculating the distribution of energy losses for
a given thickness of absorber is a difficult mathematical problem and is generally divid-
ed into two cases: thick absorbers and thin absorbers.

2.6.1 Thick Absorbers: The Gaussian Limit

For relatively thick absorbers such that the number of collisions is large, the energy loss
distribution can easily be shown to be Gaussian in form. This follows directly from the
Central Limit Theorem in statistics which states that the sum of N random variables, all
following the same statistical distribution, approaches that of a Gaussian-distributed
variable in the limit N— o If we take our random variable to be JE, the energy lost in
a single atomic collision, and assume that the energy lost in each collision is such that
the velocity of the particle is negligibly altered (so that the velocity-dependent collision
cross-section stays constant), then the total energy lost is the sum of many independent
JE, all commonly distributed. Assuming there are a sufficient number of collisions N,
then the total will approach the Gaussian form,

Y
f(x, A)e< exp <:.(_‘2'2L)> (2.93)

ag

with x: thickness of absorber; A: energy loss in absorber; A: mean energy loss; g: stan-
dard deviation.

For nonrelativistic heavy particles the spread o, of this Gaussian was calculated by
Bohr to be

ol= 47zNar§(mec2)2p§ x= 0.1569p§ x[MeV?], (2.94)

where N, is Avogadro’s number, r. and m, the classical electron radius and mass, and
p, Z, A are the density, atomic number and atomic weight of the material respectively.
This formula can easily be extended to relativistic particles

_1p2
o’ = %—_% a5 . (2.95)
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2.6.2 Very Thick Absorbers

A critical assumption in the above analysis was that the energy loss was small compared
to the initial energy so that the velocity change of the particle could be ignored. For
very thick absorbers where a substantial amount of energy is lost, this assumption, of
course, breaks down. This case has been treated in depth by Tschalar[2.26, 27} and the
reader is referred to his articles and to the resume by Bichsel{2.28] for details of this
distribution.

2.6.3 Thin Absorbers: The Landau and Vavilov Theories

In contrast to the thick absorber case, the distribution for thin absorbers or gases where
the number of collisions N is too small for the Central Limit Theorem to hold is ex-
tremely complicated to calculate. This is because of the possibility of large energy
transfers in a single collision. For heavy particles, this W ., is kinematically limited to
the expression given in (2.28), while for electrons, as much as one-half the initial energy
can be transferred. In this latter case, there is also the additional possibility of a large
“one-shot” energy loss from bremsstrahlung as well. While these events are rare, their
possibility adds a long tail to the high energy side of the energy-loss probability distri-
bution thus giving it a skewed, asymmetric form. Figure 2.18 illustrates this general
shape. Note that the mean energy loss no longer corresponds to the peak but is dis-
placed because of the high energy tail. In contrast, the position of the peak now defines
the most probable energy loss. These two quantities may be used to parametrize the
distribution.

Relative probability

Fig. 2.18. Typical distribution of energy loss in a
max thin absorber. Note that it is asymmetric with a long
high energy tail
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Basic theoretical calculations of this distribution have been carried out by Landau,
Symon and Vavilov; each of these, however, has a somewhat different region of ap-
plicability. The distinguishing parameter in all these theories is the ratio

K=A/Wya s (2.96)

that is the the ratio between the mean energy loss and the maximum energy transfer al-
lowable in a single collision. The mean energy loss may be calculated from the Bethe-
Bloch formula, however, for most purposes it is usually approximated by taking the
first multiplicative term only and ignoring the logarithmic term, i.e.,
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Fig. 2.19. Vavilov distributions for various x. For comparison, Landau’s distribution (denoted by the L) for
k =0 is also shown (from Seltzer and Berger [2.30])

2
A=¢= 2nNar§mec2p§ <%> X. (2.97)

Following the literature, we denote this quantity by £. The thin absorber region is
generally taken to be k<10, although for xk>1, the distribution already begins to ap-
proach the the Gaussian limit (see Fig. 2.19). By k> 10, there, of course, is only a very
negligible difference.

Landau’s Theory: x<0.01. Landau [2.29] was the first to calculate the energy loss
distribution for the case of very thin absorbers, that is, kK <0.01. In this theory, Landau
makes the assumptions that:

1) the maximum energy transfer permitted it infinite, W, — oo, in essence taking
k-0,

2) the individual energy transfers are sufficiently large such that the electrons may be
treated as free. Small energy transfers from so-called distant collisions are ignored,

3) the decrease in velocity of the particle is negligible, i.e., the particle maintains a con-
stant velocity.

The distribution is then expressed as
fx, 4)=@¢(A)/¢, where (2.98)

¢(A)=i}°exp(—ulnu—ui)sin nudu
T o
/1=—1£—[A—é(lné—lne+1—C)]

C = Euler’s Const = 0.577 ... and

a-pHr

2mc?p?

2

Ing=In +8
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The quantity ¢ essentially represents the minimum energy transfer allowed by assump-

tion 2. The function ¢(A) is a universal function depending only on the parameter A

and must be evaluated numerically. A tabulation for various A may be found in Se/tzer

and Berger [2.30] or Borsh-Supan [2.31], for example. A computer program for the

calculation of the Landau distribution has also been developed by Sckorr [2.32].
From an evaluation of ¢(A), the most probable energy loss is found to be

Amp = ¢[In(&/e) +0.198 - 4], (2.99)

where we have also added on the density effect for completeness.

Symon’s Theory and Vavilov’s Theory: Intermediate x. The region between small x
covered by Landau and the Gaussian limit is treated by Symon and by Vavilov. Using
the limiting distribution derived by Landau, Symon was able to make a number of
ingenious approximations in deriving the energy-loss distributions. His results, un-
fortunately, are expressed in graphic form, which in today’s world of computers, make
them inconvenient to use. These graphs and the procedure for employing them may be
found in the book by Rossi [2.33].

Vavilov’s theory, in contrast, is along the line of Landau’s formulation and in fact,
generalizes the latter’s calculation by taking into account the correct expressions for
maximum allowable energy transfer. The latter two assumptions made by Landau are
kept however. His results are somewhat more complicated, but reduce to the Landau
distribution in the limit ¥ — 0 and to a Gaussian form in the limit ¥ — . Rather than
give these formulas here, the reader is referred to Seltzer and Berger [2.30] or to Vavi-
lov’s original paper [2.34]. A computer program for its evaluation is also given by
Schorr [2.32].
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Fig. 2.20. Comparison of Vavilov’s and Symon’s theories with experiment (from Seltzer and Berger [2.30])
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To give an idea of Vavilov’s results, we show Vavilov’s distributions for various
values of x in Fig. 2.19. These should be compared to the Landau distribution (denoted
by L) at k=0, also shown in Fig. 2.19. Note also how the distribution already
resembles a Gaussian form for x = 1. In the Gaussian limit, Vavilov gives the variance
as

2 2
PNt (2.100)
K 2
which agrees with Bohr’s formula for heavy particles in (2.95).
To see how theory compares with experiment, some measured results are also
shown in Fig. 2.20.

Corrections to the Landau and Vavilov Distributions. Supplementing the calculations
by Landau and Vavilov, are also a number of limited modifications made by various
authors. Blunck and Leisegang [2.35], in particular, have modified Landau’s theory to
include binding effects of the atomic electrons (assumption 2). Needless to say, the re-
sult is complicated, however, a suitable form for calculation may be found in Matthews
et al. [2.36]). For the Vavilov distribution, a similar modification has been made by
Shulek et al. [2.37]. Details may be found in their original article.

2.7 The Interaction of Photons

The behavior of photons in matter (in our case, x-rays and yp-rays) is dramatically dif-
ferent from that of charged particles. In particular, the photon’s lack of an electric
charge makes impossible the many inelastic collisions with atomic electrons so charac-
teristic of charged particles. Instead, the main interactions of x-rays and y-rays in
matter are:

1) Photoelectric Effect
2) Compton Scattering (including Thomson and Rayleigh Scattering)
3) Pair Production.

Also possible, but much less common, are nuclear dissociation reactions, for example,
(y, n), which we will neglect in our discussion.

These reactions explain the two principal qualitative features of x-rays and y-rays:
(1) x-rays and y-rays are many times more penetrating in matter than charged particles,
and (2) a beam of photons is not degraded in energy as it passes through a thickness of
matter, only attenuated in intensity. The first feature is, of course, due to the much
smaller cross section of the three processes relative to the inelastic electron collision
cross section. The second characteristic, however, is due to the fact the three processes
above remove the photon from the beam entirely, either by absorption or scattering.
The photons which pass straight through, therefore, are those which have not suffered
any interactions at all. They therefore retain their original energy. The total number of
photons is, however, reduced by the number which have interacted. The attenuation
suffered by a photon beam can be shown, in fact, to be exponential with respect to the
thickness, i.e.,

I(x) = Iyexp(—ux) (2.101)

with Ij: incident beam intensity; x: thickness of absorber; u: absorption coefficient.
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The absorption coefficient is a quantity which is characteristic of the absorbing
material and is directly related to the total interaction cross-section. This is a quantity
often referred to when discussing y-ray detectors. However, let us first discuss the three
processes individually before turning to the calculation of the absorption coefficient.

2.7.1 Photoelectric Effect

The photoelectric effect involves the absorption of a photon by an atomic electron with
the subsequent ejection of the electron from the atom. The energy of the outgoing elec-
tron is then

E'—‘hV—B.E., (2102)
where B.E. is the binding energy of the electron.

Since a free electron cannot absorb a photon and also conserve momentum, the
photoelectric effect always occurs on bound electrons with the nucleus absorbing the
recoil momentum. Figure 2.21 shows a typical photoelectric cross section as a function
of incident photon energy. As can be seen, at energies above the highest electron bind-
ing energy of the atom (the K shell), the cross section is relatively small but increases
rapidly as the K-shell energy is approached. Just after this point, the cross section drops
drastically since the K-electrons are no longer available for the photoelectric effect.
This drop is known as the K absorption edge. Below this energy, the cross section rises
once again and dips as the L, M, levels, etc. are passed. These are known respectively as
the L-absorption edges, M-absorption edge, etc.

Theoretically, the photoelectric effect is difficult to treat rigorously because of the
complexity of the Dirac wavefunctions for the atomic electrons. For photon energies
above the K-shell, however, it is almost always the K electrons which are involved. If
this is assumed and the energy is nonrelativistic, i.e., hv<mec2, the cross-section can
then be calculated using a Born approximation. In such a case, one obtains

104

Cross section [barns]

1020 i Fig. 2.21. Calculated photoelectric cross section for lead
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Bpnoto = 40 /2 Z° go(m.c*/hv)"? per atom, (2.103)
with ¢ = 877r2/3 = 6.651 x 10~ P cm?; o = 1/137.

For energies closer to the K-edge,(2.103)must be multiplied by a correction factor to
give

per atom , (2.104)

7 3 4 _ -1
B = g0 203D {vkj| exp(—4&cot™¢)

Z2 | v | t-exp(-27¢&)
where Av, = (Z—0.03)*m.c*a*/2 and &= I/ vi/(v=vi). For v very close to v,
&~ 11, so that (2.104) can be simplified to

6.3x10°58 /v, \'°
¢ph0to:7“‘<7k> : (2.105)

Formulas for the L and M shells have also been calculated, but these are even more
complicated than those above. The reader is referred to Davisson [2.38] for these
results.

It is interesting to note the dependence of the cross section on the atomic number Z.
This varies somewhat depending on the energy of the photon, however, at MeV ener-
gies, this dependence goes as Z to the 4th or 5th power. Clearly, then, the higher Z
materials are the most favored for photoelectric absorption, and, as will be seen in later
chapters, are an important consideration when choosing y-ray detectors.

2.7.2 Compton Scattering

Compton scattering is probably one of the best understood processes in photon interac-
tions. As will be recalled, this is the scattering of photons on free electrons. In matter,
of course, the electrons are bound; however, if the photon energy is high with respect to
the binding energy, this latter energy can be ignored and the electrons can be considered
as essentially free.

Figure 2.22 illustrates this scattering process. Applying energy and momentum con-
servation, the following relations can be obtained.

o
1+ y(1-cosB) ’
T=hv—hy =py Lt —cos0) ,
1+y(1—cosb)
cosf=1-— 2 (2.106)

(1+y)tanp+1 "~

cot(0=(1+y)tan—‘29-,

where y = hv/m.c? . Other relations between the various variables may be found by
substitution in the above formulae.

Fig. 2.22. Kinematics of Comp-
ton scattering
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The cross section for Compton scattering was one of the first to be calculated using
quantum electrodynamics and is known as the Klein-Nishina formula:

2 204 2
do _re 1 , 1+ cosigs Y (1—cosO)” , (2.107)
dQ 2 [1+y(1-cosb)] 1+ y(1—cosb)

where r, is the classical electron radius. Integration of this formula over d€2, then, gives
the total probability per electron for a Compton scattering to occur.

o.=2nr? 1+2y [—2—(1—+—)))——iln(1+2y)}+—l—ln(1+2y)——1—+—3y7}.
y ) 14+2y y 2y (1+2yp)
(2.108)

Figure 2.23 plots this total cross section as a function of energy.
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Fig. 2.23. Total Compton scattering cross sections
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Two useful quantities which can be calculated from the Klein-Nishina formula are
the Compton scattered and Compton absorption cross sections. The Compton scatter-
ed cross section, ¢°, is defined as the average fraction of the total energy contained in
the scattered photon, while the absorption cross section, o?, is the average energy
transferred to the recoil electron. Since the electron is stopped by the material, this is
the average energy-fraction absorbed by the material in Compton scattering. Obvious-
ly, the sum must be equal to o,

G.=a'+a?. (2.109)
To calculate g°, we form

do’® hv' do

_ v do (2.110)
dQ  hv dQ

which after integration yields

2 4. 2
a5=nr§[i31n(1+2y)+2(1+”2)(2y 2-h, 8y | @.111)
Y y (1+2y) 3(1+2y)
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The absorption cross section can then be simply calculated by

og*=0.-0c". (2.112)

Another formula which we will make use of very often when discussing detectors is
the energy distribution of the Compton recoil electrons. By substituting into the Klein-
Nishina formula, one obtains

do nr? s? s 2
77—"2 — 2+ — Y + — s———> , (2.113)
€7y y-s)y 1-s Y

where s = T/hv. Figure 2.24 shows this distribution for several incident photon
energies. The maximum recoil energy allowed by kinematics is given by

T =hy|_2Y 2.114)
1+2y

[see (2.106)] and is known as the Compton edge.

Thomson and Rayleigh Scattering. Related to Compton scattering are the classical pro-
cesses of Thomson and Rayleigh scattering. Thomson scattering is the scattering of
photons by free electrons in the classical limit. At low energies with respect to the elec-
tron mass, the Klein-Nishina formula, in fact, reduces to the Thomson cross-section,

=87'[2

g re . (2.115)

Rayleigh scattering, on the other hand, is the scattering of photons by atoms as a
whole. In this process, all the electrons in the atom participate in a coherent manner.
For this reason it is also called coherent scattering.

In both processes, the scattering is characterized by the fact that no energy is trans-
ferred to the medium. The atoms are neither excited nor ionized and only the direction
of the photon is changed. At the relatively high energies of x-rays and y-rays, Thomson
and Rayleigh scattering are very small and for most purposes can be neglected.

2.7.3 Pair Production

The process of pair production involves the transformation of a photon into an elec-
tron-positron pair. In order to conserve momentum, this can only occur in the presence
of a third body, usually a nucleus. Moreover, to create the pair, the photon must have
at least an energy of 1.022 MeV.

Theoretically, pair production is related to bremsstrahlung by a simple substitution
rule, so that once the calculations for one process are made, results for the other imme-
diately follow. As for bremsstrahlung, the screening by the atomic electrons surround-
ing the nucleus plays an important role in pair production. The cross sections are thus
dependent on the parameter ¢ [see (2.67)], which is now defined by

_ 100m.chv

f=——" _

(2.116)

with E : total energy of outgoing positron; E _: total energy of outgoing electron.
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Fig. 2.24. Energy distribution of
Compton recoil electrons. The
sharp drop at the maximum recoil
energy is known as the Compton
edge
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At extreme relativistic energies and arbitrary screening, a Born approximation cal-
culation gives the formula

dv=4Z%%a (iEer {(Ei +E?) [ﬂ;_(_é_)‘__;_an—f(Z)]

)3

2 000 1.
+?E+E_[ -z f(Z)D @.117)

where ¢, and ¢, are the screening functions used in (2.69) and the other variables are as
defined in (2.68).

As before, this formula simplifies in the limiting cases of no screening and complete
screening. Thus for no screening (£>1), we obtain

2 2
dr=4z2rde, ExTE +2f+E- 3 2E+E; o, @.118)
(hv) hvm,c 2
while for complete screening, £—0,
dr=4Z%ar? dE+3 E* +E% LB ES [ln(183Z‘“3)—f(Z)]—E+E‘
(hv) 3 9
2.119)

Because of the Born approximation, these formulae are not very accurate for high Z
or low energy. A more complicated formula valid for low energies and no screening has
been derived by Bethe and Heitler and is given in the article by Bethe and Ashkin [2.10]
along with a somewhat simpler formula from Hough.

To obtain the total pair production cross section, a numerical integration of the
above expressions must generally be performed. In the case of no screening with
mec?<hv<137m.c?Z =3, an analytic integration is possible yielding

7(. 2hv 109
Toar = 4Z%ar? | —( In -f(Z) |-—1. 2.120
pair e |:9 < meCZ f( )> 54 ] ( )

Similarly for complete screening, hv > 137m.c?Z '3,
Toair = 4Z%arZ{Z In(183Z =3~ f(Z)] - 1/54) . (2.121)

For all other cases, a numerical integration of (2.117) must be performed. Figure 2.25
illustrates the energy dependence of the total pair cross section.

As for bremsstrahlung, pair production may also occur in the field of an atomic
electron. Not surprisingly, a similar result is obtained for the cross section, but smaller
by about a factor Z. To approximately account for this interaction, then, one need only
replace Z2 by Z(Z + 1) in the above formulae.

From the total cross section, it is interesting to calculate the mean free path, A,
of a y-ray for pair production. Thus, using (2.121)

1/Apair = NTpair = 24Z(Z+1)Nria[In(183Z2~'3) - £(2)], (2.122)
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where N is the density of atoms and we have ignored the small constant term. This may
be recognized as being very similar to the radiation length, and, in fact, comparison
with (2.81) shows

Apair = % Lrad - (2.123)

2.7.4 Electron-Photon Showers

One of the most impressive results of the combined effect of pair production by high
energy photons and bremsstrahlung emission by electrons is the formation of electron-
photon showers. A high energy photon in matter converts into an electron and positron
pair which then emit energetic bremsstrahlung photons. These, in turn, convert into
further e™ e ~ pairs, and so on. The result is a cascade or shower of photons, electrons
and positrons. This continues until the energy of the pair-produced electrons and
positrons drops below the critical energy. At this point, the e e~ pairs will preferen-
tially lose their energy via atomic collisions rather than bremsstrahlung emission, thus
halting the cascade.

The development of the cascade is, of course, a statistical process. Using the notion
of radiation length, however, we may construct a simple model to describe the mean
number of particles produced and their mean energies as a function of penetration
depth in the converting material. Suppose we begin with an energetic photon of energy
E,. On the average, then, the photon will convert into an e* e~ pair after one radia-
tion length. The energy of each member of the pair is then E,/2. After two radiation
lengths, the electron and positron will then each emit a bremsstrahlung photon with
approximately half the energy of the charged particle. At this point there are 4 particles
present: two photons and an electron-positron pair, each with energy E,/4. At the end
of three radiation lengths, the bremsstrahlung photons will have converted into two
more e e~ pairs, while the original pair will have emitted another set of brems-
strahlung photons. The number of particles present is thus 8 and their energy E,/8.
Continuing in this manner, it is easy to see that at the end of ¢ radiation lengths, the
total number of particles (i.e., photons, electrons and positrons) present will be

N=2' (2.124)

each with an average energy of
E@) =§% . (2.125)

The same result would also be obtained had we started with an electron rather than
a photon.

Now what is the maximum penetration depth of the cascade? If we assume that the
shower stops abruptly at the critical energy E_, then, we have

E,
E(tpa) =—> =E, (2.126)

2 lmax

which, solving for ¢,,,, vields,
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tnax = —— - (2.127)

Ny ==2 . (2.128)

This simple model, however, only gives a rough qualitative picture of the shower.
To make a more precise calculation, recourse to such techniques as Monte Carlo
simulations is generally required. Figure 2.26 shows the results of one such calculation
for a 30 GeV shower in iron [2.15]. The circles and squares essentially give the number
of electrons and photons, respectively, as a function of depth in the iron, while the his-
togram describes the energy deposited by the shower, i.e., dE/dt. As we can see now,
the number of particles is an electron-photon cascade rises exponentially to a relatively
broad maximum after which it declines gradually over many radiation lengths, rather
than stopping abruptly as in the simple model above. It is important to keep in mind
here that the calculation describes the average behavior of the cascade. As mentioned
in Sect. 2.4.2, there can be large fluctuations when bremsstrahlung is involved, so that
for any given individual shower, a large deviations from the mean will be observed.

Beyond the first radiation length or so, the energy loss, dE/dt, can be fit reasonably
well by the gamma distribution

a-1_,-bt
E:Eob@_)__e_ (2.129)
dt I'(a)

where @ and b are parameters dependent on the material. The depth at which the maxi-

mum occurs is given by

tnax =(@—1)/b=1.0x(Iny+C;)) , i=e,y (2.130)
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08 Fig. 2.27. Values of the parameter b
= in (2.129) for various materials (from
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where y = E/E_, that is the incident energy of electron or photon in units of the criti-
cal energy, and C, = — 0.5 for electron-induced cascades while C, = +0.5 for photon-
induced cascades. To calculate the parameters in (2.129), one must calculate ., using
the second expression in (2.130). Then assuming b = 0.5 or choosing a more accurate
value from Fig. 2.27, a is found using the first relation in (2.130).

Let us now consider the transverse profile of the shower. As the cascade develops,
its lateral dimensions also increase due to various effects. These include the finite open-
ing angle between the electron and positron in pair production which directs these par-
ticles away from the longitudinal axis, multiple scattering of the electrons and the emis-
sion of bremsstrahlung photons away from the axis which then travel long distances
in the material.

The transverse dimensions of electromagnetic showers is most conveniently mea-
sured in terms of the Moliere radius, which is defined as [2.39]

E,
RM:LradE (2.131)

(4

where E; = m,c*)4n/a = 21.2MeV and E, is the critical energy. Like the radiation
length, the Moliere radius scales fairly accurately with different materials, so that when
this unit is used, the results are roughly independent of material type. Like L 4 also,
the Moliere radius for compounds and mixtures is calculated using Bragg’s rule as in
(2.84).

Figure 2.28, now, illustrates the transverse energy loss profile for a 1 GeV shower
calculated at various depths in lead [2.40]. Qualitatively, we can see that the cascade
remains relatively narrow in the first radiation lengths of its development with most
of the particles contained in a dense central core. Surrounding this central region is a
tenuous halo of particles which extends outward to relatively large distances. As the
shower progresses, however, the central core disperses, eventually disappearing after
the maximum is reached. More than 90% of the shower is nevertheless contained
within a distance of about 2R, from the longitudinal axis.

Knowledge of the longitudinal and transverse profiles of electron-photon showers
is very important for the design and construction of “electromagnetic calorimeters” in
particle physics. These detectors are designed to measure the total energy of very high
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Fig. 2.28. Transverse energy loss pro-
files for a 1 GeV shower at various
depths in Pb (from [2.40])
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energy particles by absorbing the electromagnetic cascades which are induced in the
bulk of the detector. The materials used in the calorimeter, their size and mass are thus
determined by the energy loss characteristics of the shower. To absorb a 30 GeV shower
in iron, for example, would require greater than 20 radiation lengths (or better than
35 cm of solid iron) as can be seen from Fig. 2.26. Not surprisingly calorimeters are
among the most complicated and the largest used in particle physics experiments. More
information on these specialized devices may be found in [2.40, 41].

2.7.5 The Total Absorption Coefficient and Photon Attenuation

The total probability for a photon interaction in matter is the sum of the individual
cross sections outlined above. If we calculate the cross-section per atom, this yields

g= (pphoto+ Za.+ Tpair » (2.132)

where we have multiplied the Compton cross-section by Z to take into account the Z
electrons per atom. This is shown in Fig. 2.29 for the case of lead. If we now multiply o
by the density of atoms, N, we then obtain the probability per unit length for an inter-
action,

Uu=No=a(N,p/A) (2.133)

with N,: Avogadro’s Number; p: density of the material; A: molecular weight.

This is more commonly known as the fotal absorption coefficient and is just the in-
verse of the mean free path of the photon. From (2.12), then, it follows that the frac-
tion of photons surviving a distance x is then

I/ly=exp(—ux), (2.134)

where [, is the incident intensity.
For compounds and mixtures, the total absorption coefficient may be calculated us-
ing Bragg’s rule (2.38),
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where w; is the weight fraction of each element in the compound.

2.8 The Interaction of Neutrons

Like the photon, the neutron lacks an electric charge, so that it is not subject to Cou-
lomb interactions with the electrons and nuclei in matter. Instead, its principal means
of interaction is through the strong force with nuclei. These reactions are, of course,
much rarer in comparison because of the short range of this force. Neutrons must come
within =10~ '3 cm of the nucleus before anything can happen, and since normal matter
is mainly empty space, it is not surprising that the neutron is observed to be a very
penetrating particle.

When the neutron does interact, however, it may undergo a variety of nuclear pro-
cesses depending on its energy. Among these are:

1) Elastic scattering from nuclei, i.e., A(n, n)A. This is the principal mechanism of
energy loss for neutrons in the MeV region.

2) Inelastic scattering, e.g., 4(n, n')A4*, A(n, 2n’) B, etc. In this reaction, the nucleus
is left in an excited state which may later decay by gamma-ray or some other form of
radiative emission. In order for the inelastic reaction to occur, the neutron must, of
course, have sufficient energy to excite the nucleus, usually on the order of 1 MeV or
more. Below this energy threshold, only elastic scattering may occur.
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3) Radiative neutron capture, i.e., n+(Z, A) » y+(Z, A+ 1). In general, the cross-sec-
tion for neutron capture goes approximately as =1/v where v is the velocity of the
neutron. Absorption is most likely, therefore, at low energies. Depending on the
element, there may also be resonance peaks superimposed upon this 1/v depen-
dence. At these energies, of course, the probability of neutron capture is greatly
enhanced.

4) Other nuclear reactions, such as (n, p), (n, d), (n, @), (n, t), (n, @p), etc. in which the
neutron is captured and charged particles are emitted. These generally occur in the
eV to keV region. Like the radiative capture reaction, the cross section generally
falls as 1/v. Resonances may also occur depending on the element.

5) Fission, i.e., (n, f). Again this is most likely at thermal energies.

6) High energy hadron shower production. This occurs only for very high energy
neutrons with £>100 MeV.

Because of the strong energy dependence of neutron interactions, it has become
customary to classify neutrons according to their energy, although no specific
boundaries are prescribed between classes. In general, high energy neutrons are consid-
ered to be those with energies above =100 MeV or so, whereas those between a few
ten’s of MeV and a few hundred keV are known as fas¢ neutrons. Between =100 keV
and =0.1eV, where nuclear resonance reactions occur, neutrons are referred to as
epithermal. At lower energies comparable to the thermal agitation energy at room
temperature, (i.e., E=kT=1/40¢V), neutrons are known as thermal or slow. Going
even lower to energies of milli- or micro-eV, neutrons come under the appellation of
cold or ultra-cold.

The total probability for a neutron to interact in matter is given by the sum of the
individual cross sections, i.e.,

Gtot = Oelastic T Tinelastic T Tcapture - -+ - (2.136)

Figure 2.30 gives an example of the total reaction cross-section for neutrons on a few
materials versus neutron energy. Here the energy dependence is quite smooth. A com-
pilation of cross sections for other materials may be found in the bibliography.

10%

1o‘_

F'ROTONS\\
~N

Total cross section [barns]

Fig. 2.30. Total reaction cross-sections for neutrons in
10 water, paraffin and protons (data from {2.42])
1073 107! 10'

Energy MeV]
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If we multiply (2.136) by the density of atoms we can obtain the mean free path
length

N,
—=Noy, = ;p Otot - (2.137)

In analogy to photons, then, a beam of neutrons passing through matter will be ex-
ponentially attenuated

N=Nyexp(-x/1), (2.138)

where x is the thickness of the material. Equation (2.138), of course, is useful only for a
collimated beam of neutrons. For the more general case of a noncollimated source, a
sophisticated transport equation is usually necessary.

2.8.1 Slowing Down of Neutrons. Moderation

The slowing down of fast neutrons is known as moderation and is an important process
in nuclear physics and engineering. In most cases, a fast neutron entering into matter
will scatter back and forth on the nuclei, both elastically and inelastically, losing energy
until it comes into thermal equilibrium with the surrounding atoms. At this point, it
will diffuse through matter until it is finally captured by a nucleus or enters into some
other type of nuclear reaction, e.g. fission. The neutron, of course, may undergo a
nuclear reaction or be captured before attaining thermal energies, especially if
resonances are present. Barring such reactions, however, the v~' dependence of the
cross-section favors the survival of the neutron down to thermal velocities.

Elastic scattering is the principal mechanism of energy loss for fast neutrons. At
energies of several MeV, the problem may be treated nonrelativistically and very simply
with conservation laws. Consider, therefore, a single collision in the lab frame of
reference between a neutron with velocity vy and a nucleus at rest with a mass M, as
shown in Fig. 2.31. In these calculations, it is customary to work in units of neutron
mass, i.e. m, = 1. The mass of the nucleus is then just the atomic mass number A. If we
transform to the center-of-mass system, the velocity of the neutron becomes

A
A+1

v (2.139)

va

while the nucleus takes on a velocity

1
A+1

v - (2.140)

After the collision, the neutron takes on a new direction but retains its speed in the cm
system (see Fig. 2.31). Using the law of cosines, the corresponding velocity of the
neutron in the lab system is then

(Ulab)2 = (Ucm)2+ V2_ 21’cm V cos(m— acm) s (2141)

where 6., is the center-of-mass scattering angle. If we now substitute (2.139) and
(2.140) into (2.141), we find

LAB SYSTEM

Fig. 2.31. Elastic scattering of a
neutron on a nucleus of mass M
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2 2
(V1ab)* = <7A+_1> vi+ <A 1+ A > ) (A—fl)_z v3 cos (11— Ocm) - (2.142)

2

Since the kinetic energy is £ = - muv~, we thus have

2
E A%*+1+2Acos 8
<”“> - °0% Yem (2.143)

E, \ v (A+1)?

Using the cosine law in a similar manner, we can also find the laboratory scattering
angle Olaba

(Vem)? = (Viap)> + V2= 2015 V €05 Oigp (2.144)

which using (2.142) yields
Acos 0.,+1

€os G, = . (2.145)
/A2 +1+24 cos Oy,
Continuing, we also calculate the scattering parameters for the recoil nucleus
44 2A
Ern=Ey—= _cos® =FEy————(1+cos (2.146
A=k ®1ab = Ep A<y ( ®em) )

1+c 1
€OS Prap = /——‘;ﬂ o Gias =3 em (2.147)

From (2.143), it is easy to see now that the energy of the scattered neutron is limited
to the range between

2
A-1
> Ey<E<E,, (2.1498)
A+1

where the limits correspond to scattering at cos 6., = =+ 1. In the particular case of scat-
tering on protons, 4 =1,

0<E<E,.

This is not surprising, as intuitively, the lighter the nucleus the more recoil energy it
absorbs from the neutron. This implies of course that the slowing down of neutrons is
most efficient when protons or light nuclei are used. This explains the use of hydrogen-
ous materials such as water or paraffin (CH,) in connection with neutron moderators
and shielding.

Let us now calculate the energy distribution of the scattered neutrons. At not too
high energies (=15 MeV), neutron scattering is usually restricted to s-wave scattering
which is isotropic. Thus the probability of scattering into a solid angle df2 is simply

dw = aQ _ 2w sin Oy, DO _ isin O db., . (2.149)
4n dn 2

From (2.143), however,
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E_, _ﬁ_7 $in O, 6o » (2.150)
E, (A+1)

which after substitution yields

awy, _ (A+1D* 1 1

_ (2.151)
dE 4A E, E)(1-a)

where & = [(A — 1)/(A + 1)]%. After one scattering, therefore, the energy distribution of
an originally monoenergetic neutron is constant over the energy range given by (2.148).
We can use this result now to find the distribution after two scatterings

Ey
{ de dw, 1 = ! -1 £ aEy<E<E,

aw, _ £ de e(l-a)  Efl-a) (2.152)
[42

dE [ de dwy LI ! 2{1n£0—+21na] a’Ey<E<aE,.
ag, de e(1-a) Ey(1-a) E :

For three collisions, a similar calculation gives the expression

~ 2

—1——3 11’1ﬂ (ZEO<E<E0

2E,(1—- @) E

2
aws _ —_1—T 2 Eo +61na1nﬂ+3(1na)3 a’Ey<E<aE,
dE 2E,(1-a) E E
3
——1—3 <ln &+ 3In a> a*Egy<E<a’E,.
L 2E,(1-a) E (2.153)

For more collisions the distributions can be worked out by continuing the process
although the algebra becomes more and more complicated. Figure 2.32 compares the
distributions obtained after several collisions. Condon and Breit [2.43] have worked
out the general problem and for the case of n scatterings on hydrogen and give the
general formula

n—1
aw, _ 1 mEe) . (2.154)
dE  E,n-1)! \ E
A Wio
W W,
. 5 4 X WZ W1
Eo(1-a)[ ]

Fig. 2.32. Energy distribution of neutrons

L : : - atter several elastic scatterings
a’Ey a‘Ey  aEy Eo
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An obvious question which arises now is how many collisions are needed to reduce
the average energy of a neutron to some given level? This is most easily found by cal-
culating the logarithmic change in energy:

u=1nE0—lnE=ln%, (2.155)

where Ej is the initial energy and the E the final energy. This is also known as the

lethargy change. From (2.143) we see, in fact, that after a single scattering at angle 6,
u is given by

(A+1)?

) (2.156)
A2+1+2Acos 6

u(f)=1In

If we integrate (2.156) over all directions and divide by 4 7, we can then find the average
u(0) for a single scattering,

2
é=<u(e)>=§u(e)%‘3=isln (A+1)

5 d(cos )
2 A“+1+2Acos 8

—_— 2 p—
1+ “-1 lnA !

. (2.157)
24 A+1

This leaves us with the interesting result that the average lethargy change, £, after one
scattering is a constant, independent of the initial energy. Now, for a neutron to slow
down from an energy E, to an energy E’, a total lethargy change of In(Ey/E’) is
required. Since the average lethargy change per collision is &, the average number of
collisions # required for this total change would then be

=Lt (2.158)

With carbon-12 as a moderator, for example, we would have £=0.158, so that a
1MeV neutron slowing down to thermal energies (1/40 eV) would require (1/0.158)
In (40 X 10%) = 111 collisions. For hydrogen, & = 1, so that this number would only be
n =17.5. More rigorous approaches are given in [2.44, 45].



3. Radiation Protection.
Biological Effects of Radiation

That radiation can be hazardous to living organisms is well-known to any informed
person today. However, except for this simple fact, further knowledge of just how and
why this is so appears to be rare even among those who work with radiation profes-
sionally. Indeed, it behooves anyone handling radioactive material or working in a
radiation environment to have at least a few elementary ideas concerning the effects
of exposure to radiation, the permissible limits and the safety precautions to be taken.
The nuclear physicist is, of course, no exception. In this chapter, therefore, we will
briefly survey the dosimetric units used for discussing the effects of irradiation, and
some simple safety precautions to be followed in the nuclear physics laboratory.

3.1 Dosimetric Units

The quantity of radiation received by an object is measured by several different units.
Since radiation interacts with matter by ionizing or exciting the atoms and molecules
making up the material, these units are either a measure of the quantity of ionization
produced or the amount of energy deposited in the material.

3.1.1 The Roentgen

The oldest unit is the Roentgen, which is a measure of exposure and is defined as

1 Roentgen (R) = the quantity of x-rays producing an ionization of 1 esu/cm’
= (2.58 %10~ * Coul/kg) in air at STP. (3.1)

Note that the definition refers specifically to x-rays and y-rays in air. As such, it is an
easy quantity to measure with ionization chambers, however, it becomes inconvenient
when the irradiated object is living tissue or some other material.

In air, ionization is produced primarily by the slowing down of the recoil electrons
resulting from the Compton scattering of the y-rays and x-rays. The amount of ioniza-
tion produced, therefore, depends on both the absorption coefficient for y-rays and the
specific ionization of electrons. If isotropic radiation from a point is assumed and at-
tenuation from air is ignored, the ionization per unit time or exposure rate due to a
given source may be found from the formula

Exposure rate = % , 3.2)

where A is the activity, d the distance to the source and I"is an exposure rate constant
dependent on the decay scheme of the particular source, the energy of the y’s, the ab-
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sorption coefficient in air and the specific ionization of electrons. This constant has
been calculated for a number of common y-sources and a short list is given in Table
3.1. A more complete list is given in [3.1].

Table 3.1. Short list of exposure rate constants

[3.1]
Source I'[R-cm?/hr-mCi]
37¢s 3.3

7Co 13.2

22Na 12.0

%Co 13.2

222Ra 8.25

3.1.2 Absorbed Dose

A more relevant quantity for discussing the effects of irradiation is the absorbed dose,
D. This is a quantity which measures the total energy absorbed per unit mass and is
the fundamental parameter in radiological protection. Its unit of measurement is the
Gray which is defined as

1 Gray (Gy) =1 Joule/kg . 3.3)

A somewhat older unit for the absorbed dose, which is no longer actively used, is the
rad where

1rad =100 erg/g =0.01 Gy . (3.9

It should be noted that the absorbed dose gives no indication of the rate at which
the irradiation occurred nor the specific type of radiation, factors which play an impor-
tant role when considering the biological effects of radiation.

Example 3.1 Calculate the absorbed dose in air for 1 Roentgen of y-rays. Assume that
for electrons, the average energy to create an ion-electron pair in air is 33.7 eV.

1
1.6 x 10~ Coul/elect

1R =2.58%x10~* Coul/kg X = 1.61x 10'* ion-pairs/kg .

The energy expended in creating the ion-pairs is thus
33.7 eV/ion-pr x 1.61 x 10" ion-pr/kg = 5.42 x 10'° MeV/kg .
Since 1 MeV = 1.6x 10~ "* J, we then find

D =(5.42x10'% x (1.6 x 10~ %) = 0.00867 Gy .
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Example 3.2 Assuming soft living tissue absorbs =~ 93 erg/g for 1 R of y radiation
what is the dose rate received from working at an average distance of 50 cm from a
100 uCi (3.7 MBq) **Na source?

Using Table 3.1, the exposure rate is

Exposure rate = M = 0.48 mR/hr .

50°

Dose rate = 93 x0.48 x 1073 = 0.045 erg/g-hr = 0.045 mGy/hr .

3.1.3 Relative Biological Effectiveness (RBE)

When considering biological effects, the nonspecificity of the absorbed dose proves to
be inadequate. Indeed, studies show that the biological damage caused by radiation is
a strong function of the specific radiation type and its energy. An absorbed dose of
a-particles, for example, produces more damage than an equal dose of protons and
this, more damage than a similar dose of electrons or y-rays. The difference lies in the
linear energy transfer (LET) of the different particles, i.e., the energy locally deposited
per unit path length'. Thus, the more ionizing the particle the greater the local biolog-
ical damage.

To account for this effect, each radiation type is assigned a radiation weighting fac-
tor, wg, (or quality factor) which indicates its relative biological effectiveness (RBE).
Table 3.2 lists this factor for several different types of radiation. Thus, for equal ab-
sorbed doses, a-particles may be considered as about 4 times more damaging than pro-
tons, and these 5 times more damaging than electrons or photons, etc.

Table 3.2. Radiation weighting factors [3.2]

Radiation type and energy Radiation weighting
factor, wg
Photons, all energies 1
Electrons and muons, all energies'r 1
Neutrons
<10keV 5
10 keV to 100 keV 10
>100keV to 2 MeV 20
>2MeV to 20 MeV 10
>20 MeV 5
Protons, other than recoil protons, energy >2 MeV 5
a-particles, fission fragments, heavy nuclei 20

T Excluding Auger electrons emitted from nuclei bound to DNA

! For most purposes, this is the same as dE/dx. The only difference is the emission of bremsstrahlung,
which generally escapes from the region of the particle path. This energy loss is included in the dE/dx, but
not in the LET.
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3.1.4 Equivalent Dose

To obtain a normalized measure of the biological effect suffered by a tissue or organ
due to irradiation, the equivalent dose®, Hy is calculated by multiplying the value of
the absorbed dose, averaged over the entire tissue or organ, by the radiation weighting
factor, i.e.,

Equivalent dose = Hy = wg X Dy 3.5)

where Dy is the average absorbed dose received by organ R. If more than one radia-
tion type is present, the sum of the absorbed doses for each radiation type weighted
by the corresponding wy factor is calculated instead. Thus

Hr= E wr Dt g (3.6)
R

where Dy p is the average absorbed dose received by organ 7 from the radiation type
R.

The unit of equivalent dose is the Sievert (Sv) which has the same dimensions as
the Gray (J/kg). The use of the Sievert, however, indicates that the dose is normalized
by the RBE, so that 1 Sv of a-particles produces approximately the same effect as 1 Sv
of y-rays, etc. It should be kept in mind, however, that the equivalent dose is not a
directly measurable quantity whereas the absorbed dose is.

A much older unit, no longer in active use but which appears in the literature, is
the rem. The relation between the two units is given by

1Sv=100rem . 3.7

Table 3.3. Tissue weighting factors [3.2]

Tissue or organ Tissue weighting
factor, wr
Gonads 0.20
Bone marrow 0.12
Colon 0.12
Lung 0.12
Stomach 0.12
Bladder 0.05
Breast 0.05
Liver 0.05
Oesophagus 0.05
Thyroid 0.05
Skin 0.01
Bone surface 0.01
Remainder 0.05

2 Prior to the 1990 ICRP recommendations [3.2], a quantity known as the dose equivalent was used instead.
This quantity is almost identical to the equivalent dose except that the dose equivalent refers to the dose
as measured at a point on the irradiated tissue.
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3.1.5 Effective Dose

The relation between the probability of developing biological effects such as cancer or
genetic anomalies due to radiation is also found to depend on the specific organ or
tissue receiving the radiation. To account for this, a tissue weighting factor, wy is
defined for the different organs of the body. These are given in Table 3.3. Note that
the tissue weighting factors are totally independent of the radiation type and energy
(just as the radiation weighting factors are independent of tissue type.)

Using these factors, the effective dose, E, is defined as

E=Y wpH; , (3.8)
T

where the sum is over the different tissues and organs exposed. The effective dose has
been found to better correlate with the probabilities of developing effects such as
cancer, and it, like the equivalent dose, is measured in units of Sieverts.

Note that the definition of the tissue weighting factors is such that their sum is nor-
malized to 1. For a uniform equivalent dose over the whole body, the effective dose
is then numerically equal to the equivalent dose.

3.2 Typical Doses from Sources in the Environment

As is well known, we are constantly bathed in radiation coming from a variety of
natural and artificial sources. These include cosmic rays, radioactive isotopes found
naturally in the environment (e.g., the ground, building materials, etc.), nuclear
fallout, medical diagnostics, and radioactive sources used in industry. To get an idea
of the magnitude of these doses, Table 3.4 lists the typical doses received from some
of these natural and artificial sources.

These values may vary by as much as a factor 2 or 3 depending on the region in
which the individual lives. At an altitude of 2000 meters, for example, the cosmic ray

Table 3.4. Estimates of effective doses from some common sources

Source Average dose per person (mSv/yr)
World population [3.3] USA [3.4] Germany [3.5]

Natural sources
Overall 2.4 2.95 2-2.5
Cosmic rays 0.37 0.27
Terrestial 0.28 =0.1
Inhaled radon 2.0 0.8-1.6
Environmental sources
Nuclear power 0.002
Baggage check at airport 7 nSv/trip
Subsonic airplane flight at 8000 m 2 uSv/hr
Medical exposures
Diagnosis 0.4-1 0.53 0.5-1.5

(e.g. 1 chest x-ray) 0.1 mSv/x-ray

Occupational 0.002 0.1-3
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dose is practically double that at sea level. Similarly, the natural background dose may
also be larger or smaller depending on the mineral and geological structure of the
region. The natural background, in fact, is the major source of radiation exposure for
the general public followed by irradiation from medical diagnosis.

3.3 Biological Effects

Radiation is harmful to living tissue because of its ionizing power in matter. This
ionization can damage living cells directly by breaking the chemical bonds of important
biological molecules (particularly DNA), or indirectly by creating chemical radicals
from water molecules in the cells which then attack the biological molecules chemically.
To a certain extent, these molecules are repaired by natural biological processes; how-
ever, the effectiveness of this repair depends on the extent of the damage. Obviously,
if the repair is successful then no effect is observed, however, if the repair is faulty or
not made at all, the cell may then suffer three possible fates:

1. Death (of the cell).

2. Animpairment in the natural functioning of the cell leading to somatic effects (i.e.,
physical effects suffered by the irradiated individual only) such as cancer.

3. A permanent alteration of the cell which is transmitted to later generations, i.e., a
genetic effect.

RADIATION
DIRECT IONIZATION IONIZATION OF
OF DNA OTHER MOLECULES, e.g., H,O

radiation + H,0 —~ H,0" + €
H 0" — H*+ OH®
e+ Hy0 — H + OH

OXIDATION OF DNA
8Y OH RADICALS

CHEMICAL
RESTORATION

ENZYMATIC REPAIR —=-NO EFFECT
RESTORED

PERMANENT DAMAGE IN DNA

BIOLOGICAL EFFECTS
1. GENETIC EFFECTS

2 So?::g;mm Fig. 3.1. Sequence of events occurring in living matter exposed

STERILITY to radiation
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The sequence of events is outlined in Fig. 3.1.

Let us now consider the specific biological consequences which may result in
humans. Depending on the dose, these consequences may be immediate or delayed by
many years.

3.3.1 High Doses Received in a Short Time

The effects of high doses of radiation (=1 Gy) received in a short time period (=< few
hours) are generally well known. The immediate effect is a disruption of the reproduc-
tive process in mitotic cells leading to their depletion. The most important of these are
the white blood cells, the bone marrow and the cells lining the intestine. The first conse-
quences of a high dose of radiation will thus be noticed in the blood of an individual.
If the dose is greater than 2 — 3 Sv, death may occur either due to the radiation itself
or to complications arising from the depletion of the mitotic cells, e.g., infections. An
outline of the possible sequence of events which might occur after exposure to a dose
of several Sievert is given in Table 3.5.

Table 3.5. Symptoms after receiving 4 —6 Sv in a short time

0~48 hrs Loss of appetite, nausea, vomiting, fatigue and prostration

2 days to 6 —8 wks Above symptoms disappear, patient feels better

2-3 wks to 6 —8 wks Purpura and hemorrhage, diarrhea, loss of hair, fever, lethargy, death
6—8 wks Recovery stage

If the patient survives, a number of other effects may develop at a later time, for
example, reddening of the skin, sterility, cataracts, and birth defects. These effects, in-
cluding death, all exhibit a threshold characteristic, i.e., there exists a safe minimum
dose below which these effects do not appear. Above this threshold, there is a certain
chance of developing one or more of the effects with the probability increasing with
increasing dose. This threshold characteristic appears reasonable as, in general, a mini-
mum number of cells must be damaged before impairment of an organ is affected. As

Table 3.6. Threshold doses for several effects [3.6]

Stage of Effect Threshold dose (Sv)

development

Embryo Small head circumference 0.04

Fetus Diminished body growth 0.2
Increased infant mortality

Child Hypothyroidism 5

Adult Opacity of the eye lens 2.5

Adult Death 2-3

Adult Aging 3

Adult Erythema 3-10
(reddening of the skin)

Male adult  Temporary sterility 0.5-1
Permanent sterility >5

Female adult Permanent sterility 3-4
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well, this also explains the dependence on the dose rate. A summary of some of these
effects (known as deterministic or non-stochastic effects) and their threshold doses is
given in Table 3.6.

It is perhaps important to note here the relative sensitivity of the fetus to radiation.
Prenatal irradiation with doses as small as 0.25 Sv at critical stages of embryo develop-
ment (between the 8™ to 15 week) can cause abnormal growth and development at
later stages. Indeed, effects such as mental retardation, lower IQ scores, etc. have been
observed in the children of atomic bomb survivors.

3.3.2 Low-Level Doses

Low-level doses are taken to be doses of 0.2 Gy or less, or higher doses received at the
maximum permissible rates as described in the next section. Here the principal effects
are cancer and genetic effects. In contrast to the high dose situation, however, very lit-
tle is known about the relation of radiation to the occurrence of these two diseases.
For cancer, this is due in part to the long delay between irradiation and the appearance
of the effect, and in part, to the difficulty of isolating radiation from other possible
causes such as drugs, cigarettes, chemicals, etc. In the case of genetic effects, no radia-
tion-induced genetic defect in humans (including the Hiroshima-Nagasaki survivors)
has ever been significantly demonstrated, although laboratory experiments on mice and
other animals have shown such injuries. Present knowledge of the genetic effects of
radiation on man, in fact, is based entirely upon extrapolation from these experiments.
Nevertheless, it is generally accepted that these effects:

1. do not exhibit a threshold, that is, there is no safe level of radiation below which
these effects are not observed, and
2. that they do not depend on the dose rate, but rather on the total accumulated dose.

Indeed, for a given total dose, one has a certain non-zero probability of developing one
or the other of these effects. For this reason, these effects are usually referred to as
stochastic effects to indicate their probabilistic nature. In general, a linear relation be-
tween the total dose and the risk of developing cancer or a genetic effect is assumed,
although there may be deviations from this model at higher doses. Current estimates
of the probability from [3.4] are given in Table 3.7. These values vary somewhat de-
pending on the source and should be taken as order of magnitude estimates. Moreover,
they should be put into perspective by comparing them with the risks taken in some
common, everyday occupations. This is shown in Table 3.8 where the risk has been
transformed into an average loss in life expectancy.

Table 3.7. Risk of radiation-induced cancer [3.4]

Radiation exposure Excess fatal cancers
(per 10° persons exposed)

Single, brief exposure to 0.1 Sv 790
Continuous lifetime exposure
to 1 mSv/yr 560

Continuous exposure to 0.01 Sv/yr
from age 18 until age 65 3000
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Table 3.8. Comparison of risk from radiation with risk from other occupations. Normal life expectancy is
taken as 73 years. (from [3.6])

Occupation Average loss of life expectancy
(months)

0.20 Sv

(typical dose of radiation worker in research lab after 47 yrs,

i.e. from age 18 until 65) 0.4
0.5 Sv

(typical dose of worker in nuclear power plant after 47 yrs) 1
2.35Sv S
Trade 1
Service industries 1.2
Transportation and public utilities S
Off-the-job accidents 7.5
Construction 10
Mining and quarrying 11

3.4 Dose Limits

We now turn to a question important for anyone handling radioactive materials: What
is the maximum dose an individual can be permitted to receive in addition to the
natural background dose? This is a difficult question to answer. Indeed, as we have
seen, no safe level of radiation exists and, moreover, the effects are cumulative. Never-
theless, certain benefits are derived from radiation, e.g. medical diagnosis or cancer
therapy, so that abandoning the use of radiation altogether would also result in a net
loss to society. The setting of maximum dose limits thus implies establishing a balance
between the benefits to be gained versus the risks incurred. This is obviously a subjec-
tive question and indeed the equilibrium point may be different for different people,
localities, etc.

The only internationally recognized body for setting these limits is the International
Commission on Radiological Protection (ICRP). Because of the possible differences
mentioned above, the ICRP presents its limits as recommendations only. Each country
is then free to accept, reject or modify these values as it feels fit.

Two sets of limits are defined: one for individuals exposed occupationally and one
for the general public. Within each set, dose limits for different parts of the body are
given, since some organs are more sensitive than others, as well as for the whole body.

Table 3.9. Dose limits as recommended by the ICRP [3.2]

Occupational General public

Whole body 100 mSv in 5 yrs, 1 mSv/yr averaged over
but not more than any consecutive 5 years
50 mSv in any year

Single organs

Lens of eye 150 mSv/yr 15 mSv/yr
Skin (100 cm?) 500 mSv/yr 50 mSv/yr
Other organs or tissues 500 mSv/yr 50 mSv/yr
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It should be stressed that these are allowable doses in addition to the natural back-
ground dose. Table 3.9 summarizes some of the dose limits for various organs.

Note that these limits are approximately 2.5 times lower than the recommended
limits prior to 1990. This is due mostly to a readjustment of the doses received by the
Hiroshima-Nagasaki atomic bomb survivors to lower levels.

3.5 Shielding

To ensure total safety, all radioactive materials in the laboratory or place of work
should be surrounded by sufficiently thick shielding material such that the radiation
in neighboring work areas is kept at minimum permissible levels. This quantity of
shielding is determined by the material chosen, the distance of the work area from the
source and the maximum time it is inhabited.

The choice of shielding materials and the design of the shield depend on the type
of radiation and its intensity. Gamma rays, for example, are best attenuated by materi-
als with a high atomic number, as we have seen in Chap. 2. Materials such as Pb or
iron, therefore, would be more stable than, say, plastic or water. Similarly, for stop-
ping charged particles, dense materials would be preferred because of their higher
dE/dx. For neutron shielding, on the other hand, hydrogenous materials should be
chosen in order to facilitate moderation. In these choices, the possibility of secondary
radiation from interactions in the shield should also be considered. For example,
positrons are easily stopped by a very thin layer of Pb, however, once at rest they an-
nihilate with electrons resulting in the emission of even more penetrating annihilation
radiation. The shield, then, must not only be designed for stopping positrons but also
for absorbing 511 keV photons! A summary of the recommended shielding schemes for
various radiations found in the nuclear physics laboratory is given in Table 3.10.

Table 3.10. Shielding materials for various radiations

Radiation Shielding
Gamma-rays High-Z material, e.g. Pb
Electrons Low-Z materials, e.g., polystyrene or lucite. High-Z materials should be avoided

because of bremsstrahlung production. For intense electron sources, a double layer
shield consisting of an inner layer of low-Z material followed by a layer of Pb (or
some other high-Z material) to absorb bremsstrahlung should be used. The inner
layer should, of course, be sufficiently thick to stop the electrons while the outer
layer should provide sufficient attenuation of bremsstrahlung.

Positrons High-Z material. Since the stopping of positrons is always accompanied by anni-
hilation radiation, the shield should be designed for absorbing this radia-
tion. A double layer design, here, is usually not necessary.

Charged particles High density materials in order to maximize dE/dx

Neutrons Hydrogenous materials such as water or paraffin. As for electrons, this shielding
should also be followed by a layer of Pb or other high-Z material in order to
absorb p’s from neutron capture reactions.

While certain materials are better suited than others for a given type of radiation,
cost usually limits the choice of shielding to a few readily available materials. The most
used are lead, iron and steel, water, paraffin and concrete. Lead is often used because
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of its high atomic number and density. As well, it is soft and malleable and easily cast
into various forms. When large amounts of Pb are required, it is usually cheaper to
use scrap iron or steel. For very large volumes, concrete blocks are generally the most
advantageous as far as cost is concerned. In accelerator laboratories, concrete is, in
fact, the standard shielding material.

3.6 Radiation Safety in the Nuclear Physics Laboratory

Since our text is concerned with experimental nuclear physics, it behooves us to say a
few words concerning safety in the nuclear physics lab. In general, the risks of working
in a student nuclear physics laboratory are very small. The radioactive sources are of
relatively low intensity and are all normally sealed against any “rubbing off” of
radioactive material. Nevertheless, needless exposure should be avoided and to ensure
that this risk be kept at a minimum, a few safety precautions should be followed.




4. Statistics and the Treatment of Experimental Data

Statistics plays an essential part in all the sciences as it is the tool which allows the
scientist to treat the uncertainties inherent in all measured data and to eventually draw
conclusions from the results. For the experimentalist, it is also a design and planning
tool. Indeed, before performing any measurement, one must consider the tolerances
required of the apparatus, the measuring times involved, etc., as a function of the
desired precision on the result. Such an analysis is essential in order to determine its
feasibility in material, time and cost.

Statistics, of course, is a subject unto itself and it is neither fitting nor possible to
cover all the principles and techniques in a book of this type. We have therefore limited
ourselves to those topics most relevant for experimental nuclear and particle physics.
Nevertheless, given the (often underestimated) importance of statistics we shall try to
give some view of the general underlying principles along with examples, rather than
simple “recipes” or “rules of thumb”. This hopefully will be more useful to the
physicist in the long run, if only because it stimulates him to look further. We assume
here an elementary knowledge of probability and combinatorial theory.

4.1 Characteristics of Probability Distributions

Statistics deals with random processes. The outcomes of such processes, for example,
the throwing of a die or the number of disintegrations in a particular radioactive source
in a period of time 7, fluctuate from trial to trial such that it is impossible to predict
with certainty what the result will be for any given trial. Random processes are de-
scribed, instead, by a probability density function which gives the expected frequency
of occurrence for each possible outcome. More formally, the outcome of a random
process is represented by a random variable x, which ranges over all admissible values
in the process. If the process is the throwing of a single die, for instance, then x may
take on the integer values 1 to 6. Assuming the die is true, the probability of an out-
come x is then given by the density function P(x) = 1/6, which in this case happens to
be the same for all x. The random variable x is then said to be distributed as P(x).

Depending on the process, a random variable may be continuous or discrete. In the
first case, it may take on a continuous range of values, while in the second only a finite
or denumerably infinite number of values is allowed. If x is discrete, P(x;) then gives
the frequency at each point x;. If x is continuous, however, this interpretation is not
possible and only probabilities of finding x in finite intervals have meaning. The distri-
bution P(x’) is then a continuous density such that the probability of finding x’ in the
interval x to x+dx is P(x)dx.
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4.1.1 Cumulative Distributions

Very often it is desired to know the probability of finding x between certain limits, e.g.,
P(x;<x=x,). This is given by the cumulative or integral distribution
X2
P(x;<x=x,) = [P(x)dx, 4.1

X1

where we have assumed P(x) to be continuous. If P(x) is discrete, the integral is replac-
ed by a sum,
2
P(xi=x=<x;)= Y P(x). 4.2

i=1

By convention, also, the probability distribution is normalized to 1, i.e.,
fP()dx=1 4.3
if x is continuous or

Y Py =1 (4.4)

if x is discrete. This simply says that the probability of observing one of the possible
outcomes in a given trial is defined as 1. It follows then that P(x;) or SP(x)dx cannot
be greater than 1 or less than 0.

4.1.2 Expectation Values

An important definition which we will make use of later is the expectation value of a
random variable or a random variable function. If x is a random variable distributed as
P(x), then

E[x] = [xP(x)dx (4.5)

is the expected value of x. The integration in (4.5) is over all admissible x. This, of
course, is just the standard notion of an average value. For a discrete variable, (4.5)
becomes a sum

E[x] = Z xiP(x)). 4.6)
Similarly, if f(x) is a function of x, then
E[f(0)] = [ f(x) P(x)dx 4.7

is the expected value of f(x).

To simplify matters in the remainder of this section, we will present results assum-
ing a continuous variable. Unless specified otherwise, the discrete case is found by
replacing integrals with a summation.

4.1.3 Distribution Moments. The Mean and Variance

A probability distribution may be characterized by its moments. The rth moment of x
about some fixed point x, is defined as the expectation value of (x —xy)" where r is an
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integer. An analogy may be drawn here with the moments of a mass distribution in
mechanics. In such a case, P(x) plays the role of the mass density.

In practice, only the first two moments are of importance. And, indeed, many
problems are solved with only a knowledge of these two quantities. The most important
is the first moment about zero,

p=Elx]= [xP(x)dx. (4.8)

This can be recognized as simply the mean or average of x. If the analogy with mass
moments is made, the mean thus represents the “center of mass” of the probability dis-
tribution.

It is very important here to distinguish the mean as defined in (4.8) from the mean
which one calculates from a set of repeated measurements. The first refers to the
theoretical mean, as calculated from the theoretical distribution, while the latter is an
experimental mean taken from a sample. As we shall see in Sect. 4.4.2, the sample
mean is an estimate of the theoretical mean. Throughout the remainder of this chapter,
we shall always use the Greek letter u to designate the theoretical mean.

The second characteristic quantity is the second moment about the mean (also
known as the second central moment),

o’ = E[(x—pu)’] = § (x—p)* P(x) dx . (4.9

This is commonly called the variance and is denoted as o The square root of the
variance, g, is known as the standard deviation. As can be seen from (4.9), the variance
is the average squared deviation of x from the mean. The standard deviation, o, thus
measures the dispersion or width of the distribution and gives us an idea of how much
the random variable x fluctuates about its mean. Like u, (4.9) is the theoretical variance
and should be distinguished from the sample variance to be discussed in Sect. 4.4.
Further moments, of course, may also be calculated, such as the third moment
about the mean. This is known as the skewness and it gives a measure of the distribu-
tion’s symmetry or asymmetry. It is employed on rare occasions, but very little in-
formation is generally gained from this moment or any of the following ones.

4.1.4 The Covariance

Thus far we have only considered the simple case of single variable probability distribu-
tions. In the more general case, the outcomes of a process may be characterized by
several random variables, x, y, z, ... . The process is then described by a multivariate
distribution P(x, y, z, ...). An example is a playing card which is described by two
variables: its denomination and its suit.

For multivariate distributions, the mean and variance of each separate random
variable x, ¥, ..., are defined in the same way as before (except that the integration is
over all variables). In addition a third important quantity must be defined:

cov(x, ) = E[(x—u) (y—w)], (4.10)

where p, and y, are the means of x and y respectively. Equation (4.10) is known as the
covariance of x and y and it is defined for each pair of variables in the probability den-
sity. Thus, if we have a trivariate distribution P(x, y, z), there are three covariances:
cov (x, ¥), cov(x, z) and cov(y, 2).
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The covariance is a measure of the linear correlation between the two variables.
This is more often expressed as the correlation coefficient which is defined as

_covxy) 4.11)

0,0y

where o, and o, are the standard deviations of x and y. The correlation coefficient
varies between —1 and +1 where the sign indicates the sense of the correlation. If the
variables are perfectly correlated linearly, then |p| = 1. If the variables are indepen-
dent! then p = 0. Care must be taken with the converse of this last statement, however.
If p is found to be 0, then x and y can only be said to be linearly independent. It can
be shown, in fact, that if x and y are related parabolically, (e.g., ¥y = x2), then p = 0.

4.2 Some Common Probability Distributions

While there are many different probability distributions, a large number of problems in
physics are described or can be approximately described by a surprisingly small group
of theoretical distributions. Three, in particular, the binomial, Poisson and Gaussian
distributions find a remarkably large domain of application. Our aim in this section is
to briefly survey these distributions and describe some of their mathematical proper-
ties.

4.2.1 The Binomial Distribution

Many problems involve repeated, independent trials of a process in which the outcome
of a single trial is dichotomous, for example, yes or no, heads or tails, hit or miss, etc.
Examples are the tossing of a coin N times, the number of boys born to a group of N
expectant mothers, or the number of hits scored after randomly throwing NV balls at a
small, fixed target.

More generally, let us designate the two possible outcomes as success and failure.
We would then like to know the probability of 7 successes (or failures) in N tries regard-
less of the order in which they occur. If we assume that the probability of success does
not change from one trial to the next, then this probability is given by the binomial dis-
tribution,

N!
P(ry=——_p'1-p)"°", A2
") =N P (4.12)

where p is the probability of success in a single trial.

Equation (4.12) is a discrete distribution and Fig. 4.1 shows its form for various
values of N and p. Using (4.8) and (4.9), the mean and variance many be calculated to
yield

u=YrP(ry=Np and (4.13)

! The mathematical definition of independence is that the joint probability is a separable function, i.e.,
P(x,y) = P (x) P,(»).
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=Y (r—-w?P(r)=Np(1-p). (4.14)

It can be shown that (4.12) is normalized by summing P(r) from r=0to r=N.
Here it will be noticed that P(r) is nothing but the rth term of the binomial expansion
(whence the name!), so that

N1 r N-r _ _ N _
;mp A-pN " =[1-p)+pl¥=1. 4.15)

Finding the cumulative distribution between limits other than 0 and N is somewhat
more complicated, however, as no analytic form for the sum of terms exist. If there are
not too many, the individual terms may be calculated separately and then summed.
Otherwise, tabulations of the cumulative binomial distribution may be used.

In the limit of large N and not too small p, the binomial distribution may be ap-
proximated by a Gaussian distribution with mean and variance given by (4.13) and
(4.14). For practical calculations, using a Gaussian is usually a good approximation
when N is greater than about 30 and p=0.05. It is necessary, of course, to ignore the
discrete character of the binomial distribution when using this approximation (al-
though there are corrections for this). If p is small (<0.05), such that the product Np is
finite, then the binomial distribution is approximated by the Poisson distribution dis-
cussed in the next section.

4.2.2 The Poisson Distribution

The Poisson distribution occurs as the limiting form of the binomial distribution when
the probability p — 0 and the number of trials N — o, such that the mean u = Np,
remains finite. The probability of observing r events in this limit then reduces to
u'e

P(r) = (4.16)

r!

Like (4.12), the Poisson distribution is discrete. It essentially describes processes for
which the single trial probability of success is very small but in which the number of
trials is so large that there is nevertheless a reasonable rate of events. Two important
examples of such processes are radioactive decay and particle reactions.

To take a concrete example, consider a typical radioactive source such as '¥’Cs
which has a half-life of 27 years. The probability per unit time for a single nucleus to
decay is then A = In2/27 = 0.026 /year = 8.2 x10 '%s~!. A small probability indeed!
However, even a 1 ug sample of *’Cs will contain about 10'® nuclei. Since each nucleus
constitutes a frial, the mean number of decays from the sample will be u=Np =
8.2 x 10’ decays/s. This satisfies the limiting conditions described above, so that the
probability of observing r decays is given by (4.16). Similar arguments can also be made
for particle scattering.

Note that in (4.16), only the mean appears so that knowledge of N and p is not al-
ways necessary. This is the usual case in experiments involving radioactive processes or
particle reactions where the mean counting rate is known rather than the number of
nuclei or particles in the beam. In many problems also, the mean per unit dimension A,
e.g. the number of reactions per second, is specified and it is desired to know the proba-
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Fig. 4.2. Poisson distribution for
various values of u
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bility of observing r events in ¢ units, for example, ¢t = 3 s. An important point to note is
that the mean in (4.16) refers to the mean number in ¢ units. Thus, g = At. In these
types of problems we can rewrite (4.16) as

_ (At)re—lt

P(r)
r!

4.17)

An important feature of the Poisson distribution is that it depends on only one
parameter: u. [That g is indeed the mean can be verified by using (4.8)]. From (4.9), we
also the find that

ot=u, (4.18)

that is the variance of the Poisson distribution is equal to the mean. The standard
deviation is then o = 1//; This explains the use of the square roots in counting experi-
ments (see Examples 1.1 and 1.2, on p. 11 and 12).

Figure 4.2 plots the Poisson distribution for various values of u. Note that the
distribution is #not symmetric. The peak or maximum of the distribution does not,
therefore, correspond to the mean. However, as u becomes large, the distribution
becomes more and more symmetric and approaches a Gaussian form. For u=20, a
Gaussian distribution with mean u and variance o= u, in fact, becomes a relatively
good approximation and can be used in place of the Poisson for numerical calcula-
tions. Again, one must neglect the fact that we are replacing a discrete distribution by a
continuous one.

4.2.3 The Gaussian or Normal Distribution

The Gaussian or normal distribution plays a central role in all of statistics and is the
most ubiquitous distribution in all the sciences. Measurement errors, and in particular,
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FWHM

Fig_ 4.3. The Gaussian distribution for various o. The standard Fig. 4.4. Relation between the standard deviation ¢ and the full width
deviation determines the width of the distribution at half-maximum (FWHM)

instrumental errors are generally described by this probability distribution. Moreover,
even in cases where its application is not strictly correct, the Gaussian often provides a
good approximation to the true governing distribution.

The Gaussian is a continuous, symmetric distribution whose density is given by

2
PO = —_exp <—M> (4.19)
o|/2n

202

The two parameters y and a? can be shown to correspond to the mean and variance of
the distribution by applying (4.8) and (4.9).

The shape of the Gaussian is shown in Fig. 4.3. which illustrates this distribution
for various g. The significance of ¢ as a measure of the distribution width is clearly
seen. As can be calculated from (4.19), the standard deviation corresponds to the half
width of the peak at about 60% of the full height. In some applications, however, the
full width at half maximum (FWHM) is often used instead. This is somewhat larger
than ¢ and can easily be shown to be

FWHM =20|/2In2=2.350. (4.20)

This is illustrated in Fig. 4.4. In such cases, care should be taken to be clear about
which parameter is being used. Another width parameter which is also seen in the liter-
ature is the full-width at one-tenth maximum (FWTM).

The integral distribution for the Gaussian density, unfortunately, cannot be cal-
culated analytically so that one must resort to numerical integration. Tables of integral
values are readily found as well. These are tabulated in terms of a reduced Gaussian
distribution with = 0 and a2 = 1. All Gaussian distributions may be transformed to
this reduced form by making the variable transformation

=2"# (4.21)

where u and o are the mean and standard deviation of the original distribution. It is a
trivial matter then to verify that z is distributed as a reduced Gaussian.
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Fig. 4.5. The area contained between the limits u+ 10, u+20 and u+ 3¢ in a Gaussian distribution

An important practical note is the area under the Gaussian between integral inter-
vals of ¢. This is shown in Fig. 4.5. These values should be kept in mind when interpret-
ing measurement errors. The presentation of a result as x + o signifies, in fact, that the
true value has =68% probability of lying between the limits x— ¢ and x+ o or a 95%
probability of lying between x — 2 g and x + 2 g, etc. Note that for a 1 g interval, there is
almost a 1/3 probability that the true value is outside these limits! If two standard
deviations are taken, then, the probability of being outside is only =5%, etc.

4.2.4 The Chi-Square Distribution

As we will see in Sect. 4.7, the chi-square distribution is particulary useful for testing
the goodness-of-fit of theoretical formulae to experimental data. Mathematically, the
chi-square is defined in the following manner. Suppose we have a set of n independent
random variables, x;, distributed as Gaussian densities with theoretical means y; and
standard deviations g;, respectively. The sum

n — . 2
u=Yy <_x{ _u,> (4.22)
1 ag;

i=

is then known as the chi-square. This is more often designated by the Greek letter x5
however, to avoid confusion due to the exponent we will use u = xz instead. Since x;is a
random variable, u is also a random variable and it can be shown to follow the distribu-
tion

_@/2)"? " exp (—~u/2)

P(u)du du , .
(w)au 2 (v/2) ! 4.23)

where v is an integer and I'(v/2) is the gamma function. The integer v is known as the
degrees of freedom and is the sole parameter of the distribution. Its value thus deter-
mines the form of the distribution. The degrees of freedom can be interpreted as a par-
ameter related to the number of independent variables in the sum (4.22).

Figure 4.6 plots the chi-square distribution for various values of v. The mean and
variance of (4.23) can also be shown to be

u=v, a*=2v. (4.24)

To see what the chi-square represents, let us examine (4.22) more closely. Ignoring
the exponent for a moment, each term in the sum is just the deviation of x; from its
theoretical mean divided by its expected dispersion. The chi-square thus characterizes



4.3 Measurement Errors and the Measurement Process 89

Fig. 4.6. The chi-square distribution for various values of the

08r degree of freedom parameter v

o.zT

021

00 . . L

Chi-square

the fluctuations in the data x;. If indeed the x; are distributed as Gaussians with the pa-
rameters indicated, then on the average, each ratio should be about 1 and the chi-
square, ¥ = v. For any given set of x;, of course, there will be a fluctuation of # from
this mean with a probability given by (4.23). The utility of this distribution is that it can
be used to test hypotheses. By forming the chi-square between measured data and an
assumed theoretical mean, a measure of the reasonableness of the fluctuations in the
measured data about this hypothetical mean can be obtained. If an improbable chi-
square value is obtained, one must then begin questioning the theoretical parameters
used.

4.3 Measurement Errors and the Measurement Process

Measurements of any kind, in any experiment, are always subject to uncertainties or er-
rors, as they are more often called. We will argue in this section that the measurement
process is, in fact, a random process described by an abstract probability distribution
whose parameters contain the information desired. The results of a measurement are
then samples from this distribution which allow an estimate of the theoretical param-
eters. In this view, measurement errors can be seen then as sampling errors.

Before going into this argument, however, it is first necessary to distinguish be-
tween two types of errors: systematic and random.

4.3.1 Systematic Errors

Systematic errors are uncertainties in the bias of the data. A simple example is the zero-
ing of an instrument such as a voltmeter. If the voltmeter is not correctly zeroed before
use, then all values measured by the voltmeter will be biased, i.e., offset by some
constant amount or factor. However, even if the utmost care is taken in setting the in-
strument to zero, one can only say that it has been zeroed to within some value. This
value may be small, but it sets a limit on the degree of certainty in the measurements
and thus to the conclusions that can be drawn.
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An important point to be clear about is that a systematic error implies that all mea-
surements in a set of data taken with the same instrument are shifted in the same direc-
tion by the same amount — in unison. This is in sharp contrast to random errors where
each individual measurement fluctuates independently of the others. Systematic errors,
therefore, are usually most important when groups of data points taken under the same
conditions are being considered. Unfortunately, there is no consistent method by which
systematic errors may be treated or analyzed. Each experiment must generally be
considered individually and it is often very difficult just to identify the possible sources
let alone estimate the magnitude of the error. Our discussion in the remainder of this
chapter, therefore, will not be concerned with this topic.

4.3.2 Random Errors

In contrast to systematic errors, random errors may be handled by the theory of
statistics. These uncertainties may arise from instrumental imprecisions, and/or, from
the inherent statistical nature of the phenomena being observed. Statistically, both are
treated in the same manner as uncertainties arising from the finite sampling of an in-
finite population of events. The measurement process, as we have suggested, is a
sampling process much like an opinion poll. The experimenter attempts to determine
the parameters of a population or distribution too large to measure in its entirety by
taking a random sample of finite size and using the sample parameters as an estimate of
the true values.

This point of view is most easily seen in measurements of statistical processes, for
example, radioactive decay, proton-proton scattering, etc. These processes are all
governed by the probabilistic laws of quantum mechanics, so that the number of disin-
tegrations or scatterings in a given time period is a random variable. What is usually of
interest in these processes is the mean of the theoretical probability distribution. When
a measurement of the number of decays or scatterings per unit time is made, a sample
from this distribution is taken, i.e., the variable x takes on a value x;. Repeated mea-
surements can be made to obtain x,, x3, etc. This, of course, is equivalent to tossing a
coin or throwing a pair of dice and recording the result. From these data, the experi-
menter may estimate the value of the mean. Since the sample is finite, however, there is
an uncertainty on the estimate and this represents our measurement error. Errors
arising from the measurement of inherently random processes are called statistical
errors.

Now consider the measurement of a quantity such as the length of a table or the
voltage between two electrodes. Here the quantities of interest are well-defined num-
bers and not random variables. How then do these processes fit into the view of mea-
surement as a sampling process? What distribution is being sampled?

To take an example, consider an experiment such as the measurement of the length
of a table with say, a simple folding ruler. Let us make a set of repeated measurements
reading the ruler as accurately as possible. (The reader can try this himself!). It will
then be noticed that the values fluctuate about and indeed, if we plot the frequency of
the results in the form of a histogram, we see the outlines of a definite distribution be-
ginning to take form. The differing values are the result of many small factors which
are not controlled by the experimenter and which may change from one measurement
to the next, for example, play in the mechanical joints, contractions and expansions
due to temperature changes, failure of the experimenter to place the zero at exactly the
same point each time, etc. These are all sources of instrumental error, where the term
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instrument also includes the observer! The more these factors are taken under control,
of course, the smaller will be the magnitude of the fluctuations. The instrument is then
said to be more precise. In the limit of an ideal, perfect instrument, the distribution
then becomes a J-function centered at the true value of the measured quantity. In
reality, of course, such is never the case.

The measurement of a fixed quantity, therefore, involves taking a sample from an
abstract, theoretical distribution determined by the imprecisions of the instrument. In
almost all cases of instrumental errors, it can be argued that the distribution is Gaus-
sian. Assuming no systematic error, the mean of the Gaussian should then be equal to
the true value of the quantity being measured and the standard deviation proportional
to the precision of the instrument.

Let us now see how sampled data are used to estimate the true parameters.

4.4 Sampling and Parameter Estimation.
The Maximum Likelihood Method

Sampling is the experimental method by which information can be obtained about the
parameters of an unknown distribution. As is well known from the debate over opinion
polls, it is important to have a representative and unbiased sample. For the experimen-
talist, this means not rejecting data because they do not “look right”. The rejection
of data, in fact, is something to be avoided unless there are overpowering reasons for
doing so.

Given a data sample, one would then like to have a method for determining the best
value of the true parameters from the data. The best value here is that which minimizes
the variance between the estimate and the true value. In statistics, this is known as
estimation. The estimation problem consists of two parts: (1) determining the best
estimate and (2) determining the uncertainty on the estimate. There are a number of
different principles which yield formulae for combining data to obtain a best estimate.
However, the most widely accepted method and the one most applicable to our pur-
poses is the principle of maximum likelihood. We shall very briefly demonstrate this
principle in the following sections in order to give a feeling for how the results are
derived. The reader interested in more detail or in some of the other methods should
consult some of the standard texts given in the bibliography. Before treating this topic,
however, we will first define a few terms.

4.4.1 Sample Moments

Let x;, x,, X3, ... , X, be a sample of size n from a distribution whose theoretical mean
is u and variance o2. This is known as the sample population. The sample mean, %, is
then defined as

=1y x, (4.25)
n j=

which is just the arithmetic average of the sample. In the limit # — oo, this can be shown
to approach the theoretical mean,
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u= lim - Y x;. (4.26)

n-o AN j=1

Similarly, the sample variance, which we denote by s?is

2

=1 ¥y w-%2, (4.27)
n =

which is the average of the squared deviations. In the limit #» — oo, this also approaches
the theoretical variance o°.

In the case of multivariate samples, for example, (x;, y1), (x3, ¥2), ..., the sample
means and variances for each variable are calculated as above. In an analogous
manner, the sample covariance can be calculated by

cov(x, ¥) =% Y (-3) (yi— 7). (4.28)
i=1

In the limit of infinite n, (4.28), not surprisingly, also approaches the theoretical
covariance (4.10).

4.4.2 The Maximum Likelihood Method

The method of maximum likelihood is only applicable if the form of the theoretical dis-
tribution from which the sample is taken is known. For most measurements in physics,
this is either the Gaussian or Poisson distribution. But, to be more general, suppose we
have a sample of » independent observations x;, X, ..., X,, from a theoretical
distribution f(x|8) where 6 is the parameter to be estimated. The method then consists
of calculating the likelihood function,

L(8]x) =f(x1]0)f(x2]6) ... f(x,]0), (4.29)

which can be recognized as the probability for observing the sequence of values xy, x,,
..., X,. The principle now states that this probability is a maximum for the observed
values. Thus, the parameter § must be such that L is a maximum. If L is a regular func-
tion, f can be found by solving the equation,

d—L =0. (4.30)
do
If there is more than one parameter, then the partial derivatives of L with respect to
each parameter must be taken to obtain a system of equations. Depending on the form
of L, it may also be easier to maximize the logarithm of L rather than L itself. Solving
the equation

d(nL) _
do

0 (4.31)

then yields results equivalent to (4.30). The solution, 6, is known as the maximum
likelihood estimator for the parameter §. In order to distinguish the estimated value
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from the true value, we have used a caret over the parameter to signify it as the
estimator.

It should be realized now that 8 is also a random variable, since it is a function of
the x;. If a second sample is taken, & will have a different value and so on. The
estimator is thus also described by a probability distribution. This leads us to the
second half of the estimation problem: What is the error on 8? This is given by the
standard deviation of the estimator distribution. We can calculate this from the
likelihood function if we recall that L is just the probability for observing the sampled
values x;, X,, ..., x,. Since these values are used to calculate 8, L is related to the dis-
tribution for 8. Using (4.9), the variance is then

a’@)=[(0—-6)*L(8|x) dx,dx,...dx,. (4.32)

This is a general formula, but, unfortunately, only in a few simple cases can an analytic
result be obtained. An easier, but only approximate method which works in the limit of
large numbers, is to calculate the inverse second derivative of the log-likelihood func-
tion evaluated at the maximum,

2 -1
o’ = - <ffaggfi> } (4.33)

If there is more than one parameter, the matrix of the second derivatives must be
formed, i.e.,
8% InL

Uj= ———. (4.34)
Y 06,06

The diagonal elements of the inverse matrix then give the approximate variances,
a*@) = U (4.35)

A technical point which must be noted is that we have assumed that the mean value
of fis the theoretical 4. This is a desirable, but not essential property for an estimator,
guaranteed by the maximum likelihood method only for infinite n. Estimators which
have this property are non-biased. We will see one example in the following sections in
which this is not the case. Equation (4.32), nevertheless, remains valid for all 8, since
the error desired is the deviation from the true mean irrespective of the bias.

Another useful property of maximum likelihood estimators is invariance under
transformations. If u = f(#), then the best estimate of u can be shown to be i = f(8).

Let us illustrate the method now by applying it to the Poisson and Gaussian dis-
tributions.

4.4.3 Estimator for the Poisson Distribution

Suppose we have n measurements of samples, x;, x5, X3, ..., X, from a Poisson dis-
tribution with mean u. The likelihood function for this case is then

"oy LR
Lu|x)=]] —exp(-u)=exp(—nu) [ — . (4.36)
,-=1x,-! ,-=1x,-!
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To eliminate the product sign, we take the logarithm
L*=InL=—-—nu+ Y¥x;lnu— Y Inx;!. 4.37)

Differentiating and setting the result to zero, we then find

*
A _nslyx-o, (4.38)
du H

which yields the solution
.1 _
p=—Y x;=x. (4.39)
n

Equation (4.39), of course, is just the sample mean. This is of no great surprise, but it
does confirm the often unconscious use of (4.39).

The variance of ¥ can be found by using (4.33); however, in this particular case, we
will use a different way. From (4.9) we have the definition

o (x) = E[(x—u)*. (4.40)

Applying this to the sample mean and rearranging the terms, we thus have

2
El@—u)] = EK% » x,-—u> } - %E[(E X np)?] =;12—E[{Z -1 -

(4.41)
Expanding the square of the sum, we find
[X -’ = Y -+ L ¥ (i—w) (x—w) - (4.42)
i i#j
If now the expectation value is taken, the cross term vanishes, so that
2 2
_ no g
o*®) =L EIL (- =L ¥ El-wi =22 =T (4.43)
n n n n

As the reader may have noticed, (4.43) was derived without reference to the Poisson
distribution, so that (4.43) is, in fact, a general result: the variance of the sample mean
is given by the variance of the parent distribution, whatever it may be, divided by the
sample size.

For a Poisson distribution, c’= U, so that the error on the estimated Poisson
mean is

o =|/*= A
l/n ’/ n

where have substituted the estimated value f for the theoretical p.

(4.44)

4.4.4 Estimators for the Gaussian Distribution

For a sample of n points, all taken from the same Gaussian distribution, the likelihood
function is
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L 2
L=1] exp [—u} (4.45)

1
i=1 al/27z 20°

Once again, taking the logarithm,

L 2
L*=InL = _lln(znaz)—iz("'—z“). (4.46)
2 2 g

Taking the derivatives with respect to x4 and o? and setting them to 0, we then have

* _
oL* _ X; 2# -0 4.47)
ou g
and
2
oL* n 1 Xi— U 1
= —— 4+ — d —=0. (4.48)
Yo 20° 22<a>02
Solving (4.47) first yields
PEL Y (4.49)

n

The best estimate of the theoretical mean for a Gaussian is thus the sample mean,
which again comes as no great surprise.
From the general result in (4.43), the uncertainty on the estimator is thus

o®=-2_. (4.50)

n

This is usually referred to as the standard error of the mean. Note that the error
depends on the sample number as one would expect. As n increases, the estimate X
becomes more and more precise. When only one measurement is made, n =1, o(X)
reduces to g. For a measuring device, o thus represents the precision of the instrument.

For the moment, however, o is still unknown. Solving (4.48) for o2 yields the
estimator

il

&=L ) - p)? =+ Y (xi—%)’=s%, (4.51)
n n

where we have replaced u by its solution in (4.49). This, of course, is just the sample
variance.

For finite values of n, however, the sample variance turns out to be a biased
estimator, that is the expectation value of s? does not equal the true value, but is offset
from it by a constant factor. It is not hard to show, in fact, that E[s?] = 6*— ¢%/n =
(n—1)a*/n. Thus for n very large, s approaches the true variance as desired; however,
for small n, ¢ is underestimated by s°. The reason is quite simple: for small samples,
the occurrence of large values far from the mean is rare, so the sample variance tends to
be weighted more towards smaller values. For practical use, a somewhat better estimate
therefore, would be to multiply (4.51) by the factor n/(n—1),
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6’2= E (xi—x)2 . (4.52)
n—1
Equation (4.52) is unbiased, however, it is no longer the best estimate in the sense that
its average deviation from the true value is somewhat greater than that for (4.51). The
difference is small however, so that (4.52) still provides a good estimate. Equation
(4.52) then is the recommended formula for estimating the variance. Note that unlike
the mean, it is impossible to estimate the standard deviation from one measurement be-
cause of the (n—1) term in the denominator. This makes sense, of course, as it quite
obviously requires more than one point to determine a dispersion!
The variance of &2 in (4.52) may also be shown to be

2064 26°

a*@?) = = (4.53)
n—1 n—1
and the standard deviation of &
o(6)= 4.59)

o - 6
V2m-1) ) 2m-1)

4.4.5 The Weighted Mean

We have thus far discussed the estimation of the mean and standard deviation from
a series of measurements of the same quantity with the same instrument. It often oc-
curs, however, that one must combine two or more measurements of the same quantity
with differing errors. A simple minded procedure would be to take the average of the
measurements. This, unfortunately, ignores the fact that some measurements are more
precise than others and should therefore be given more importance. A more valid meth-
od would be to weight each measurement in proportion to its error. The maximum
likelihood method allows us to determine the weighting function to use.

From a statistics point of view, we have a sample x;,x,, . . .,X,, where each value
is from a Gaussian distribution having the same mean u but a different standard devia-
tion ;. The likelihood function is thus the same as (4.45), but with ¢ replaced by o;.
Maximizing this we then find the weighted mean

2
a=LX/90 (4.55)
2
Z 1/0,‘

Thus the weighting factor is the inverse square of the error, i.e., 1/ a,g. This cor-
responds to our logic as the smaller the g;, the larger the weight and vice-versa.
Using (4.33), the error on the weighted mean can now be shown to be

1

o) = Y1eT (4.56)

Note that if all the o; are the same, the weighted mean reduces to the normal formula in
(4.49) and the error on the mean to (4.50).
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4.5 Examples of Applications

4.5.1 Mean and Error from a Series of Measurements

Example 4.1 Consider the simple experiment proposed in Sect. 4.3.2 to measure the
length of an object. The following results are from such a measurement:

17.62 17.62 17.615 17.62 17.61
17.61 17.62 17.625 17.62 17.62
17.61 17.615 17.61 17.605 17.61

What is the best estimate for the length of this object?

Since the errors in the measurement are instrumental, the measurements are Gaus-
sian distributed. From (4.49), the best estimate for the mean value is then

X =17.61533
while (4.52) gives the standard deviation
6=15.855x1077.
This can now be used to calculate the standard error of the mean (4.50),
o (%) = 6/]/15=0.0015.
The best value for the length of the object is thus
x=17.616+0.002 .
Note that the uncertainty on the mean is given by the standard error of the mean and

not the standard deviation!

4.5.2 Combining Data with Different Errors

Example 4.2 It is necessary to use the lifetime of the muon in a calculation. However,
in searching through the literature, 7 values are found from different experiments:

2.198 £ 0.001 ps 2.203 +0.004 ps 2.202+0.003 ps
2.197 £ 0.005 ps 2.198 £ 0.002 ps 2.1966 + 0.0020 us
2.1948 +0.0010 pus

What is the best value to use?

One way to solve this problem is to take the measurement with the smallest error;
however, there is no reason for ignoring the results of the other measurements. Indeed,
even though the other experiments are less precise, they still contain valid information
on the lifetime of the muon. To take into account all available information we must
take the weighted mean. This then yields then mean value

7=2.19696

with an error
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a(1) = 0.00061.

Note that this value is smaller than the error on any of the individual measurements.
The best value for the lifetime is thus

7=2.1970+ 0.0006 ps .

4.5.3 Determination of Count Rates and Their Errors

Example 4.3 Consider the following series of measurements of the counts per minute
from a detector viewing a 2*Na source,

2201 2145 2222 2160 2300

What is the decay rate and its uncertainty?

Since radioactive decay is described by a Poisson distribution, we use the estimators
for this distribution to find

f4=%x=2205.6 and

o@) = ‘/i: ’/%:21_
n 5

The count rate is thus
Count Rate = (2206 + 21) counts/min.

It is interesting to see what would happen if instead of counting five one-minute pe-
riods we had counted the total 5 minutes without stopping. We would have then ob-
served a total of 11028 counts. This constitutes a sample of n = 1. The mean count rate
for 5 minutes is thus 11208 and the error on this, o = |/ 11208 = 106. To find the
counts per minute, we divide by 5 (see the next section) to obtain 2206 + 21, which is
identical to what was found before. Note that the error taken was the square root of the
count rate in 5 minutes. A common error to be avoided is to first calculate the rate per
minute and then take the square root of this number.

4.5.4 Null Experiments. Setting Confidence Limits When No Counts Are Observed

Many experiments in physics test the validity of certain theoretical conservation laws by
searching for the presence of specific reactions or decays forbidden by these laws. In
such measurements, an observation is made for a certain amount of time 7. Obviously,
if one or more events are observed, the theoretical law is disproven. However, if no
events are observed, the converse cannot be said to be true. Instead a limit on the life-
time of the reaction or decay is set.

Let us assume therefore that the process has some mean reaction rate A. Then the
probability for observing no counts in a time period T is

PO|A)=exp(—AT). (4.57)
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This, now, can also be interpreted as the probability distribution for 2 when no counts
are observed in a period 7. We can now ask the question: What is the probability that A
is less A¢? From (4.1),
4o
P(A<lg)= [ Texp(=AT)dAi=1—-exp(—A,T), (4.58)
0

where we have normalized (4.57) with the extra factor 7. This probability is known as
the confidence level for the interval between 0 to A;. To make a strong statement we

can choose a high confidence level (CL), for example, 90%. Setting (4.58) equal to this
probability then gives us the value of A,

do= — iTln(1 —CL). (4.59)

For a given confidence level, the corresponding interval is, in general, not unique and
one can find other intervals which yield the same integral probability. For example, it
might be possible to integrate (4.57) from some lower limit A’ to infinity and still obtain
the same area under the curve. The probability that the true A is greater than A’ is then
also 90%. As a general rule, however, one should take those limits which cover the
smallest range in A.

Example 4.4 A 50 g sample of *Se is observed for 100 days for neutrinoless double
beta decay, a reaction normally forbidden by lepton conservation. However, current
theories suggest that this might occur. The apparatus has a detection efficiency of 20%.
No events with the correct signature for this decay are observed. Set an upper limit on
the lifetime for this decay mode.

Choosing a confidence limit of 90%, (4.59) yields

A<Ay= In(1-0.9)=0.115day !,

 100%0.2

where we have corrected for the 20% efficiency of the detector. This limit must now be
translated into a lifetime per nucleus. For 50 g, the total number of nuclei is

N=ﬂx50 =3.67x10%,
82

which implies a limit on the decay rate per nucleus of

0.115

<~ __=313x10"* day .
3.67x10%
The lifetime is just the inverse of A which yields

7>8.75 x10* years  90% CL ,

where we have converted the units to years. Thus, neutrinoless double beta decay may
exist but it is certainly a rare process!
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Example 4.5 Consider a near perfect electronic system for recording electronic pulses.
Suppose we wish to measure its efficiency by sending in N pulses from a pulse generator
and observing the number of pulses registered. Suppose that this number is also N.
What can be said about the efficiency of the counter system from this measurement?

This experiment is equivalent to measuring the inefficiency of the system which is
very small. Just as in Example 4.4, then, the question to ask is: what lower limit on
the efficiency (or upper limit on the inefficiency) can be set from this result?

Let ¢ be the efficiency of the system. The probability of the system registering r
counts when N pulses are injected is then given by the binomial distribution

_ N! r N-r
P(N,r)—ms (1‘—8) .

The probability of detecting N pulses when N are injected is then
P(N,N)=¢" .
Let us now try to invert this probability. With some reflection, in fact, we can see that

the probability that the efficiency has some value ¢ = ¢’ when N pulses are counted is
also given by

Pe=¢)oxeN

except that € is now the random variable instead of N. Normalizing the above probabil-
ity distribution with respect to ¢, we find

P(e)=(N+1eN .

This now allows us to calculate a confidence level CL for some lower limit &,

1
CL={P)de =1-¢)"" .

&
Solving for g, yields the lower limit
g =(1-CL)V*)

To illustrate this with some numbers, suppose N = 100. Choosing a 95% confidence
level, we find that &, = 0.9708. Thus we can say that the efficiency £=0.97 with a
95% certainty!

4.5.5 Distribution of Time Intervals Between Counts

A distribution which we will make use of later is the distribution of time intervals be-
tween events from a random source. Suppose we observe a radioactive source with a
mean rate A. The probability of observing no counts in a period 7 is then given by
(4.57). In a manner similar to Sect. 4.5.4, we can interpret (4.57) as the probability den-
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sity for the time interval T during which no counts are observed. Normalizing (4.57),
we obtain the distribution

P(T) = Aexp(—AT) (4.60)

for the time T between counts. Equation (4.60) is just an exponential distribution and
can, in fact, be measured.

4.6 Propagation of Errors

We have seen in the preceding sections how to calculate the errors on directly measured
quantities. Very often, however, it is necessary to calculate other quantities from these
data. Clearly, the calculated result will then contain an uncertainty which is carried
over from the measured data.

To see how the errors are propagated, consider a quantity u = f(x, y) where x and y
are quantities having errors o, and o, respectively. To simplify the algebra, we only
consider a function of two variables here; however, the extension to more variables will
be obvious. We would like then to calculate the standard deviation g, as a function of
oy and o,. The variance a2 can be defined as

oi=Elu-u)] . (4.61)

To first order, the mean # may be approximated by f(%, 7). This can be shown by ex-
panding f(x, y) about (x, 7). Now, to express the deviation of u in terms of the devia-
tions in x and y, let us expand (u — @) to first order

of

w-my=0-0-L| +o-p Y|, (4.62)
ox |z oy

y

where the partial derivatives are evaluated at the mean values. Squaring (4.62) and sub-
stituting into (4.61) then yields

2
E[(u—af]:E[(x—)z)2 <a—f>+(y—y')2<af>+2(x D5 af}
ox oy ox 0O

(4.63)

Now taking the expectation value of each term separately and making use of the defini-
tions (4.8, 9) and (4.10), we find

2
o2= <6_f> a§+<af> o5+2cov(x, y) — of 6f (4.64)
dx dy ax 8y

The errors therefore are added quadratically with a modifying term due to the
covariance. Depending on its sign and magnitude, the covariance can increase or de-
crease the errors by dramatic amounts. In general most measurements in physics exper-
iments are independent or should be arranged so that the covariance will be zero. Equa-
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tion (4.64) then reduces to a simple sum of squares. Where correlations can arise, how-
ever, is when two or more parameters are extracted from the same set of measured
data. While the raw data points are independent, the parameters will generally be cor-
related. One common example are parameters resulting from a fit. The correlations can
be calculated in the fitting procedure and all good computer fitting programs should
supply this information. An example is given in Sect. 4.7.2. If these parameters are
used in a calculation, the correlation must be taken into account. A second example of
this type which might have occurred to the reader is the estimation of the mean and
variance from a set of data. Fortunately, it can be proved that the estimators (4.49) and
(4.52) in the Gaussian case are statistically independent so that p = 0!

4.6.1 Examples

As a first example let us derive the formulas for the sum, difference, product and ratio
of two quantities x and y with errors o, and o,.

i) Error of a Sum: u = x+y

oil=0l+ a§+200v(x,y). (4.65)
ii) Error of a Difference: u =x—y

ol= 0,2(+ ai— 2cov(x,y). (4.66)

If the covariance is 0, the errors on both a sum and difference then reduce to the
same sum of squares. The relative error, ,/u, however, is much larger for the case of a
difference since u is smaller. This illustrates the disadvantage of taking differences be-
tween two numbers with errors. If possible, therefore, a difference should always be
directly measured rather than calculated from two measurements!

iii) Error of a Product: u = xy
a§=y20§+x20§+2 cov(x, y)xy.

Dividing the left side by #2 and the right side by x2y?,

2 2 2
2;_=U_;+&+2M. (4.67)
2
u X y Xy
iv) Error of a Ratio: u = x/y
oi=y tai+x*y *al-2cov(x, y)xy 3.
Dividing both sides by «? as in (iii), we find
o. _ 0y, 0Oy ,cov(x,)
T T D (4.68)
u X y Xy

which, with the exception of the sign of the covariance term is identical to the formula
for a product. Equation (4.68) is generally valid when the relative errors are not too
large. For ratios of small numbers, however, (4.68) is inapplicable and some additional
considerations are required. This is treted in detail by James and Roos [4.1].
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Example 4.6 The classical method for measuring the polarization of a particle such as
a proton or neutron is to scatter it from a suitable analyzing target and to measure the
asymmetry in the scattered particle distribution. One can, for example, count the num-
ber of particles scattered to the left of the beam at certain angle and to the right of the
beam at the same corresponding angle. If R is the number scattered to the right and L
the number to the left, the asymmetry is then given by

R-L
&€= :
R+L

Calculate the error on ¢ as a function of the counts R and L.
This is a straight forward application of (4.64). Taking the derivatives of ¢, we thus
find

8¢ 1 R-L 2L
dR R+L (R+L)> NZ,

8¢ 1 R-L -2R
8L  R+L (R+L)y N2,

’

where the total number of counts N,,; = R+ L. The error is thus

4L% , 4R? ,
7 O'R+ 7 gy .
tot tot

o’ (e) =

The covariance is obviously 0 here since the measurements are independent. The errors
on R and L are now given by the Poisson distribution, so that ¢% = R and ¢ = L. Sub-
stituting into the above, then yields

(L R+R?L) _4RL

2
ge)=4 = .
N?ot N?ot

If the asymmetry is small such that R = L = N,/2, we have the result that
1

a(e) =
tot

4.7 Curve Fitting

In many experiments, the functional relation between two or more variables describing
a physical process, y = f(x1, x,, ...), is investigated by measuring the value of y for
various of xy, X,, ... . It is then desired to find the parameters of a theoretical curve
which best describe these points. For example, to determine the lifetime of a certain
radioactive source, measurements of the count rates, Ny, N, ..., N, , at various times,
ty, ty, ..., t,, could be made and the data fitted to the expression

N(t)=Nyexp(—t/7). (4.69)
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Since the count rate is subject to statistical fluctuations, the values N; will have uncer-
tainties g; = 1/1V, and will not all lie along a smooth curve. What then is the best curve
or equivalently, the best values for r and Ny and how do we determine them? The meth-
od most useful for this is the method of least squares.

4.7.1 The Least Squares Method

Let us suppose that measurements at n points, x;, are made of the variable y; with an er-
rorg;(i=1, 2, ..., n), and that it is desired to fit a function f(x; a4, a3, ..., @) to
these data where a4, a,, ..., @,, are unknown parameters to be determined. Of course,
the number of points must be greater than the number of parameters. The method of
least squares states that the best values of a; are those for which the sum

n . 2
S = E I:yi_f(xi’ aj)} (470)

i=1 g;

is a minimum. Examining (4.70) we can see that this is just the sum of the squared
deviations of the data points from the curve f(x;) weighted by the respective errors on
¥;. The reader might also recognize this as the chi-square in (4.22). For this reason, the
method is also sometimes referred to as chi-square minimization. Strictly speaking this
is not quite correct as y; must be Gaussian distributed with mean f(x;; a;) and variance
o? in order for S to be a true chi- -square. However, as this is almost always the case for
measurements in physics, this is a valid hypothesis most of the time. The least squares
method, however, is totally general and does not require knowledge of the parent dis-
tribution. If the parent distribution is known the method of maximum likelihood may
also be used. In the case of Gaussian distributed errors this yields identical results.
To find the values of a;, one must now solve the system of equations

85 o @.71)
da;

Depending on the function f(x), (4.71) may or may not yield on analytic solution. In
general, numerical methods requiring a computer must be used to minimize S.
Assuming we have the best values for a;, it is necessary to estimate the errors on the

parameters. For this, we form the so- called covariance or error matrix, Vj;,

1 azs
VY= 4.72)
2 aa aaj

where the second derivative is evaluated at the minimum. (Note the second derivatives
form the inverse of the error matrix). The diagonal elements ¥}; can then be shown to be
the variances for g;, while the offdiagonal elements V}; represent the covariances be-
tween g; and a;. Thus,

a% cov(1,2) cov(1,3)

a% cov(2,3)

N
Il

(4.73)
a3

and so on.
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4.7.2 Linear Fits. The Straight Line

In the case of functions linear in their parameters a;, i.e., there are no terms which are
products or ratios of different a;’s, (4.71) can be solved analytically. Let us illustrate
this for the case of a straight line

y=f(x)y=ax+b, 4.74)
where a and b are the parameters to be determined. Forming S, we find

(yi—ax;—b 2
5= Z—z‘)_'

1

(4.75)

Taking the partial derivatives with respect to @ and b, we then have the equations

§=_2Z(yl_axlz_b)xl=0,

0a aj

88y limenth (4.76)
ab ag;

To simplify the notation, let us define the terms
A=y p-y!
=) P =) Py
1 1

2
i Xi

C:Z y2 D=Z 5 (4.77)
g, g

2

E=Y s F= Z—’Z

g; g;

Using these definitions, (4.76) becomes

2(-E+aD+bA)=0,

(4.78)
2(-C+aA+bB)=0.
This then leads to the solution,
2= EB-CA b DC—-EA 4.79)

DB-A* - DB-A%

Our work is not complete, however, as the errors on @ and b must also be determined.
Forming the inverse error matrix, we then have

V-1=<A“ A“>, where (4.80)
A21 AZZ

1 &S 1 &S 1 9S
11 22 A12= 21 = —

T2 8a?’ "2 bt 2 8adb
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Inverting (4.80), we find

1 Ap —An
= < (4.81)
AnAp—An \—An An
so that
A B
o¥a) = 2 = -,
AyAp—A, BD-A
o*(b) = — A —= b 5 (4.82)
AyAypy—A1;, BD-A
cov(a, b) = —Aw —A

ApyAp—-AS BD-A%

To complete the process, now, it is necessary to also have an idea of the quality of the
Jit. Do the data, in fact, correspond to the function f(x) we have assumed? This can be
tested by means of the chi-square. This is just the value of S at the minimum. Recalling
Sect. 4.2.4, we saw that if the data correspond to the function and the deviations are
Gaussian, S should be expected to follow a chi-square distribution with mean value
equal to the degrees of freedom, v. In the above problem, there are » independent data
points from which m parameters are extracted. The degrees of freedom is thus
v=n—m. In the case of a linear fit, m = 2, so that v=n—2. We thus expect S to be
close to v=n—2 if the fit is good. A quick and easy test is to form the reduced chi-
square

X _S

4 4

, (4.83)

which should be close to 1 for a good fit.

A more rigorous test is to look at the probability of obtaining a 2 value greater
than S, i.e., P(XZES). This requires integrating the chi-square distribution or using
cumulative distribution tables. In general, if P(x?=S) is greater than 5%, the fit can be
accepted. Beyond this point, some questions must be asked.

An equally important point to consider is when S is very small. This implies that the
points are not fluctuating enough. Barring falsified data, the most likely cause is an
overestimation of the errors on the data points. If the reader will recall, the error bars
represent a 1 g deviation, so that about 1/3 of the data points should, in fact, be expect-
ed to fall outside the fit!

Example 4.7 Find the best straight line through the following measured points

X 0 1 2 3 4 5
y 0.92 4.15 9.78 14.46 17.26 21.90
g 0.5 1.0 0.75 1.25 1.0 1.5

Applying (4.75) to (4.82), we find
a=4.227 b=0.878

g(@)=0.044 og(b)=0.203 and
cov(a, b) = —0.0629.
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To test the goodness-of-fit, we must look at the chi-square
¥ =12.078

for 4 degrees of freedom. Forming the reduced chi-square, y2/v =0.5, we can see
already that his is a good fit. If we calculate the probability P(x2>2.07) for 4 degrees
of freedom, we find P = 97.5% which is well within acceptable limits.

Example 4.8 For certain nonlinear functions, a linearization may be affected so that
the method of linear least squares becomes applicable. One case is the example of the
exponential, (4.69), which we gave at the beginning of this section. Consider a decaying
radioactive source whose activity is measured at intervals of 15 seconds. The total
counts during each period are given below.

t [s] 1 15 30 45 60 75 90 105 120 135
Nicts] 106 80 98 75 74 73 49 38 37 22

What is the lifetime for this source?

The obvious procedure is to fit (4.69) to these data in order to determine 7. Equa-
tion (4.69), of course, is nonlinear, however it can be linearized by taking the logarithm
of both sides. This then yields

1nN=_—t+lnN0.
T

Setting y = In N, a = —1/tand b = In N,, we see that this is just a straight line, so that
our linear least-squares procedure can be used. One point which we must be careful
about, however, is the errors. The statistical errors on N, of course, are Poissonian, so
that g(N) = ]/N In the fit, however, it is the logarithm of N which is being used. The
errors must therefore be transformed using the propagation of errors formula; we then
have

O'Z(IHN) _ dInN
ON

2
2 _ 1 a1

Using (4.75) to (4.82) now, we find

a=—-1/t= —-0.008999 oa(a)=0.001
b=InNy=4.721 a(b) =0.064.

The lifetime is thus

T=111+125s .

The chi-square for this fit is y*> = 15.6 with 8 degrees of freedom. The reduced chi-
square is thus 15.6/(8 = 1.96, which is somewhat high. If we calculate the probability
P(x2> 15) = 0.05, however, we find that the fit is just acceptable. The data and the best
straight line are sketched in Fig. 4.7 on a semi-log plot.

While the above fit is acceptable, the relatively large chi-square should, neverthe-
less, prompt some questions. For example, in the treatment above, background counts
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Fig. 4.7. Fit to data of Example 4.8. Note
that the error bars of about 1/3 of the
points do not touch the fitted line. This is
consistent with the Gaussian nature of the
measurements. Since the region defined by
the errors bars (+10) comprises 68% of
the Gaussian distribution (see Fig. 4.5),
there is a 32% chance that a measurement
+ will exceed these limits!

<]
N

Counts/ 15 s

{

0B 30 45 60 75 90 105 10 10
Time

were ignored. An improvement in our fit might therefore be obtained if we took this
into account. If we assume a constant background, then the equation to fit would be

N(t) = Nyexp(—t/1)+C.

Another hypothesis could be that the source has more than one decay component in
which case the function to fit would be a sum of exponentials. These forms unfortu-
nately cannot be linearized as above and recourse must be made to nonlinear methods.
In the special case described above, a non-iterative procedure [4.2 — 6] exists which may
also be helpful.

4.7.3 Linear Fits When Both Variables Have Errors

In the previous examples, it was assumed that the independent variables x; were com-
pletely free of errors. Strictly speaking, of course, this is never the case, although in
many problems the errors on x are small with respect to those on y so that they may be
neglected. In cases where the errors on both variables are comparable, however, ignor-
ing the errors on x leads to incorrect parameters and an underestimation of their errors.
For these problems the effective variance method may be used. Without deriving the
result which is discussed by Lybanon [4.7] and Orear [4.8] for Gaussian distributed
errors, the method consists of simply replacing the variance &7 in (4.70) by

2
012*’0')2,+ <ﬁj_‘> 0,)2“ (484)

dx

where g, and o, are the errors on x and y respectively. Since the derivative is normally a
function of the parameters a;, S is nonlinear and numerical methods must be used to
minimize S.

4.7.4 Nonlinear Fits

As we have already mentioned, nonlinear fits generally require a numerical procedure
for minimizing S. Function minimization or maximization? is a problem in itself and

A minimization can be turned into a maximization by simply adding a minus sign in front of the function
and vice-versa.
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a number of methods have been developed for this purpose. However, no one method
can be said to be applicable to all functions, and, indeed, the problem often is to find
the right method for the function or functions in question. A discussion of the different
methods available, of course, is largely outside the scope of this book. However, it is
nevertheless worthwhile to briefly survey the most used methods so as to provide the
reader with a basis for more detailed study and an idea of some of the problems to be
expected. For practical purposes, a computer is necessary and we strongly advise the
reader to find a ready-made program rather than attempt to write it himself. More
detailed discussions may be found in [4.9—11].

Function Minimization Techniques. Numerical minimization methods are generally
iterative in nature, i.e., repeated calculations are made while varying the parameters in
some way, until the desired minimum is reached. The criteria for selecting a method,
therefore, are speed and stability against divergences. In general, the methods can be
classified into two broad categories: grid searches and gradient methods.

The grid methods are the simplest. The most elementary procedure is to form a grid
of equally spaced points in the variables of interest and evaluate the function at each of
these points. The point with the smallest value is then the approximate minimum.
Thus, if F(x) is the function to minimize, we would evaluate F at xq, xo+ 4Xx, xo+2 4 x,
etc. and choose the point x’' for which F' is smallest. The size of the grid step, Ax,
depends on the accuracy desired. This method, of course, can only be used over a finite
range of x and in cases where x ranges over infinity it is necessary to have an approxi-
mate idea of where the minimum is. Several ranges may also be tried.

The elementary grid method is intrinsically stable, but it is quite obviously ineffi-
cient and time consuming. Indeed, in more than one dimension, the number of func-
tion evaluations becomes prohibitively large even for a computer! (In contrast to the
simple grid method is the Monte Carlo or random search. Instead of equally spaced
points, random points are generated according to some distribution, e.g., a uniform
density.)

More efficient grid searches make use of variable stepping methods so as to reduce
the number of evaluations while converging onto the minimum more rapidly. A rela-
tively recent technique is the simplex method [4.12]. A simplex is the simplest geo-
metrical figure in # dimensions having n + 1 vertices. In n = 2 dimensions, for example,
the simplex is a triangle while in » = 3 dimensions, the simplex is a tetrahedron, etc.
The method takes on the name simplex because it uses 7+ 1 points at each step. As an
illustration, consider a function in two dimensions, the contours of which are shown in
Fig. 4.8. The method begins by choosing n+1 =3 points in some way or another,
perhaps at random. A simplex is thus formed as shown in the figure. The point with the
highest value is denoted as Py, while the lowest is P; . The next step is to replace Py
with a better point. To do this, Py is reflected through the center of gravity of all points
except Py, i.e., the point

p-yfiPu

i n

(4.85)

This yields the point P* = P+ (P— Py). If F(P*)<F(P.), a new minimum has been
found and an attempt is made to do even better by trying the point
P** = P+2(P— Py). The best point is then kept. If F(P*)>F(Py) the reflection is
brought backwards to P** = P—1(P- Py). If this is not better than Py, a new
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Fig. 4.8. The simplex method for function

P minimization
e ( C

a2

simplex is formed with points at P;= (P;+ P;)/2 and the procedure restarted. In this
manner, one can imagine the triangle in Fig. 4.8 “falling” to the minimum. The simplex
technique is a good method since it is relatively insensitive to the type of function, but it
can also be rather slow.

Gradient methods are techniques which make use of the derivatives of the function
to be minimized. These can either be calculated numerically or supplied by the user if
known. One obvious use of the derivatives is to serve as guides pointing in the direction
of decreasing F. This idea is used in techniques such as the method of steepest descent.
A more widely used technique, however, is Newton’s method which uses the derivatives
to form a second-degree Taylor expansion of the function about the point xg,

2
F(x)=F(x0)+£ (x—xo)+% gf (x—x0)*. (4.86)

X0 X 0

In » dimensions, this is generalized to
F(x) =F(xo) +g" (x=X0)+ 4 (x—x0)' G(x—x) , (4.87)

where g; is the vector of first derivatives 8F/0x; and G;; the matrix of second deriva-
tives 82F/6x dx;. The matrix G is also called the hess:an In essence, the method
approximates the function around x, by a quadratic surface. Under this assumption, it
is very easy to calculate the minimum of the n dimensional parabola analytically,

Xmin=Xo—G 'g. (4.88)

This, of course, is not the true minimum of the function; but by forming a new
parabolic surface about x;;, and calculating its minimum, etc., a convergence to the
true minimum can be obtained rather rapidly. The basic problem with the technique is
that it requires G to be everywhere positive definite, otherwise at some point in the
iteration a maximum may be calculated rather than a minimum, and the whole process
diverges. This is more easily seen in the one-dimensional case in (4.86). If the second
derivative is negative, then, we clearly have an inverted parabola rather than the desired
well-shape figure.
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Despite this defect, Newton’s method is quite powerful and algorithms have been
developed in which the matrix G is artificially altered whenever it becomes negative. In
this manner, the iteration continues in the right direction until a region of positive-
definiteness is reached. Such variations are called quasi-Newton methods.

The disadvantage of the Newton methods is that each iteration requires an evalua-
tion of the matrix G and its inverse. This, of course, becomes quite costly in terms of
time. This problem has given rise to another class of methods which either avoid
calculating G or calculate it once and then “update” G with some correcting function
after each iteration. These methods are described in more detail by James [4.11].

In the specific case of least squares minimization, a common procedure used with
Newton’s method is to linearize the fitting function. This is equivalent to approximat-
ing the hessian in the following manner. Rewriting (4.70) as

S=Y s, (4.89)
k
where s, = [y, —f(x;)]/ ax, the hessian becomes

S 8 0 5
= —_ sk

8x,-6xj ox; axj' k
(4.90)
'S

asy ds¢ Bk 8%y
8x,-6xj

=—6 EZsk——= .
ox; « 8xj k OX; an ax,-axj

The second term in the sum can be considered as a second order correction and is set to
zero. The hessian is then

Gy =2y 2% 05 (4.91)
Bx,- axj'

This approximation has the advantage of ensuring positive-definiteness and the result
converges to the correct minimum. However, the covariance matrix will not in general
converge to the correct covariance values, so that the errors as determined by this
matrix may not be correct.

As the reader can see, it is not a trivial task to implement a nonlinear least squares
program. For this reason we have advised the use of a ready-made program. A variety
of routines may be found in the NAG library [4.13], for example. A very powerful
program allowing the use of a variety of minimization methods such a simplex,
Newton, etc., is Minuit [4.14] which is available in the CERN program library. This
library is distributed to many laboratories and universities.

Local vs Global Minima. Up to now we have assumed that the function F contains only
one minimum. More generally, of course, an arbitrary function can have many local
minima in addition to a global, absolute minimum. The methods we have described are
all designed to locate a local minimum without regard for any other possible minima. It
is up to the user to decide if the minimum obtained is indeed what he wants. It is
important, therefore, to have some idea of what the true values are so as to start the
search in the right region. Even in this case, however, there is no guarantee that the
process will converge onto the closest minimum. A good technique is to fix those
parameters which are approximately known and vary the rest. The result can then be
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used to start a second search in which all the parameters are varied. Other problems
which can arise are the occurrence of overflow or underflow in the computer. This oc-
curs very often with exponential functions. Here good starting values are generally
necessary to obtain a result.

Errors. While the methods we have discussed allow us to find the parameter values
which minimize the function S, there is no prescription for calculating the errors on the
parameters. A clue, however, can be taken from the linear one-dimensional case. Here
we saw the variance of a parameter 6 was given by the inverse of the second derivative
4.72),

. |1 ofs|!
ol=|— 22 (4.92)
2 38
If we expand S in Taylor series about the minimum
1 9°S 2
SO =S +— —(0-6*
2 8¢ )
= S(H*)+—1—2(0— 6*)2. (4.93)
o
At the point § = 8* + o, we thus find that
S(@*+a)=SO")+1. (4.94)

Thus the error on 8 corresponds to the distance between the minimum and where the S
distribution increases by 1.

This can be generalized to the nonlinear case where the S distribution is not general-
ly parabolic around the minimum. Finding the errors for each parameter then implies
finding those points for which the S value changes by 1 from the minimum. If S has a
complicated form, of course, this is not always easy to determine and once again, a
numerical method must be used to solve the equation. If the form of S can be approxi-
mated by a quadratic surface, then, the error matrix in (4.73) can be calculated and
inverted as in the linear case. This should then give an estimate of the errors and covari-
ances.

4.8 Some General Rules for Rounding-off Numbers
for Final Presentation

As a final remark in this chapter, we will suggest here a few general rules for the round-
ing off of numerical data for their final presentation.

The number of digits to be kept in a numerical result is determined by the errors on
that result. For example, suppose our result after measurement and analysis is cal-
culated to be x = 17.615334 with an error a(x) = 0.0233. The error, of course, tells us
that the result is uncertain at the level of the second decimal place, so that all following
digits have absolutely no meaning. The result therefore should be rounded-off to corre-
spond with the error.
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Rounding off also applies to the calculated error. Only the first significant digit has
any meaning, of course, but it is generally a good idea to keep two digits (but not more)
in case the results are used in some other analysis. The extra digit then helps avoid a
cumulative round-off error. In the example above, then, the error is rounded off to
o = 0.0233 - 0.023; the result, x, should thus be given to three decimal places.

A general method for rounding off numbers is to take all digits to be rejected and to
place a decimal point in front. Then

1) if the fraction thus formed is less than 0.5, the least significant digit is kept as is,

2) if the fraction is greater than 0.5, the least significant digit is increased by 1,

3) if the fraction is exactly 0.5, the number is increased if the least significant digit is
odd and kept if it is even.

In the example above, three decimal places are to be kept. Placing a decimal point in
front of the rejected digits then yields 0.334. Since this is less than 0.5, the rounded
result is x = 17.615 +0.023.

One thing which should be avoided is rounding off in steps of one digit at a time.
For example, consider the number 2.346 which is to be rounded-off to one decimal
place. Using the method above, we find 2.346 —2.3. Rounding-off one digit at a time,
however, yields

2.346 - 2.3552.4!



5. General Characteristics of Detectors

As an introduction to the following chapters on detectors, we will define and describe
here some general characteristics common to detectors as a class of devices. For the
reader without detector experience, these characteristics will probably take on more sig-
nificance when examples of specific detectors are treated. He should not hesitate to
continue on, therefore, and return at a later time if he has not fully understood the con-
tents of this chapter.

While the history of nuclear and elementary particle physics has seen the develop-
ment of many different types of detectors, all are based on the same fundamental prin-
ciple: the transfer of part or all of the radiation energy to the detector mass where it is
converted into some other form more accessible to human perception. As we have seen
in Chap. 2, charged particles transfer their energy to matter through direct collisions
with the atomic electrons, thus inducing excitation or ionization of the atoms. Neutral
radiation, on the other hand, must first undergo some sort of reaction in the detector
producing charged particles, which in turn ionize and excite the detector atoms. The
form in which the converted energy appears depends on the detector and its design. The
gaseous detectors discussed in the next chapter, for example, are designed to directly
collect the ionization electrons to form an electric current signal, while in scintillators,
both the excitation and ionization contribute to inducing molecular transitions which
result in the emission of light. Similarly, in photographic emulsions, the ionization in-
duces chemical reactions which allow a track image to be formed, and so on.

Modern detectors today are essentially electrical in nature, i.e., at some point along
the way the information from the detector is transformed into electrical impulses which
can be treated by electronic means. This, of course, takes advantage of the great pro-
gress that has been made in electronics and computers to provide for faster and more
accurate treatment of the information. Indeed, most modern detectors cannot be ex-
ploited otherwise. When discussing “detectors”, therefore, we will also take this to
mean the electronics as well. This, of course, is not to say that only electrical detectors
are used in modern experiments, and indeed there are many other types which are
employed. However, if an electrical detector can be used, it is generally preferred for
the reasons already mentioned. Our discussion in the following sections, therefore, will
only be concerned with this type.

5.1 Sensitivity

The first consideration for a detector is its sensitivity, i.e., its capability of producing a
usable signal for a given type of radiation and energy. No detector can be sensitive to
all types of radiation at all energies. Instead, they are designed to be sensitive to certain
types of radiation in a given energy range. Going outside this region usually results in
an unusable signal or greatly decreased efficiency.
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Detector sensitivity to a given type of radiation of a given energy depends on several
factors:

1) the cross section for ionizing reactions in the detector

2) the detector mass

3) the inherent detector noise

4) the protective material surrounding the sensitive volume of the detector.

The cross-section and detector mass determine the probability that the incident radia-
tion will convert part or all its energy in the detector into the form of ionization. (We
assume here that the properties of the detector are such that the ionization created will
be efficiently used.) As we saw in Chap. 2, charged particles are highly ionizing, so that
most detectors even of low density and small volume will have some ionization pro-
duced in their sensitive volume. For neutral particles, this is much less the case, as they
must first undergo an interaction which produces charged particles capable of ionizing
the detector medium. These interaction cross sections are usually much smaller so that
a higher mass density and volume are necessary to ensure a reasonable interaction rate,
otherwise the detector becomes essentially transparent to the neutral radiation. The
mass required, depends on the type of radiation and the energy range of interest. In the
case of the neutrino, for example, detector masses on the order of tons are usually
necessary!

Even if ionization is produced in the detector, however, a certain minimum amount
is necessary in order for the signal to be usable. This lower limit is determined by the
noise from the detector and the associated electronics. The noise appears as a fluctuat-
ing voltage or current at the detector output and is always present whether there is
radiation or not. Obviously, the ionization signal must be larger than the average noise
level in order to be usable. For a given radiation type in a given energy range, the total
amount of ionization produced is determined by the sensitive volume.

A second limiting factor is the material covering the entrance window to the sensi-
tive volume of the detector. Because of absorption, only radiation with sufficient
energy to penetrate this layer can be detected. The thickness of this material thus sets a
lower limit on the energy which can be detected.

5.2 Detector Response

In addition to detecting the presence of radiation, most detectors are also capable of
providing some information on the energy of the radiation. This follows since the
amount of ionization produced by radiation in a detector is proportional to the energy
it loses in the sensitive volume. If the detector is sufficiently large such that the radia-
tion is completely absorbed, then this ionization gives a measure of the energy of the
radiation. Depending on the design of the detector, this information may or may not be
preserved as the signal is processed, however.

In general, the output signal of electrical detectors is in the form of a current pulse’.
The amount of ionization is then reflected in the electrical charge contained in this

! Detectors may also be operated in a continuous mode in which the signal is a continuous current or voltage
varying in time with the intensity of the radiation. This can be performed by electrically integrating the num-
ber of pules over a certain period of time.
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signal, i.e., the integral of the pulse with respect to time. Assuming that the shape of
the pulse does not change from one event to the other, however, this integral is directly
proportional to the amplitude or pulse height of the signal, so that this characteristic
may be used instead. The relation between the radiation energy and the total charge or
pulse height of the output signal is referred to as the response of the detector.

Ideally, of course, one would like this relation to be linear although it is not ab-
solutely necessary. It does, however, simplify matters greatly when transforming the
measured pulse height to energy. For many detectors, the response is linear or approxi-
mately so over a certain range of energies. In general, however, the response is a func-
tion of the particle type and energy, and it does not automatically follow that a detector
with a linear response for one type of radiation will be linear for another. A good
example is organic scintillator. As will be seen later, the response is linear for electrons
down to a very low energies but is nonlinear for heavier particles such as the proton,
deuteron, etc. This is due to the different reaction mechanisms which are triggered in
the medium by the different particles.

5.3 Energy Resolution. The Fano Factor

For detectors which are designed to measure the energy of the incident radiation, the
most important factor is the energy resolution. This is the extent to which the detector
can distinguish two close lying energies. In general, the resolution can be measured by
sending a monoenergetic beam of radiation into the detector and observing the result-
ing spectrum. Ideally, of course, one would like to see a sharp delta-function peak. In
reality, this is never the case and one observes a peak structure with a finite width,
usually Gaussian in shape. This width arises because of fluctuations in the number of
ionizations and excitations produced.

The resolution is usually given in terms of the full width at half maximum of the
peak (FWHM). Energies which are closer than this interval are usually considered un-
resolvable. This is illustrated in Fig. 5.1. If we denote this width as A4E, then the relative
resolution at the energy E is

Resolution = AE/E . 5.1

Equation (5.1) is usually expressed in percent. A Nal detector has about a 8% or 9%
resolution for yp-rays of about 1 MeV, for example, while germanium detectors have
resolutions on the order of 0.1%!

Fig. 5.1. Definition of energy resolution.
Two peaks are generally considered to be
resolved if they are separated by a distance
greater than their full widths at half maxi-
mum (FWHM). The solid line shows the sum
of two identical Gaussian peaks separated by
just this amount
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In general, the resolution is a function of the energy deposited in the detector, with
the ratio (5.1) improving with higher energy. This is due to the Poisson or Poisson-like
statistics of ionization and excitation. Indeed, it is found that the average energy
required to produce an ionization is a fixed number, w, dependent only on the material.
For a deposited energy E, therefore, one would expect on the average, J = E/w ioniza-
tions. Thus as energy increases, the number of the ionization events also increases
resulting in smaller relative fluctuations.

To calculate the fluctuations it is necessary to consider two cases. For a detector in
which the radiation energy is not totally absorbed, for example, a thin transmission
detector which just measures the dE/dx loss of a passing particle, the number of signal-
producing reactions is given by a Poisson distribution. The variance is then given by

g*=1J, (5.2)

where J is the mean number of events produced. The energy dependence of the resolu-
tion can then be seen to be

R=2.35ﬁ=2.35 >, (5.3)
J E

where the factor 2.35 relates the standard deviation of a Gaussian to its FWHM. Thus
the resolution varies inversely as the square root of the energy.

If the full energy of the radiation is absorbed as is the case for detectors used in
spectroscopy experiments, the naive assumption of Poisson statistics is incorrect. And
indeed, it is observed that the resolution of many such detectors is actually smaller than
that calculated from Poisson statistics. The difference here is that the total energy
deposited is a fixed, constant value, while in the previous case, the energy deposited can
fluctuate. The total number of ionizations which can occur and the energy lost in each
ionization are thus constrained by this value. Statistically, this means that the ioniza-
tion events are not all independent so that Poisson statistics is not applicable. Fano
[5.1] was the first to calculate the variance under this condition and found

g*=FJ, (5.4)

where J is the mean ionization produced and F is a number known as the Fano factor.

The factor F is a function of all the various fundamental processes which can lead
to an energy transfer in the detector. This includes all reactions which do not lead to
ionization as well, for example, phonon excitations, etc. It is thus an intrinsic constant
of the detecting medium. Theoretically, F is very difficult to calculate accurately as it
requires a detailed knowledge of all the reactions which can take place in the detector.
From (5.4), the resolution is then given by

R=235 #Lf"=z.35 % . (5.5)

If F =1, the variance is the same as that for a Poisson distribution and (5.5) reduces to
(5.3). This seems to be the case for scintillators, however, for many detectors such as
semiconductors or gases, F<1. This, of course, greatly increases the resolution of these
types of detectors.
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In addition to the fluctuations in ionization, a number of external factors can affect
the overall resolution of a detector. This includes effects from the associated electronics
such as noise, drifts, etc. Assuming all these sources are independent and distributed as
Gaussians, the total resolution E is then given by (4.64), i.e.,

(AE)* = (AE4)* + (AEgee)* + ... . (5.6)

5.4 The Response Function

For the measurement of energy spectra, an important factor which must be considered
is the response function of the detector for the type of radiation being detected. This is
the spectrum of pulse heights observed from the detector when it is bombarded by a
monoenergetic beam of the given radiation. Up to now, we have assumed that this
response spectrum is a Gaussian peak. If we ignore the finite width for a moment, this
essentially corresponds to a Dirac delta function, i.e., for a fixed incident energy the
output signal has a single, fixed amplitude. Then, if the response is linear, the spectrum
of pulse heights measured from the detector corresponds directly to the energy spec-
trum of the incident radiation. This is the ideal case. Unfortunately, a Gaussian peak
response is not always realized particularly in the case of neutral radiation.

The response function of a detector at a given energy is determined by the different
interactions which the radiation can undergo in the detector and its design and
geometry. To take an example, consider monoenergetic charged particles, say elec-
trons, incident on a detector thick enough to stop the particles. Assuming all the elec-
trons lose their energy by atomic collisions, it is clear that the spectrum of pulse heights
will be a Gaussian peak. In reality, however, some of the electrons will scatter out of
the detector before fully depositing their energy. This produces a low energy tail.
Similarly some electrons will emit bremsstrahlung photons which may escape from the
detector. This again gives rise to events at a lower energy than the peak. The response
function thus consists of a Gaussian peak with a low energy tail determined by the
amount of scattering and bremsstrahlung energy loss. If the tail is small, however, this
can still be a reasonable approximation to the ideal Gaussian response depending on
the precision desired. Moreover, the response function can be improved by changing
the design and geometry of the detector. A material of lower atomic number Z can be
chosen, for example, to minimize backscattering and bremsstrahlung. Similarly if the
detector is made to surround the source, backscattering electrons will be captured thus
decreasing the escape of these particles, etc.

To see how the response function can change with radiation type, consider the same
detector with gamma rays instead. As we have already mentioned, gamma rays must
first convert-into charged particles in order to be detected. The principal mechanisms
for this are the photoelectric effect, Compton scattering and pair production. In the
photoelectric effect, the gamma ray energy is transferred to the photoelectron which is
then stopped in the detector. Since the energy of all the photoelectrons is the same, this
results in a sharp peak in the pulse height spectrum, which is the desired Gaussian
response. However, some gamma rays will also suffer Compton scatterings. As given
by (2.113), the Compton electrons are distributed continuously in energy so that a dis-
tribution, similar to Fig. 2.24, also appears in the response function. This, of course,
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Relative intensity

Pulse height Pulse height

Fig. 5.2a,b. The response functions of two different detectors for 661 keV gamma rays. (a) shows the
response of a germanium detector which has a large photoelectric cross section relative to the Compton scat-
tering cross section at this energy. A large photopeak with a relatively small continuous Compton distribu-
tion is thus observed. (b) is the response of an organic scintillator detector. Since this material has a low
atomic number Z, Compton scattering is predominant and only this distribution is seen in the response func-
tion

immediately destroys the ideal delta-function response. In a similar manner, those
events interacting via the pair production mechanism will also contribute a structure to
the function. One such total response function is sketched in Fig. 5.2. The observed
pulse height spectrum, therefore, simply reflects the different interactions which occur
in the detector volume. Since the relative intensity of each structure in the spectrum is
determined by the relative cross sections for each interaction mechanism, the response
function will also be different at different energies and for different detector media.

If the detector is now used to measure a spectrum of gamma rays, the observed
pulse height distribution will be a convolution of the gamma ray spectrum and the
detector response, i.e.,

PH(E)=§S(E’)R(E, E"dE', 5.7

where R (E, E’) is the response function at the incident energy E’ and S(E") is the spec-
trum of gamma ray energies. To determine the gamma ray spectrum S(E’), from the
measured pulse height distribution then requires knowing R(E, E') in order to invert
(5.7). Here, of course, we see the utility of having R(E, E') = 6(E'—E)!

5.5 Response Time

A very important characteristic of a detector is its response time. This is the time which
the detector takes to form the signal after the arrival of the radiation. This is crucial to
the timing properties of the detector. For good timing, it is necessary for the signal to
be quickly formed into a sharp pulse with a rising flank as close to vertical as possible.
In this way a more precise moment in time is marked by the signal.

The duration of the signal is also of importance. During this period, a second event
cannot be accepted either because the detector is insensitive or because the second
signal will pile up on the first. This contributes to the dead time of the detector and
limits the count rate at which it can be operated. The effect of dead time is discussed in
Sect. 5.7.
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5.6 Detector Efficiency

Two types of efficiency are generally referred to when discussing radiation detection:
absolute efficiency and intrinsic detection efficiency. The absolute or total efficiency of
a detector is defined as that fraction of events emitted by the source which is actually
registered by the detector, i.e.,

events registered
ot = e . (5.8)
events emitted by source

This is a function of the detector geometry and the probability of an interaction in the
detector. As an example, consider a cylindrical detector with a point source at a
distance d on the detector axis as shown in Fig. 5.3. If the source emits isotropically,
then, the probability of the particle being emitted at an angle 6 is

P(0)dQ=d/4r. 5.9

The probability that a particle hitting the detector will have an interaction in the
detector is given by (2.7). Combining the two then yields

-x\|dQ
déu=11- |, 5.10
tot { CXP< 1 >} yp ( )

where x is the path length in the detector and A is the mean free path for an interaction.
The total efficiency is then found by integrating (5.10) over the volume of the detector.

In many cases, however, the value of x does not vary too much over the detector or
the value of A is so small that the exponential can be considered as zero. The absolute
efficiency can then be factored into two parts: the intrinsic efficiency, &, and the geo-
metrical efficiency or acceptance, &yom. The total or absolute efficiency of the detector
is then given by the product

Gtot = Eint Ggeom - (5.11)

The intrinsic efficiency is that fraction of events actually hitting the detector which
is registered, i.e.,

events registered

Cint = (5-12)

events impinging on detector '

This probability depends on the interaction cross sections of the incident radiation on
the detector medium. The intrinsic efficiency is thus a function of the type of radiation,

Detector

Source Aﬂ

Fig. 5.3. Calculating the detection efficiency of a
cylindrical detector for a point source
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its energy and the detector material. For charged particles, the intrinsic efficiency is
generally good for most detectors, since it is rare for a charged particle not to produce
some sort of ionization. For heavier particles, though, quenching effects may be pre-
sent in some materials which drain the ionization produced. The problem of efficiency
is generally more important for neutral particles as they must first interact to create
secondary charged particles. These interactions are much rarer in general, so that
capturing a good fraction of the incident neutral radiation is not always assured. The
dimensions of the detector become important as sufficient mass must be present in
order to provide a good probability of interaction.

The geometric efficiency, in contrast, is that fraction of the source radiation which
is geometrically intercepted by the detector. This, of course, depends entirely on the
geometrical configuration of the detector and source. The angular distribution of the
incident radiation must also be taken into account. For the cylindrical detector in Fig.
5.3, &yeom 18 Simply the average solid angle fraction. For multidetector systems, where
coincidence requirements are imposed, however, the calculations can be somewhat
complicated and recourse to numerical simulation with Monte Carlo methods must be
made.

5.7 Dead Time

Related to the efficiency is the dead time of the detector. This is the finite time required
by the detector to process an event which is usually related to the duration of the pulse
signal. Depending on the type, a detector may or may not remain sensitive to other
events during this period. If the detector is insensitive, any further events arriving dur-
ing this period are lost. If the detector retains its sensitivity, then, these events may pile-
up on the first resulting in a distortion of the signal and subsequent loss of information
from both events. These losses affect the observed count rates and distort the time
distribution between the arrival of events. In particular, events from a random source
will no longer have the Poissonian time distribution given by (4.60). To avoid large
dead time effects, the counting rate of the detector must be kept sufficiently low such
that the probability of a second event occurring during a dead time period is small. The
remaining effect can then be corrected.

When calculating the effects of dead time, the entire detection system must be taken
into account. Each element of a detector system has it own dead time and, indeed, it is
often the electronics which account for the larger part of the effect. Moreover, when
several elements have comparable dead times, combining the effects is also a difficult
task and a general method does not exist for solving such problems.

As an illustration let us analyze the effect on count rate due to the dead time of
a simple element in the system. Suppose the element has a dead time 7 and that 7 is con-
stant for all events. Two fundamental cases are usually distinguished: extendable or
non-extendable dead times. These are also referred to as the paralyzable or non-
paralyzable models. In the extendable case, the arrival of a second event during a dead
time period extends this period by adding on its dead time 7 starting from the moment
of its arrival. This is illustrated in Fig. 5.4. This occurs in elements which remain sensi-
tive during the dead time. In principle if the event rate is sufficiently high, events can
arrive such that their respective dead time periods all overlap. This produces a prolong-
ed period during which no event is accepted. The element is thus paralyzed. The non-
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Non -extendable dead time Fig. 5.4. Extendable (paralyzable) and non-
Events T 7T extendable (non-paralyzable) dead time models
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extendable case, in contrast, corresponds to a element which is insensitive during the
dead time period. The arrival of a second event during this period simply goes un-
noticed and after a time 7 the element becomes active again.

Let us consider the non-extendable case first. Suppose # is the true count rate and
the detector registers k counts in a time 7. Since each detected count # engenders a dead
time 7, a total dead time k t is accumulated during the counting period 7. During this
dead period, a total of mk t counts is lost. The true number of counts is therefore

mT=k+mkr. (5.13)
Solving for m in terms of k, we find

k/T

= 5.14
" 1-(k/T)t 619

Thus (5.14) provides us with a formula for finding the true rate m from the observed
rate k/T.

The extendable case is somewhat more difficult. Here, one realizes that only those
counts which arrive at time intervals greater than 7 are recorded. As given by (4.60), the
distribution of time intervals between events decaying at a rate m, is

P(t)=mexp(—mt) . (5.15)

The probability that ¢> 7 is then
P(t>t)=m | exp (- mt)dt = exp (—m7) . (5.16)

The number of counts observed in a time T, therefore, is just that fraction of the mT
true events whose arrival times satisfy this condition,

k=mTexp(-m1). (5.17)

To find the true value, m, (5.17) must be solved numerically. Figure 5.5 shows the be-
havior of (5.17). Note that the function first increases, goes through a maximum at
m = 1/t and then decreases once again. This means that for a given observed rate, k/T,
there are two corresponding solutions for . Care should be taken, therefore, to distin-
guish between the two.
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Fig. 5.5. Numerical solution of equation (5.17) to determine
the true count rate in the extended dead time model. Note
there are two possible solutions
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The above results are generally adequate for most practical problems, however,
they are only first order approximations. More rigorous treatments are given by Foglio
Parra and Mandelli Bettoni [5.2] and a general discussion of dead time problems by
Muller [5.3]. The case of a variable dead time is also treated by Libert [5.4].

Given the above results, the problem which often arises is to determine which class,
extendable or non-extendable, is applicable. Indeed, many detectors systems are com-
binations of both, having some elements which are extendable and others which are
not. And some may not be in either class. Moreover the dead time of the elements could
be variable depending on the count rate, the pulse shapes, etc. A solution often used is
to deliberately add in a blocking circuit element with a dead time larger than all other
elements into the system such that the detector system can be treated by one of the
fundamental models. This, of course, slows down the system but removes the uncer-
tainty in the dead-time model. This should be done quite early in the system, however,
in order to avoid pile-up problems later. See for example the Inhibit in Chap. 16.

5.7.1 Measuring Dead Time

The classical method of measuring dead time is the so-called two-source technique. In
this procedure, the count rates of two different sources are measured separately and
together. To illustrate the principle of the method, let us suppose n, and n, are the true
count rates of the two sources and Ry, R, and R;; are the rates observed for the
separate and combined sources. For simplicity also, let us assume that there is no
background. In the non-extended case, we then have the relations

n = 1_122_ s ny,= 1L and
T Rt (5.18)
n1+n2 = ———12 .
1—R12T
Eliminating the n’s, we have
Ry R, R, (5.19)

= +
1-Rppt 1-Rit 1-Ryt

which yields the solution
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- RiRy = [RiR;(Riz— Ry) (Riy—R)I”
R{RyR;

(5.20)

While conceptually the double source method is quite simple, it is in practice, a cum-
bersome and time consuming method which yields results to no better than 5—10%
[5.3]. This can be seen already in (5.20) which shows 7 to be given by a difference
between two numbers. From the point of view of statistical errors (see Sect. 4.6.1), of
course, this is disadvantageous. Experimentally, care must also be taken to ensure the
same positioning for the sources when they are measured separately and together. Even
then, however, there may be scattering effects of one source on the other which may
modify the combined rates, etc.

A number of other methods have been proposed, however. One technique is to
replace one of the sources with a pulse generator [5.5] of frequency f<(37)~'. If R, is
the observed rate of the source alone and R_ is the observed combined rate of the source
and generator, then it can be shown that the dead time in the non-extended case is

_ 1-IR~RYyN"
R, '

. (5.21)

Equation (5.21) is only approximate, but it should give results to better than 1% as long
as the oscillator frequency condition stated above is met [5.3]. This method, of course,
avoids the problem of maintaining a fixed source geometry but it does require an
estimate of the dead time and a fast pulser to ensure the frequency condition above. A
more general formula valid at all frequencies has been worked out by Muller [5.6]
requiring, however, a long numerical calculation of a correction factor.

For an extended dead time, it can also be shown [5.3] that

(m+f-mfr)exp(—m1) =R, (5.22)

where m is the true rate of the source. If (5.17) for the case of source alone is used, the
relation

@=(1—mr)exp(—mr) (5.23)

is found which can be solved for m 7. If m is known then, of course, 7 follows.

A very quick and accurate method which can be used for measuring the dead time
of the electronics system alone is to inject pulses from two oscillators [5.3] of frequency
Jfi and f, and to measure the mean frequency of the combined pulses, f,. For the non-
extended model, it can be shown then,

+f—2 Tt for 0<1<T/2

fi= Ji+fa—2/1fs (5.24)
1/T for 772<1<T

where T is the period of the faster oscillator, i.e., the smaller of 1/f; and 1/f,. For the

extended model, we have similarly

fcz{f1+f2—2f1fzr for 0<z<T 5.25)

0 for >T.
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The expressions are thus identical if the frequency of the faster oscillator is chosen such
that f<(27)~!; the dead time, irrespective of the model, is then given by
tn R{+R,—R.

r="m T1TT2TRe (5.26)
2 RiR,

where Ry, R, and R, are the total measured counts for the two oscillators separately
and combined in a measurement period #.,. If fis chosen greater then (27) "', then a
determination of the model type can be made by comparing the results to the predic-
tions in (5.24) and (5.25).

When using this method, of course, it is important to assure that the form of the
pulses are close to those of true detector signals and that the frequencies of the oscil-
lators are stable. In such cases, the two-oscillator method can yield quick and accurate
results to a precision better than 10 3.



6. Ionization Detectors

Ionization detectors were the first electrical devices developed for radiation detection.
These instruments are based on the direct collection of the ionization electrons and ions
produced in a gas by passing radiation. During the first half of the century, three basic
types of detector were developed: the ionization chamber, the proportional counter and
the Geiger-Miiller counter. Except for specific applications, these particular devices are
not in widespread use in modern nuclear and particle physics experiments today. They
are, however, still very much employed in the laboratory as radiation monitors. They
are cheap, simple to operate and easy to maintain. Their basic design and structure, in
fact, have changed little since the late 1940’s when the then newly-developed scintilla-
tion counter began taking the place of these instruments in nuclear research.

During the late 1960’s, a renewed interest in gas ionization instruments was stimu-
lated in the particle physics domain by the invention of the multi-wire proportional
chamber. These devices were capable of localizing particle trajectories to less than a
millimeter and were quickly adopted in high-energy experiments. Stimulated by this
success, the following years saw the development of the drift chamber and, somewhat
later, the time projection chamber. These devices operate on the same basic principles
as the simple proportional counter, but otherwise bear little physical resemblance to
their simpler predecessor. They are now used extensively in high energy particle physics
experiments and require more sophisticated electronics as well as data acquisition by
computer. There are also many variants of the above instruments which have been de-
signed for more particular needs.

Because of their higher density, attention has also been focused on the use of liquids
as an ionizing medium. The physics of ionization and transport in liquids is not as well
understood as in gases, but much progress in this domain has been made and develop-
ment is continuing in this area.

6.1 Gaseous Ionization Detectors

Because of the greater mobility of electrons and ions, a gas is the obvious medium to
use for the collection of ionization from radiation. Many ionization phenomena arise
in gases and over the years these have been studied and exploited in the detectors we
will describe below. The three original gas devices, i.e., the ionization chamber, the
proportional counter and the Geiger-Miiller counter, serve as a good illustration of the
application of gas ionization phenomena in this class of instruments. These detectors
are actually the same device working under different operating parameters, exploiting
different phenomena. The basic configuration (Fig. 6.1) consists of a container, which
we will take to be a cylinder for simplicity, with conducting walls and a thin end win-
dow. The cylinder is filled with a suitable gas, usually a noble gas such as argon. Along
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Thin end Fig. 6.1. Basic construction of a simple gas
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its axis is suspended a conducting wire to which a positive voltage, + V, relative to the
walls is applied. A radial electric field

g=1_" (6.1)
r In(b/a)

with r: radial distance from axis; b: inside radius of cylinder; a: radius of central wire is
thereby established. If radiation now penetrates the cylinder, a certain number of elec-
tron-ion pairs will be created, either directly, if the radiation is a charged particle, or in-
directly through secondary reactions if the radiation is neutral. The mean number of
pairs created is proportional to the energy deposited in the counter. Under the action of
the electric field, the electrons will be accelerated towards the anode and the ions to-
ward the cathode where they are collected.

The current signal observed, however, depends on the field intensity. This is illus-
trated in Fig. 6.2 which plots the total charge collected as a function of V. At zero volt-
age, of course, no charge is collected as the ion-electron pairs recombine under their
own electrical attraction. As the voltage is raised, however, the recombination forces
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are overcome and the current begins to increase as more and more of the electron-ion
pairs are collected before they can recombine. At some point, of course, all created
pairs will be collected and further increases in voltage show no effect. This corresponds
to the first flat region in Fig. 6.2. A detector working in this region (I1) is called an ion-
ization chamber since it collects the ionization produced directly by the passing radia-
tion. The signal current, of course, is very small and must usually be measured with an
electrometer. Ionization chambers are generally used for measuring gamma ray expo-
sure and as monitoring instruments for large fluxes of radiation.

Returning to Fig. 6.2, if we now increase the voltage beyond region II we find
that the current increases again with the voltage. At this point, the electric field is
strong enough to accelerate freed electrons to an energy where they are also capable
of ionizing gas molecules in the cylinder. The electrons liberated in these secondary
ionizations then accelerate to produce still more ionization and so on. This results in
an ionization avalanche or cascade. Since the electric field is strongest near the anode,
as seen from (6.1), this avalanche occurs very quickly and almost entirely within a few
radii of this wire. The number of electron-ion pairs in the avalanche, however, is direct-
ly proportional to the number of primary electrons. What results then is a proportional
amplification of the current, with a multiplication factor depending on the working
voltage V. This factor can be as high as 10° so that the output signal is much larger than
that from an ionization chamber, but still in proportion to the original ionization pro-
duced in the detector. This region of proportional multiplication extends up to point I1I
and a detector operating in this domain is known as a proportional chamber. Because it
is the basic model for the more sophisticated gas devices to be described later, we will
treat the proportional counter in more detail later.

If the voltage is now increased beyond point I1I, the total amount of ionization cre-
ated through multiplication becomes sufficiently large that the space charge created
distorts the electric field about the anode. Proportionality thus begins to be lost. This is
known as the region of limited proportionality. Increasing V still higher, the energy be-
comes so large that a discharge occurs in the gas. What happens physically is that in-
stead of a single, localized avalanche at some point along the anode wire (as in a pro-
portional counter), a chain reaction of many avalanches spread out along the entire
length of the anode is triggered. These secondary avalanches are caused by photons
emitted by deexciting molecules which travel to other parts of the counter to cause
further ionizing events. The output current thus becomes completely saturated, always
giving the same amplitude regardless of the energy of the initial event. In order to stop
the discharge, a quenching gas must be present in the medium to absorb the photons
and drain their energy into other channels. Detectors working in this voltage region are
called Geiger-Miiller or breakdown counters. The Geiger voltage region, in fact, is
characterized by a plateau over which the count rate varies little. The width of the
plateau depends on the efficacy of the quencher in the gas. In general, the working volt-
age of a Geiger counter is chosen to be in the middle of the plateau in order to minimize
any variations due to voltage drift.

Finally, now, if the voltage is increased still further a continuous breakdown occurs
with or without radiation. This region, of course, is to be avoided to prevent damage to
the counter. In this illustration, we thus see how phenomena such as gas multiplication
and discharge, in addition to gas ionization, can be used for radiation detection.
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6.2 Ionization and Transport Phenomena in Gases

Because of the importance of ionization detectors in physics research much work has
been and still is devoted to the ionization process and the movement of electrons and
ions in gases. We shall, therefore, devote some time to reviewing some of these pro-
cesses in the following sections.

6.2.1 Ionization Mechanisms

As we saw in Chap. 2, the energy loss of a charged particle in matter is essentially divid-
ed between two types of reaction: (1) excitation, and (2) ionization in which a free elec-
tron and ion are created. The excitation of an atom, X,

X+p->X*+p, (6.2)

where p is a charged particle, is a resonant reaction which requires the correct amount
of energy to be transferred. Typical cross-sections in noble gases at resonance [6.2] are
on the order of ¢ =10~ !" cm? While no free electrons or ions are created, the excited
molecule or atom may participate in further reactions which do result in ionization.
This is discussed later.

For an ionization,

X+p-Xt+p+te , 6.3)

there is, of course, no exact energy requirement and, in fact, its cross-section is some-
what higher with ¢ =10~ '®cm? [6.2]. However, the ionization process has a energy
threshold which is relatively high, and since low energy transfers are more probable,
the excitation reactions generally dominate.

The electrons and ions created by the incident radiation itself, (6.3), are known as
primary ionization. In a number of these ionizations, however, a sufficiently large
amount of energy is transferred to the electron (delta-rays) such that this electron also
creates ion-electron pairs. This latter ionization is known as secondary ionization. If
their energy is high enough, the secondary ionization electrons may also ionize and so
on until the threshold for ionizing reactions is reached.

A second mechanism of ionization in gases is the Penning Effect. In certain atoms,
metastable states are excited which, because of a large spin-parity difference, are un-
able to deexcite immediately to the ground state by the emission of a photon. In such
atoms, a deexcitation may occur through a collision with a second atom resulting in the
ionization of the latter. Common examples are molecular gases on noble gases and no-
ble gases on noble gases, e.g.,

Ne*+Ar—»Ne+Ar"+e” . 6.4

A third important mechanism which occurs in noble gases is the formation of mo-
lecular ions. In this process, a positive gas ion interacts with a neutral atom of the same
type to form a molecular ion, i.e.,

He* + He—He; . 6.5)
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6.2.2 Mean Number of Electron-Ion Pairs Created

Since the occurrence of the ionizing reactions above is statistical in nature, two identi-
cal particles will not, in general, produce the same number of ion-electron pairs. We
can ask, however: What is the average number of ion-electron pairs (from all mecha-
nisms) created for a given energy loss? Note that this is nof equal to the energy loss di-
vided by the ionization potential, since some energy is also lost to excitation! For gases,
this average turns out to be on the order of 1 ion-electron pair per 30 eV of energy lost,
that is, for a 3 keV particle, an average of 3000/30 = 100 ion-electron pairs will be cre-
ated. Moreover, what is surprising is that this average value does not depend very
strongly on particle type and only weakly on the type of gas. Table 6.1 gives a compari-
son of the measured values for this average for several types of gas used in ionization
detectors.

Table 6.1. Excitation and ionization characteristics of various gases

Excitation potential Ionization potential Mean energy for
ion-electron pair creation

[eV] [eV] [eV]
H, 10.8 15.4 37
He 19.8 24.6 41
N, 8.1 15.5 35
0, 7.9 12.2 31
Ne 16.6 21.6 36
Ar 11.6 15.8 26
Kr 10.0 14.0 24
Xe 8.4 12.1 2
co, 100 13.7 33
CH, 13.1 28
C.Hyg 10.8 23

Table 6.2. Measured Fano factors for various gas mixtures

Gas F Ref.
Ar 100% 02700 6.4]

<0.40+0.03 [6.5]
Ar+80% Xe <0.21+0.03 [6.5]
Ar+24% Xe <0.23+0.02 [6.5]
Ar+20% Xe <0.16+0.02 [6.5]
Ar+5% Xe <0.14+0.03 [6.5]
Ar+5% Kr <0.37+0.06 [6.5]
Ar +20% Kr <0.12+0.02 [6.5]
Ar+79% Kr <0.13+0.02 [6.5]
Xe 100% <0.15+0.01 [6.6]

<0.15+0.03 [6.5]
Kr 100% <0.23+0.01 [6.6]

<0.19+0.02 [6.5]
Kr+1.3% Xe <0.19+0.01 [6.6]
Kr+20% Xe <0.21+0.02 [6.6]
Kr+40% Xe <0.22+0.01 [6.6]
Kr+60% Xe <0.21+0.01 [6.6]

Kr+95% Xe <0.21+£0.01 [6.6]
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The average energy, w, required for creating an electron-ion pair is important since
it determines the efficiency and the energy resolution of the detector. From (5.6), the
resolution for a particle of energy E is

R=235 |/ Lilid , (6.6)
E

where F is the Fano factor for the gas medium. While the Fano factor is not well deter-
mined for most gases, it is clear that F is much less than 1. Table 6.2 gives some mea-
sured values for various noble gas mixtures.

6.2.3 Recombination and Electron Attachment

While the number of electron-ion pairs created is important for the efficiency and ener-
gy resolution of the detector, it is equally important that these pairs again remain in a
free state long enough to be collected. Two processes, in particular, hinder this opera-
tion: recombination and electron attachment.

When there is no electric field, ion-electron pairs will generally recombine under the
force of their electric attraction, emitting a photon in the process,

X +e sX+hv . 6.7
For molecular ions, a similar recombination reaction occurs
X +Y">XY+hv . (6.8)

In general, the rate of recombinations will depend on the concentrations of the posi-
tive and negative ions so that,

dn=bn n*dt, 6.9)

where b is a constant dependent on the type of gas and n* and n~ are the positive and
negative ion concentrations respectively. If we set n* = n~ = n, integration then yields
the result

n
n=—-293__ (6.10)
1+ bno t
where ny is the initial concentration at ¢ = 0.
Electron attachment involves the capture of free electrons by electronegative atoms
to form negative ions,

e +X->X +hv. (6.11)

These are atoms which have an almost full outer electron shell so that the addition of
an extra electron actually results in the release of energy. The negative ion formed is
consequently stable. The energy released in this capture is known as the electron affini-
ty. Clearly, therefore, the presence of any electronegative gases in the detector will
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severely diminish the efficiency of electron-ion collection by trapping the electrons be-
fore they can reach the electrodes. Some well known electronegative gases are O,, H,0,
CO,, CCl, and SF4. The noble gases He, Ne, Ar, in contrast, have negative electron af-
finities.

6.3 Transport of Electrons and Ions in Gases

For ionization detectors, an understanding of the motion of the electrons and ions in
gases is extremely important as these factors influence many operating characteristics
of the detector. For the most part, this motion is described by the classical kinetic theo-
ry of gases. Two phenomena are of particular importance: diffusion, and drift in an
electric field.

6.3.1 Diffusion

In the absence of an electric field, electrons and ions liberated by passing radiation dif-
fuse uniformly outward from their point of creation. In the process they suffer multiple
collisions with the gas molecules and lose their energy. They thus come quickly into
thermal equilibrium with the gas and eventually recombine. At thermal energies, the
velocities of the charges are described by the Maxwell distribution which gives a mean
speed of

. I/ 84T (6.12)
mm

where k is Boltzmann’s constant, 7 the temperature and m the mass of the particle.
Quite obviously, the average speed of the electrons is much greater than that of the ions
due their smaller mass. At room temperature, the electron speed is a few times 10® cm/s
while the positive ion speeds are on the order of 10*cm/s.

From kinetic theory, the linear distribution of charges after diffusing a time ¢ can be
shown to be Gaussian,

2
AN No (- ), (6.13)
where N, is the total number of charges, x the distance from the point of creation and
D the diffusion coefficient. The rms spread in x is thus

a(x)=)/2Dt . (6.14)

If three dimensions are considered, the spherical spread is given by

a(r)=J|/6Dt , (6.15)

where r is the radial distance. The radial spread of ions in air under normal conditions,
for example, is about 1 mm after 1 second [6.3]. The diffusion coefficient is a parame-
ter which can be calculated from kinetic theory and can be shown to be
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D=1vi, (6.16)

where A is the mean free path of the electron or ion in the gas. For a classical ideal gas,
the mean free path is related to the temperature 7, and the pressure p, by

__1 kT (6.17)

]ﬁaop’

where g is the total cross section for a collision with a gas molecule. Substituting (6.12)
and (6.17) into (6.16) then gives the explicit expression

3
p=_2 11/(”) . (6.18)

) 3)/n Poo m

The dependence of D on the various parameters of the gas now becomes evident.

6.3.2 Drift and Mobility

In the presence of an electric field, the electrons and ions freed by radiation are acceler-
ated along the field lines towards the anode and cathode respectively. This acceleration
is interrupted by collisions with the gas molecules which limit the maximum average ve-
locity which can be attained by the charge along the field direction. The average veloci-
ty attained is known as the drift velocity of the charge and is superimposed upon its
normal random movement. Compared to their thermal velocities, the drift speed of the
ions is slow, however, for electrons this can be much higher since they are much lighter.
In kinetic theory, it is useful to define the mobility of a charge as

u=u/E , (6.19)

where u is the drift velocity and E the electric field strength. For positive ions, the drift
velocity is found to depend linearly on the ratio E/p, (also known as the reduced elec-
tric field), up to relatively high electric fields. At a constant pressure, this implies that
the mobility u is a constant. For a given E, it is also quite clear that u varies as the in-
verse of the pressure p.

For ideal gases, in which the moving charges remain in thermal equilibrium, the
mobility can be shown to be related to the diffusion constant by

D/u=kT/e . (6.20)

This is the result of a classical argument and is known as the Einstein relation.

Unlike positive ions, the mobility for electrons is much greater and is found to be a
function of E. Velocities as high as a few times 10° cm/s can generally be attained be-
fore saturation sets in. The electric fields at this point are generally on the order of
1kV/cm-atm. Figure 6.3 shows some measured results for electrons in different gas
mixtures.

The gain in velocity of the electrons may also affect the diffusion rate if the mean
energy of the electrons exceeds thermal energies. The factor k7 in (6.20) is then re-
placed by this mean energy. The diffusion constant D then increases accordingly caus-
ing a greater spread of the electron cloud as given by (6.14) and (6.15). This has impor-
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tant consequences for detectors such as the drift chambers which attempt to determine
the position of a track by measuring the drift time of the ionization electrons. A more
rigorous theory of electron transport in gases is given by Palladino and Sadoulet [6.9].

6.4 Avalanche Multiplication

Multiplication in gas detectors occurs when the primary ionization electrons gain suffi-
cient energy from the accelerating electric field to also ionize gas molecules. The result-
ing secondary electrons then produce tertiary ionization and so on. This results in the
formation of an avalanche. Because of the greater mobility of the electrons, the ava-
lanche has the form of a liquid-drop with the electrons grouped near the head and the
slower ions trailing behind as shown in Fig. 6.4.

If 2 is the mean free path of the electron for a secondary ionizing collision, then
a = 1/ is the probability of an ionization per unit path length. This is better known
as the first Townsend coefficient. Figure 6.5 shows the coefficients for different gases.

If there are n electrons, then in a path dx, there will be

dn=nadx

(6.21)

new electrons created. Integrating, this yields the total number of electrons created in a

path x,

n = nyexp(ax) ,

(6.22)

Fig. 6.3. Drift velocities of elec-
trons in various gas mixtures as a
function of electric field (from
Jean-Marie et al. [6.7])
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Fig. 6.4. Avalanche formation. Since the electrons are more mobile than the positive ions, the avalanche
takes on the form of a liquid drop with the electrons at the head

Fig. 6.5. First Townsend avalanche coefficients for several gases (from Brown [6.9])

where n; is the original number of electrons. The multiplication factor is then
M = n/ng=exp(ax) . (6.23)

More generally in the case of nonuniform electric fields such as (6.1), e is a function of
X, in which case

M =exp {jga(x)dx} . (6.24)

4

While (6.24) can increase without limit, physically, the multiplication factor is limited
to about M < 10% or ax <20 after which breakdown occurs. This is known as the
Raether limit.

The multiplication factor or gas gain is of fundamental importance for the develop-
ment of proportional counters. For this reason, various theoretical models have been
developed for calculating o for different gases. A very early model by Rose and Korff
[6.10], for example, gives

£=Aexp —Bp
p E

where A and B are constants depending on the gas. A short review of this and other
models is given by Kowalski [6.11].
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6.5 The Cylindrical Proportional Counter

As an introduction to the more sophisticated particle tracking detectors which will be
discussed in the following sections, we will examine in more detail the simple propor-
tional counter described in Sect. 6.1. The ionization chamber and Geiger counter, as we
have mentioned, are not widely used in current physics experiments and are generally
found as radiation monitoring and survey instruments. Good discussions of their con-
struction and characteristics are given in the books by Knoll [6.12] and in the older
works by Rossi and Staub, and Wilkinson [6.13].

The simple proportional counter is generally used for detecting low energy x-rays on
the order of a few keV and very low energy electrons from sources which can be mixed
with the counter gas. With a filling gas of high neutron capture cross section, such as
BF; or *He, proportional counters can also be used for thermal or epithermal neutron
detection. In general, the fill gases are at normal atmospheric pressure, however, to in-
crease density and thus the efficiency, higher pressures may be used.

The basic feature of the proportional counter, of course, is the proportional gas
multiplication which occurs. In order for this to be useful, however, the geometry of
the electric field must be considered. Consider, for example, a planar detector consist-
ing of parallel anode and cathode plates with a gas filling in between. The electric field
is thus uniform and perpendicular to the plates. If a high enough voltage is applied to
the electrodes, then the electrons created in an ionizing event will be accelerated to-
wards the anode plate triggering avalanches along its path. It is not hard to see, how-
ever, that the total ionization produced will depend on the length of the path and thus
on where the ionizing event occurs. For events with the same energy, therefore, the sig-
nal amplitude will vary with position and the relation between signal and energy is lost.

This problem can be solved by using a cylindrical geometry as we have already de-
scribed in Sect. 6.1. The electric field, as we saw, is then given by (6.1). Because of the
1/r dependence, the field is relatively weak at large r but becomes intense very close to
the surface of the anode wire. If the voltage is correctly chosen, ions and electrons cre-
ated in the cylindrical volume will simply drift towards their respective electrodes. Only
when the electrons are very close to the anode wire (a few wire diameters) does the elec-
tric field become intense enough for multiplication to occur. At this point, the ava-
lanche occurs very quickly and the signal is generated. Regardless of where the ioniz-
ing event occurs, therefore, all multiplications take place in a small region about the
anode.

Figure 6.4 illustrates the development of an avalanche near the anode wire. The av-
alanche takes on a drop-like form with the electrons at the head and the positive ions in
the rear. As the drop approaches the anode wire, diffusion of the charges causes the
drop to surround the wire in the azimuthal direction. The avalanche, however, remains
highly localized in the direction along the wire. The electrons are then collected very
quickly (~1 ns) while the positive ions begin drifting towards the cathode. This ion
drift is mainly responsible for the signal seen on the electrodes as we will see in the next
section.

6.5.1 Pulse Formation and Shape

Contrary to what might be inferred from the brief description of ionization counters in
Sect. 6.1, the pulse signal on the electrodes of ionization devices is formed by induction
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due to the movement of the ions and electrons as they drift towards the cathode and
anode, rather than by the actual collection of the charges itself. Let us see how this oc-
curs. For the cylindrical proportional counter, the electric field and potential can be
written as

E(y=Yo 1
2ne r
(6.25)
o= -y <L> ,
2ne a

where r is the radial distance from the wire, V), the applied voltage, ¢ the dielectric con-
stant of the gas, and

2mne

=" 6.26
In(b/a) ( )

is the capacitance per unit length of this configuration.
Suppose that there is now a charge g located at a distance r from the central wire.
The potential energy of the charge is then

W=gqe(r) . 6.27)
If now the charge moves a distance dr, the change in potential energy is

do(r)

dw=
7 dr

dr . (6.28)

For a cylindrical capacitor, however, the electrostatic energy contained in the electric
field isw= %lCVﬁ, where /is the length of the cylinder. If the movement of the charges
is fast relative to the time that an external power supply can react to changes in the en-
ergy of the system, we can consider the system as closed. Energy is then conserved,
so that

dW= lCVOdV=q%)—dr . (6.29)
r

Thus there is a voltage change,

qg do(r) dr

= (6.30)
ICVO dr

induced across the electrodes by the displacement of the charge. Equation (6.30) is a
general result, in fact, and can be used for any configuration.

For our cylindrical proportional counter, let us assume that an ionizing event has
occurred and that multiplication takes place at a distance »’ from the anode. The total
induced voltage from the electrons is then

a
y-——9 [ 994 __ 4 1n<“+’> (6.31)
a
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while that from the positive ions is

b
A By UL B 6.32)
ICVO(H’, dr 2nel  a+r’

The sum of the two contributions is then V=V~ + V* = —g/IC and their ratio of the
contributions is

a+r'
- In
a
- . (6.33)
7
V In b
a+r'

Since the multiplication region is limited to a distance of a few wire radii, it is easy to
see that the contribution of the electrons is small compared to the positive ions. Taking
some typical values of ¢ =10 pm, b =10 mm and ' = 1 um, ¥V~ turns out to be less
than 1% of V*. The induced signal, therefore, is almost entirely due to the motion of
the positive charges and one can ignore the motion of the electrons !

With this simplification we can now calculate the time development of the pulse.
Thus,

r(t)

Vi) = gﬂdr= 4,9 (6.34)
dar 2rnel a
r(0)
To find r(¢), we have the definition (6.19)
ar_ gy =*h! (6.35)
dt 2ne r
so that
rar="CYo 4 (6.36)
27ne

Since the positive ions all come from the region close to the anode, we can set r(0) = a
for simplicity. Integration then yields

1/2
r(t) = <a2+ #CVo t> . (6.37)

ne

! The contribution of the electrons can be ignored only if they are all created near the anode. In some high
gain gases, such as the magic gas to be discussed later, this is not always the case. Indeed, ultraviolet photons
emitted in avalanches near the anode can extend the avalanche radially outward where the process is finally
halted by the low field. In such cases the path length of the electrons is long and their contribution to the in-
duced signal becomes significant [6.14].
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Fig. 6.6. Pulse signal from a cylindrical propor-
tional counter. The pulse is usually cut short by
an RC differentiating circuit with a time con-
stant 7. The figure shows the effect of two differ-
ent constants

Substituting into (6.34), we find

V)= ——2 1n<1+“CV§ t>= -9 ln<1+i> : (6.38)

4nel nea 4rel to

where t, = a’ne/uCV,. For this distance the total drift time T is
t
T==(-d) . (6.39)
a

This function is graphed in Fig. 6.6 for some typical values. Since it is not necessary to
use the entire signal, the pulse is usually differentiated (see Sect. 14.23.2) to shorten its
duration. In this manner only the faster rising part of the pulse is exploited. Depending
on the time constant of the differentiator, the fall time of the resulting pulse will vary.

6.5.2 Choice of Fill Gas

The choice of a filling gas for proportional counters is governed by several factors: low
working voltage, high gain, good proportionality and high rate capability. In general,
these conditions are met by using a gas mixture rather than a pure one. For a minimum
working voltage, noble gases are usually chosen since they require the lowest electric
field intensities for avalanche formation. Because of its higher specific ionization and
lower cost, argon is usually preferred. Pure argon as a filling gas, however, cannot be
operated with gains of more than about 10° — 10* without continuous discharge occur-
ring [6.2]. This arises because of the high excitation energy (11.6 eV) for this element.
Excited argon atoms formed in the avalanche thus deexcite giving rise to high energy
photons capable of ionizing the cathode and causing further avalanches.

This problem can be remedied by the addition of a polyatomic gas, such as methane
or alcohol. A few inorganic gases, such as CO,, BF; can also be used. These molecules
act as quenchers by absorbing the radiated photons and then dissipating this energy
through dissociation or elastic collisions. A small amount of polyatomic gas already
produces dramatic changes in counter operation. Indeed gains of up to 10° are ob-
tained. In conventional proportional counters a commonly used mixture is 90% Ar and
10% methane (CH,). This mixture is also known as PI0 gas. Another often used
quencher is isobutane.
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The gain can still be further increased by adding a judicious amount of electronega-
tive gas such as freon (CF;Br) or ethyl bromide. Apart from absorbing photons, these
gases can also trap electrons extracted from the cathode before they can reach the an-
ode to cause an avalanche. A gain of 107 can then be attained before the onset of Gei-
ger-Miiller operation.

The use of an organic quencher, unfortunately, results in further problems after
high fluxes of radiation have been absorbed. In effect, the recombination of dissociat-
ed organic molecules results in the formation of solid or liquid polymers which accu-
mulate on the anode and cathode of the detector. Positive ions reaching the cathode
must then slowly diffuse through this layer to be neutralized. When a sufficiently large
flux of radiation is present, however, the rate at which ions are produced is greater than
the number leaking through to the cathode, so that a positive charge build-up occurs.
This causes a continuous discharge in the counter which continues even after the radia-
tion is removed. Only a complete cleaning can then regenerate the counter.

One possible solution to the problem is to use inorganic quenchers; however, they
are much less efficient. The remedy instead is to add still another gas component. This
time a small quantity of nonpolymerizing agent such as methylal or propylic alcohol.
These agents then change the molecular ions at the cathode into a non-polymer species
through an ion-exchange mechanism.

For sealed gas counters, an additional problem which arises is the large amount of
quencher consumed in each detected event. At a gain of 10° and assuming 100 electron-
ion pairs/event, about 10° molecules are dissociated per event. For a 10 cm® counter
with a 90— 10% mixture at atmospheric pressure, then, changes in the operational
characteristics will be observed after a total of 10'° events [6.2]. This, of course, is not
a problem if a continuous gas flow is used.

6.6 The Multiwire Proportional Chamber (MWPC)

One of the basic requirements of experimental particle physics is the determination of
particle trajectories. Up until about 1970, all tracking devices were, for the most part,
optical in nature. Photographic emulsions, the cloud chamber, the bubble chamber,
the spark chamber, etc. all required the recording of track information on film which
was then analyzed frame by frame for events of interest. An all-electronic device, there-
fore, was greatly desired as it would allow more events to be treated more accurately.
One possibility was to construct arrays of many proportional counters tubes; however,
mechanically, this was not practical. The breakthrough occurred in 1968 with the in-
vention of the multiwire proportional chamber by Charpak [6.15]. Charpak showed, in
effect, that an array of many closely spaced anode wires in the same chamber could
each act as independent proportional counters. Moreover, with transistorized electron-
ics, each wire could have its own amplifier integrated onto the chamber frame to make
a practical detector for position sensing. The MWPC was quickly adopted in high ener-
gy physics and stimulated a new generation of physics experiments. Since their inven-
tion, they have also found other applications as x-ray imaging devices in such diverse
fields as astrophysics, crystallography, medecine, etc.

6.6.1 Basic Operating Principle

The basic MWPC consists of a plane of equally spaced anode wires centered between
two cathode planes. Typical wire spacings are 2 mm with an anode-cathode gap width



Fig. 6.7. Basic configuration of a
multiwire proportional chamber.
Each wire acts as an independent
proportional counter. The signal
on the firing wire is negative
while the signals on the neighbor-
ing wires are small and positive
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Fig. 6.8. Electric field lines and potentials in a multiwire proportional chamber. The effect of a slight wire
displacement on the field lines is also shown (from Charpak et al. [6.16])

of 7 or 8 mm. Figure 6.7 illustrates this configuration schematically. If a negative volt-
age is applied to the cathode planes, an electric field configuration as shown in Fig. 6.8
arises. Except for the region very close to the anode wires, the field lines are essentially
parallel and almost constant. If we assume an infinite anode plane with zero diameter
wires, the potential is then given by

Ve, y) = — 4CV In {4 <sin2ﬁ + sinh? ﬂ)} , (6.40)

e s N

where V is the applied voltage, s the wire spacing, and C, the anode-cathode
capacitance. If L> s> d, this last quantity is given by

2me

nL nd
— —In——

N S

C= , (6.41)

where L is the anode to cathode gap distance and d is the anode wire diameter. While
the assumptions we have made are not met in a real chamber, (6.40) and (6.41) are usu-
ally good approximations for most purposes.
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Near the anode wires the field takes on a 1/r dependence similar to the single wire
cylindrical proportional chamber. If electrons and ions are now liberated in the con-
stant field region they will drift along the field lines toward the nearest anode wire and
opposing cathode. Upon reaching the high field region, the electrons will be quickly ac-
celerated to produce an avalanche. The positive ions liberated in the multiplication pro-
cess then induce a negative signal on the anode wire as we saw in the single proportional
counter. The neighboring wires are also affected; however, the signals induced here are
positive and of small amplitude as illustrated in Fig. 6.7. In a similar manner, a positive
signal is induced on the cathode. There is thus no ambiguity as to which wire is closest
to the ionizing event.

The signal from one anode plane, of course, only gives information on one coordi-
nate of the ionizing event. The second coordinate may be obtained by using a second
detector whose anode wires are oriented perpendicularly to the first. Usually both de-
tectors are integrated into the same chamber to form an X-Y MWPC. This can be made
even more sophisticated by adding diagonal planes of wires, etc., for additional infor-
mation. (Another method for obtaining two-dimensional information is described in
Sect. 6.6.5). To measure the trajectory of a particle, two or more aligned MWPCs may
now be used to form a felescope as shown in Fig. 6.9. Reading the positions of the sig-
naling wires then allows a reconstruction of the track.

MWPC telescope
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The spatial resolution of a MWPC depends on the anode wire spacing and is typi-
cally one-half this value. In a MWPC with typical 2 mm wire spacing, therefore, the
spatial resolution is = + 1 mm. This can be increased by using a finer spacing, however,
going below 1 mm becomes difficult to work with.

An additional capability of the MWPC is multiple track resolution. Since each wire
is a separate detector, two or more tracks can in principle be detected. However, this
depends on their relative separation which must be at least as large as the wire spacing.
Even before this point is reached, however, ambiguities in the reconstruction of the
tracks may arise because of their proximity.

6.6.2 Construction

There are many methods for constructing a MWPC to which the abundant literature on
this subject bears witness. The basic mechanical problem is to support the many wires
and electrodes making up the chamber, which, for a high energy physics experiment,
can be several square meters in area. A common technique is to stretch the anode wires
out on a fiber-glass or epoxy frame and solder the ends to printed circuits which have
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been integrated onto the frame. Tungsten wires, typically 20 —40 pm in diameter, are
generally used. The entire frame structure then has the appearance of a weaving loom.
Similar frames are prepared for the cathode wire planes which can also be made of thin
metal foils, wire mesh or thin strips of conducting material, and the detector windows
which are usually made of mylar. The frames are then stacked and bolted together with
the appropriate O-rings, etc., to assure gas tightness.

The alignment of the anode wires is, of course, critical for precise position measure-
ment and it is important to consider their mechanical and electrical stability. When
voltage is applied to the electrodes, there is an electrostatic repulsion between the wires
which must be compensated by the mechanical tension in the wires. For a given voltage
V and wire length L, the minimum mechanical tension [6.3] required is given by

2
T>_1 <CVL>, (6.42)

dre s

where s is the wire spacing and C is the capacitance of the chamber. The maximum ten-
sion that can be applied, of course, depends on the wire thickness and elasticity. If the
tension is insufficient, then the wires find a new equilibrium state in which they are al-
ternatively displaced up and down, out of the plane of the anode.

A similar problem which arises is the attraction of the cathode towards the anode.
In larger chambers, this can result in a curving in of the cathode near the center. This
changes the gap width which then affects the multiplication factor of the detector. In
such cases, a support structure of some kind must be placed in the gap. This, of course,
modifies the electric field in the gap which then necessitates some sort of correcting
electrode to restore the field.

For further details on chamber construction, we refer the reader to [6.2 — 3] and the
references therein. Some more recent references are also given in [6.17].

6.6.3 Chamber Gas

The requirements for the fill gas of a multiwire chamber are identical to those for a sim-
ple proportional counter. A very high gain gas mixture which is widely used is the so-
called “magic gas” consisting of Ar (75%), isobutane (24.5%) and freon-13B1 (0.5%),
where the proportions are in volume. A small quantity of methylal may also be added
to this mixture. The function of each of these components is described in Sect. 6.5.2.
This gas was discovered early in the development of the MWPC and provides gains of
close to 107. At this level of multiplication the signals are saturated and are thus inde-
pendent of energy. However, they are fast because of the significant contribution of the
electrons (see footnote in Sect. 6.5.1) and provide good timing resolution. The detec-
tor, moreover, is extremely efficient and the large signal amplitudes greatly simplify the
readout electronics.

With modern low-noise, fast electronics, however, other gas mixtures perhaps with
lower gain can be used to optimize other characteristics, for example, sensitivity to cer-
tain radiation type, energy resolution, high rate capability, etc.

6.6.4 Timing Resolution

The MWPC is a relatively fast detector and can also be used in timing applications. The
timing resolution of the MWPC depends essentially on the drift time of the electrons.
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The pulse on an anode wire, as we saw in Sect. 6.5.1, is induced by the positive ions in
the avalanche as they drift towards the cathode. About 8% of this signal (see Fig. 6.6)
is in the first 10 ns of the pulse so that the leading edge is quite fast. The timing uncer-
tainty from this source is thus small. The limiting factor, instead, is the time spread be-
tween the arrival of the event and the occurrence of the avalanche at the anode. For a
charged particle which traverses the chamber, ionization is distributed throughout the
gap so that electrons will continue to arrive over a long period of time. The leading edge
of the pulse thus rises in an approximately linear fashion. The first electrons to arrive,
however, are those which pass closest to an anode wire. This distance cannot be more
than a half a wire spacing so that the uncertainty in timing is not more than the time it
takes for electrons to drift a half a wire spacing. For a typical two mm wire spacing,
this is about =25 —30 ns.

In the case of x-ray detection, the timing resolution is even better because of the
short range of the conversion electrons. All electrons essentially arrive within a few
nanoseconds of each other which greatly reduces the time spread.

6.6.5 Readout Methods

The information from a MWPC may be extracted in a number of different ways. The
standard method is to consider each wire in the chamber as a separate detector connect-
ed to its own electronics. A typical pulse processing circuit for one wire is shown in Fig.
6.10. The signal is first amplified, then discriminated and shaped to a standard logic
level. To allow selection or rejection of events, a gate preceded by an appropriate delay
is added. A gating signal from the trigger or some other part of the electronics system
can then be used to select only those events desired. Events passing through the gate are
then stored in a memory from which the entire wire pattern of the chamber can later be
readout by a computer. Besides serving to reject unwanted events the gate pulse can al-
so be used to optimize detector performance by filtering events with multiple firing of
the anode wires. This is discussed in the next section.

In addition to the separate wire readout method, a number of analog methods have
been developed for obtaining one and two-dimensional information from one plane of
anode wires only. These methods make use of the fact that the avalanche at the anode is
also highly localized along the length of the wire. Information on this point can be ob-
tained in a number of ways.

The center of gravity of method exploits the signals induced on the cathode of the
MWPC. If the cathodes are arranged as a series of strips with one plane oriented parallel
to the anode wires and the other orthogonally, then the situation in Fig. 6.11 arises. The
induced signals are largest on the strip closest to the avalanche and diminish propor-
tionately with distance from the avalanche point. If y;is the coordinate of the ith strip
and Q;is the measured charge on that strip, then the avalanche point can be estimated
by calculating the center of gravity,

Write Read
gate gate
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Fig. 6.10. Block diagram of the
Write Read readout electronics for a MWPC
enable enable anode wire
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where b is a small bias which is subtracted from each Q; in order to correct for the dis-
persive effects of noise [6.19]. The x coordinate is obtained in a similar manner from
the opposite cathode plane. While this should in principle give the same result as the an-
ode signal, a better resolution in this coordinate can actually be obtained in some cases.
This depends on the symmetry of the avalanche around the anode wire and consequent-
ly on the type of radiation being detected. With soft x-rays, a resolution of 35 um has
been obtained [6.20] in the y-direction along the anode wire, and a somewhat worse res-
olution in x. With a high energy charged particle beam, however, a resolution of closer
to 100 uym is more typical.

The method of charge division relies on the fact that the charge collected at either
end of a resistive anode wire is divided in proportion to the length of wire from the
point at which the charge is injected. This is illustrated in Fig. 6.12. If Q4 and Qp are
the charges collected then the coordinate along the wire is

y=L —Q—‘i— , (6.44)

Q4+ Qs

where L is the length of the wire. Accuracies as high as 0.4% of the wire length have
been obtained [6.21].

One of earliest and simplest analog methods is the delay line technique which was
developed before the current sophisticated electronics for MWPCs became available.
In this technique, external delay lines are capacitively coupled to the cathode or anode

Resistive anode

wire
GB |e——y ——‘
Avalanche
l l A Ga Fig. 6.12. Charge division method for
ADC ADC L Ga*Qp coordinate readout on MWPC’s
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planes of the chamber [6.21]. Using the anode signal or some other triggering signal as
a start, the time difference between the arrival of the signals at the ends of the delay line
are measured. This then yields the two coordinates of the avalanche.

6.6.6 Track Clusters

Up to now, we have assumed that only one wire fires per event; this is usually not the
case under real conditions. Particles traversing the chamber at an angle to the anode
plane generally produce a cluster of firings as they cross over several wires as shown in
Fig. 6.13. Moreover, even with perpendicularly incident particles, the creation of high
energy ionization electrons (delta rays) will also produce multiple firings a fraction of
the time. Because of the differing distances to the anode, the wires signals are spread
out over a time period corresponding to the drift times of the electrons. The desired sig-
nal, of course, is the one which is closest to the event and the one which arrives first.
One way to limit the cluster size is by adjusting the width of the gating signal in the
readout electronics so that the late arriving electrons are eliminated. This can usually
limit cluster size to 1 or 2 wires depending on the track angle.
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| Fig. 6.13. Track clusters caused by particles arriving at
an angle to the anode plane

/

The optimum gate width can be found by placing the MWPC in a well collimated
beam and varying the width while recording the number of single and multiple firings.
The point at which the single firings are at a maximum and the multiple firings at a
minimum then determines the optimum gate width. In typical chambers with 2 mm
wire spacing and 8 mm gaps, the minimum gate time is about 30 ns. With smaller gate
widths, good events begin to be rejected and the detection efficiency drops.

The cluster size for an event may also be controlled by increasing the amount of
electronegative gas mixed with the chamber gas. Electrons produced in the far regions
will then have a smaller probability of reaching the anodes thus limiting the number of
wires producing a signal. The amount of electronegative gas that can be added, of
course, is limited by the requirement for a good overall efficiency of the chamber.

6.6.7 MWPC Efficiency

The intrinsic efficiency of the MWPC depends on the number of electron-ion pairs pro-
duced and collected in the chamber. As such it is dependent on the dE /dx of the fill gas, the
width of the gap, the pressure of the gas, the amount of electronegative gases, the high
voltage applied, the threshold set on the electronics, the gate width on the readout, etc.
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Assuming that the dimensions of the chamber gap and the stopping power and com-
position of the fill gas are adequate, the determining factors for the efficiency of a giv-
en chamber are the high voltage and the electronics. For the typical chambers we have
been describing, the efficiency for charged particles can be very high, in fact, with val-
ues on the order of 98 —99% or more. Figure 6.14 shows the measured efficiency for
single tracks in a typical MWPC filled with magic gas as a function of the applied volt-
age. This measurement was performed by placing the chamber in a proton beam along
with two beam-defining scintillation counters sandwiching the chamber. Using the co-
incidence between the counters as a trigger, the number of single tracks observed versus
the number of triggers then yields the efficiency. As can be seen, a plateau is obtained
at which the efficiency is close to 100%. The working voltage is then usually set at some
point near the middle of this plateau.

The threshold on the electronics and the gate width on the readout are also impor-
tant as we have mentioned. The threshold, of course, must be low enough such that all
valid signals will be accepted but high enough so that noise will be rejected. In general,
a threshold of about 1/10 of the peak amplitude is sufficient [6.3] for 100% detection
efficiency of minimum ionizing particles. In typical MWPCs this is about 0.5 mV on
1 kQ. The width of the gate on the readout electronics must also be sufficiently large so
as not to lose events. The minimum width as we have indicated is about 30 ns.

The efficiency of a chamber is also dependent on the count rate. At a fixed voltage,
the efficiency will generally decrease as the incident flux is increased. This is the result
of a space charge build-up around the chamber wires due to the positive ions released in
avalanches. Since their drift velocities are low, an accumulation of ions occurs as the
number of avalanches increases. The effect of this charge is to alter the electric field
and lower the gain around the wire. The pulse height spectrum is then shifted down-
ward so that part of it is lost below the threshold thereby causing the efficiency to drop.
This loss can be recovered to some extent by raising the voltage, however, the plateau
will generally be narrower. The threshold may also be lowered, if possible. As a general
rule, the maximum flux rate for per unit length of MWPC wire is about 10*/s per mil-
limeter.
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6.7 The Drift Chamber

Early in the development of the MWPC, it was realized that spatial information could
also be obtained by measuring the drift time of the electrons coming from an ionizing
event. If a trigger is available to signal the arrival of a particle and the drift velocity is
known, then the distance from the sensing wire to the origin of the electrons is

]
x=fudt, (6.45)

)

where £, is the arrival time of the particle and ¢, is the time at which the pulse appears at
the anode. In practice, of course, it is highly desirable to have a constant drift velocity,
u, and hence a constant electric field, so as to have a linear relationship between time
and distance. Drift chambers exploiting this aspect of electron transport were built
shortly after the MWPC and have been used extensively in particle physics ever since.

Figure 6.15 schematically illustrates the basic operation of a drift chamber. The
drift cell is defined at one end by a high voltage electrode and at the other end by the
anode of a simple proportional counter. In order to create a constant electric field, a se-
ries of cathode field wires individually held at appropriate voltages line the drift region.
To signal the arrival of a particle, a scintillation counter covering the entire sensitive
area is placed before or after the chamber. A particle traversing the chamber and scin-
tillator, now, liberates electrons in the gas which then begin drifting towards the anode.
At the same time, the fast signal from the scintillator starts a timer. The signal created
at the anode as the drifting electrons arrive then stops the timer to yield the drift time.

Charged particle

. Drift voltage
Anode wire ~HV1

+HV2

[ ] Fig. 6.15. Basic operating principle of
Scintillation counter the drift chamber (from Sauli [6.3])

While drift paths as long as 50 cm have been used with this simple structure, the
usual drift region is about 5— 10 cm. Shorter pathlengths minimize the effect of diffu-
sion and avoid the use of very high voltages. With typical drift velocities of about
S cm/us, this then yields drift times of 1 or 2 ps. This is also known as the memory time
of the chamber. To cover a wider surface area, many adjacent drift cells can be used.
Drift chambers several meters long have been constructed in this manner. To obtain
several points on a track, several drift chambers with different wire orientations may
also be stacked together.

In principle, the chamber structure used for a MWPC may also be employed for
drift chambers as well. The wire spacings, of course, will be somewhat larger so as to
have a more reasonable drift time. A problem, however, is the nonuniformity of the
field in the inter-anode wire gap (see Fig. 6.8). To correct this, additional field wires are
usually added in the space between anode wires. One design optimized for high-resolu-
tion [6.22] is shown in Fig. 6.16. Here, the potential on the cathode wires is not con-
stant, but instead, uniformly graded downwards from O (ground) on the wire facing the
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Fig. 6.16. Drift chamber design using interanode field wires (from Breskin et al. [6.22])

anode sense wire to a high negative voltage on the cathode wires facing the field wires
on either side of the anode. The resulting equipotential lines are also shown in the
figure.

While Fig. 6.16 shows a planar design, drift chambers can also be made in cylindri-
cal form. Such chambers then give information on the r and ¢ coordinates of a particle
trajectory. These are very much used at collider machines for direct visualization of
outgoing particle tracks [6.23] without having to mathematically fit the detected coor-
dinates. This requires many points on a track to be measured and thus a high density of
wires. This also results in a better resolution of vertices and multiple tracks.

The advantage of drift chambers is the relatively small amount of wires and elec-
tronics required and the large surface areas which can be covered. They are generally
easier to operate, however, much more attention must be given to the fill gas and the
field uniformity if good resolution is desired. Like the MWPC, the maximum counting
rates are also limited to about 10%/s-mm per wire. Since there are less wires in a drift
chamber, however, the maximum allowable flux on a drift chamber is generally less
than for an MWPC.

6.7.1 Drift Gases

Since a precise knowledge of the drift velocity is necessary to operate drift chambers,
the choice of a fill gas is of utmost importance. The basic criteria for choosing a drift
gas are generally the same as those for a MWPC, however, particular attention must be
given to the drift properties.

The purity of the gas, of course, is very important. In particular, if electronegative
gases are present, electrons will be captured as they drift to the anodes. The allowable
level for these impurities depends on the length of the drift path: the longer this path,
the higher the required purity level.

To maximize operational stability, a gas exhibiting drift velocity saturation at not
too high electric fields should be chosen. Some examples can be seen in Fig. 6.3 which
shows the drift velocities of electrons in some gases flattening out over a range of elec-
tric field intensities. When operated in this region, the drift velocity is then less sensitive
to field inhomogeneities, changes in the operating voltage, temperature, etc.

The magnitude of the drift velocity must also be considered. If the chamber is to op-
erate at high count rates, then the drift velocity must be high so as to minimize dead
time. If, instead, high spatial resolution is desired, a slower drift velocity is required to
minimize timing errors. High drift velocities can be obtained with CF, and a hydrocar-
bon quencher [6.24], for example, while slow velocities are observed in gases such as di-
methylether (DME) [6.25], CO,, or He — C,Hg.
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6.7.2 Spatial Resolution

The spatial resolution of a drift chamber depends on how well the relation between
drift time and space coordinate is known and the amount of diffusion suffered by the
electrons as they drift. The latter factor depends on the length of the drift path. If we
assume a uniform drift velocity, then it can be seen from (6.14), that the spread in the
electron cloud after a distance x is simply

o= |/ 2Dx (6.46)
UE

The width of the diffusion distribution thus goes as the square root of the drift path.
(This is not the error in localizing the center of the distribution, however. Recalling
Sect. 4.4.4, the error is ¢/ W where n is the number of electrons in the cloud). To
obtain higher spatial resolutions, therefore, a smaller drift length is necessary. With a
5 cm drift path, resolutions on the order of 100 um can be obtained. The intrinsic accu-
racy of the drift chamber can be much better, of course, and has been measured to be
as low as 50 um over a drift space of about 5 mm [6.3].

In more recent years, much effort has been put into designing very high resolution
chambers with spatial resolutions of 50 um or less for the next generation of high-ener-
gy experiments. These efforts have included searches for new low-diffusion, low drift
velocity gases and new chamber designs and concepts. Operation at high pressure has
also been investigated as a means of reducing diffusion as well as a new means of tim-
ing by triggering on the scintillation light emitted by the avalanche. A review of some of
these efforts up to the time of this writing may found in [6.20] and [6.26].

6.7.3 Operation in Magnetic Fields

A common occurrence in particle physics experiments is the location of the detector in
or near the field of a magnet. In such cases, it is quite obvious that the path of the drift-
ing electrons and the drift velocity will be altered by the Lorentz force. A precise
knowledge of the magnetic field is then necessary in order to correlate the drift time
with position. In some cases also, it may be possible to adjust the electric field direction
so as to compensate the effects of the magnetic field.

6.8 The Time Projection Chamber (TPC)

The most sophisticated of the current ionization detectors is the time projection cham-
ber or TPC. This device is essentially a three-dimensional tracking detector capable of
providing information on many points of a particle track along with information on
the specific energy loss, dE/dx, of the particle. For this reason, the TPC has been re-
ferred to as an electronic bubble chamber. 1t has played an essential role in physics ex-
periments at high-energy electron-positron colliders and more recently has been pro-
posed for use in many other types of experiments [6.27, 28].

The TPC makes use of ideas from both the MWPC and drift chamber. Its basic
structure is sketched in Fig. 6.17. The detector is a essentially a large gas-filled cylinder
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with a thin high voltage electrode at the center. At high energy colliders, the diameter
and length of the cylinder can be as large as two meters. When voltage is applied, a uni-
form electric field directed along the axis is created. A parallel magnetic field, the func-
tion of which will be explained in a moment, is also applied. The ends of the cylinder
are covered by sector arrays of proportional anode wires arranged as shown. Parallel to
each wire is a cathode strip cut up into rectangular segments. These segments are also
known as cathode pads.

At a collider machine, the detector is positioned so that its center is at the interac-
tion point. The TPC thus subtends a solid angle close to 4 7. Particles emanating from
this point pass through the cylinder volume producing free electrons which drift to-
wards the endcaps where they are detected by the anode wires as in a MWPC. This
yields the position of a space point projected onto the endcap plane. One coordinate is
given by the position of the firing anode wire while the second is obtained from the sig-
nals induced on the row of cathode pads along the anode wire. Using the center-of-
gravity method described in Sect. 6.6.5, this locates the position of the avalanche along
the firing anode wire. The third coordinate, along the cylinder axis, is now given by the
drift time of the ionization electrons. Since all ionization electrons created in the sensi-
tive volume of the TPC will drift towards the endcap, each anode wire over which the
particle trajectory crosses will sample that portion of the track. This yields many space
points for each track allowing a full reconstruction of the particle trajectory. This is il-
lustrated in more detail in Fig. 6.18.

Because of the relatively long drift distance, diffusion, particularly in the lateral di-
rection, becomes a problem. This is remedied by the parallel magnetic field which con-
fines the electrons to helical trajectories about the drift direction. This turns out to re-
duce diffusion by as much as a factor of 10. In order to avoid deviating the trajectories
of the drifting electrons, the magnetic and electric fields must be in perfect alignment
and uniform over the volume of the drift zone down to about one part in 10%.

A problem which arises during operation is the accumulation of a space charge in
the drift volume due to positive ions from avalanches drifting back towards the central
cathode. These ions are sufficiently numerous that a distortion of the electric field in
the drifting volume occurs. This is prevented by placing a grid at ground potential just
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Fig. 6.18. Sampling the space points on a particle
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Fig. 6.19. Various views of TPC reconstructed tracks from an event in which an incident muon decays into a
positron. The muon track is denoted by a M (from Lillberg [6.31])

before the anode wires. Positive ions are then captured at this grid rather than drifting
back into the sensitive volume. The grid also serves to separate the drift region from
the avalanche zone and allows an independent control of each.

Since the charge collected at the endcaps is proportional to the energy loss of the
particle, the signal amplitudes from the anode also provide information on the dE/dx
of the particle. If the momentum of the particle is known from the curvature of its tra-
jectory in the magnetic field, for example, then this information can be used to identify
the particle?. In order for this method to work, however, sufficient resolution in the
dE/dx measurement must be obtained. This is much more difficult to realize as many
factors must be considered, e.g., electron loss due to attachment, wire gain variations
in position and time, calibration of the wires, saturation effects, choice of gas and op-
erating pressure, etc., all of which require careful thought!

Because of the very large amount of data produced for each event, an important
consideration is the readout and data acquisition system for a TPC. The original TPC

2 A general review of the particle identification method using dE/dx measurements is given in [6.29].
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used at the PEP electron-positron collider employed charged-coupled devices (CCDs)
to store the information [6.30] from the sense wires for later readout by slower ADCs.
Charge-coupled devices are essentially analog shift registers capable of storing time and
pulse height information. The CCD continuously samples information from the TPC
wires at a rate determined by an external clock (about 15 MHz) and dumps this infor-
mation as long as there is not a trigger signifying a valid event. If a trigger signal arrives
indicating a valid event, however, the clock rate is slowed down by about a factor of
100 and the CCD contents read and digitized by ADCs. The information is then passed
to a computer for track reconstruction.

A second approach which has been used in later TPCs is to use flash ADCs (see
Sect. 14.11) directly coupled to the sense wires. These ADCs are sufficiently fast such
that several wires can be multiplexed into one ADC. A description of one such readout
and data acquisition system is given in [6.31]. Figure 6.19 shows a reconstructed event
from a TPC.

6.9 Liquid Ionization Detectors (LID)

With the ever increasing requirements of nuclear and high-energy experiments, physi-
cists have for some time now looked at the possibility of using liquids as an ionizing
medium. Liquids, of course, present many advantages such as higher density and lower
diffusion. Per unit length of liquid, therefore, a greater number of ion-electron pairs
will be created. This, for example, would allow MWPCs with smaller gap and wire
spacings to be constructed. The smaller gap thickness, in turn, would also result in
smaller wire clusters. Similarly, lower diffusion would result leading to less track
broadening and a higher spatial resolution.

Liquids, unfortunately, suffer from a number of problems. Relative to gases, for
example, ionization and transport phenomena in liquids are much less well understood.
The principal problem, however, is technical: the presence of electronegative impurities
such as oxygen which can attach drifting electrons. This requires purification to very
high levels which is not always realizable for a given liquid. This situation has essential-
ly restricted the choice of liquid ionization media to the noble elements, particularly ar-
gon and xenon, and a few hydrocarbons in which attaining a high level of purity would
appear to be technically feasible. Since the boiling points of these elements are at low
temperatures, this also implies an additional cryogenic system for these detectors.

The use of LID’s dates back to the early 1950s when Marshall [6.32] was the first to
build a small centimeter-size liquid detector and to actually use it in an experiment. Be-
cause of the successful development of semiconductor detectors at that time, however,
LID research remained relatively inactive until the late 1960s when Luis Alvarez’ group
at Berkeley began investigating the use of liquified noble gases in wire chambers as a
means of increasing spatial resolution. So as to keep the electronics simple, it was
hoped that multiplication could be induced in the liquid to provide a larger signal. The
experiments, however, were only partially successful. A type of Geiger-Miiller multipli-
cation was, in fact, observed in a simple cylindrical counter filled with liquid argon
(LA) [6.33], however, the detection efficiency was very low (<20%). Better results
were obtained with liquid xenon (LXe) in which proportional multiplication and an
almost 100% detection efficiency were observed [6.34]; however, an impurity level of
better than a few parts per million was necessary which required a long, painstaking
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purification process. Moreover, very thin wires (3.5 um) were required to obtain suffi-
cient gain. Based on this experience, a small multi-wire LXe ionization chamber with
12 um wires was constructed and demonstrated [6.35] to have a spatial resolution of
+15 pm. Given the thickness of the wires, no proportional multiplication was ob-
served. Despite this success, however, developments in this direction have been very
slow probably because of the many technical difficulties involved and the lack of un-
derstanding of ionization and charge transport processes in liquids. More recently, a
prototype micro-strip ionization chamber [6.36] has been operated with a resolution of
less than 8.5 pm. Again, however, many technical problems still remain.

At present, the only type of liquid ionization detector currently in routine use is the
liquid argon calorimeter first introduced by Willis and Radeka [6.37] for electromagnetic
shower detection in high energy physics experiments. This instrument essentially con-
sists of a horizontal stack of equally-spaced steel plates immersed in liquid argon as
shown in Fig. 6.20. By applying a voltage between the steel plates, this forms a series of
ionization chambers in which the plates act as electrodes and the LA as an ionizing me-
dium. Since the gaps are small on the order of 2 cm, the required purity level for the LA
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is only a few parts in a million, which is readily achieved for this liquid. High energy
photons incident on the calorimeter face convert on the steel plates creating an electro-
magnetic shower which is absorbed by the following layers of steel and LA. The ioniza-
tion created in each layer of argon allows one to sample the energy deposited by the
shower as it develops. Since the entire shower is absorbed, the total ionization collected
is proportional to the total energy of the shower. Such calorimeters have since become
standard devices in high-energy experiments and similar instruments have been devel-
oped for hadron showers as well. A review of the calorimetric technique in general is
given in [6.38].

Despite the many technical problems, the attractiveness of liquids has nevertheless
led to proposals for more sophisticated detectors such as the liquid argon drift chamber
[6.40] and the liquid argon TPC [6.41]. Because drift paths of a few tens of centimeters
will be called for in these detectors, a purity level of less than 1 part in a billion will
be necessary. Moreover, this purity must be maintained in the detector for long
periods. This is to be contrasted to the LA calorimeter where purities of 1 ppm are
generally used. Measurements of electron drift in a liquid argon [6.42] test chamber
using a relatively simple purification system have been encouraging, however, yielding
a purity of 0.2 ppb of oxygen equivalent and a measured extrapolated attenuation
length of 7m at an electric field strength of 1 kV/cm.

As a final remark, we note the relatively recent research into new ionization liquids.
While LA can be purified to very high levels, the cryogenic system required proves to
be cumbersome and constraining. For this reason, some physicists have begun search-
ing for a suitable room-temperature liquid with the required drift properties and purity.
Nonpolar organic liquids such as tetramethylsilane (TMS) or 2,2,4,4-tetramethylpen-
tane (TMP) appear to show some of the desired properties and are now currently under
investigation. A general review of the physics and chemistry of these liquids is given
in [6.43].



7. Scintillation Detectors

The scintillation detector is undoubtedly one of the most often and widely used particle
detection devices in nuclear and particle physics today. It makes use of the fact that cer-
tain materials when struck by a nuclear particle or radiation, emit a small flash of light,
i.e. a scintillation. When coupled to an amplifying device such as a photomultiplier,
these scintillations can be converted into electrical pulses which can then be analyzed
and counted electronically to give information concerning the incident radiation.

Probably the earliest example of the use of scintillators for particle detection was
the spinthariscope invented by Crookes in 1903. This instrument consisted of a ZnS
screen which produced weak scintillations when struck by a-particles. When viewed by
a microscope in a darkened room, they could be discerned with the naked eye, although
some practice was necessary. It was tedious to use, therefore, and thus never very popu-
lar, even though it was spectacularly employed by Geiger and Marsden in their famous
o scattering experiments. Indeed, with the invention of the gaseous ionization instru-
ments, the optical scintillation counter fell into quick disuse.

In 1944, not quite a half century later, Curran and Baker resuscitated the instru-
ment by replacing the human eye with the then newly developed photomultiplier tube.
The weak scintillations could now be counted with an efficiency and reliability equal to
that of the gaseous ionization instruments. Thus was born the modern electronic scin-
tillation detector. New developments and improvements followed rapidly so that by the
mid-1950’s scintillation detectors were among the most reliable and convenient avail-
able. This is still true today. In this chapter, we will survey the existing materials and
current techniques in use as well as describe their basic underlying principles.

7.1 General Characteristics

The basic elements of a scintillation detector are sketched below in Fig. 7.1. Generally,
it consists of a scintillating material which is optically coupled to a photomultiplier
either directly or via a light guide. As radiation passes through the scintillator, it excites
the atoms and molecules making up the scintillator causing light to be emitted. This

Thin window Mu metal Shield Iron protective Shield

PM Base
(Voltage divider network)

Photomultiplier

7 7772777777 ik

Scintillator

Fig. 7.1. Schematic diagram of a
scintillation counter
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light is transmitted to the photomultiplier (PM or PMT for short) where it is converted
into a weak current of photoelectrons which is then further amplified by an electron-
multiplier system. The resulting current signal is then analyzed by an electronics sys-
tem.

In general, the scintillator signal is capable of providing a variety of information.
Among its most outstanding features are:

1) Sensitivity to Energy. Above a certain minimum energy, most scintillators behave in
a near linear fashion with respect to the energy deposited, i.e., the light output of a
scintillator is directly proportional to the exciting energy. Since the photomultiplier
is also a linear device, (When operated properly!), the amplitude of the final electrical
signal will also be proportional to this energy. This makes the scintillator suitable as
an energy spectrometer although it is not the ideal instrument for this purpose.

2) Fast Time Response. Scintillation detectors are fast instruments in the sense that
their response and recovery times are short relative to other types of detectors. This
faster response allows timing information, i.e., the time difference between two
events, to be obtained with greater precision, for example. This and its fast recovery
time also allow scintillation detectors to accept higher count rates since the dead
time, i.e., the time that is lost while waiting for the scintillator to recover, is reduced.

3) Pulse Shape Discrimination. With certain scintillators, it is possible to distinguish
between different types of particles by analyzing the shape of the emitted light
pulses. This is due to the excitation of different fluorescence mechanisms by particles
of different ionizing power. The technique is known as pulse-shape discrimination
and is discussed in more detail later in this chapter.

Scintillator materials exhibit the property known as /uminescence. Luminescent ma-
terials, when exposed to certain forms of energy, for example, light, heat, radiation,
etc., absorb and reemit the energy in the form of visible light. If the reemission occurs
immediately after absorption or more precisely within 10 785 (10 =% s being roughly the
time taken for atomic transitions), the process is usually called fluorescence. However,
if reemission is delayed because the excited state is metastable, the process is called
phosphorescence or afterglow. In such cases, the delay time between absorption and
reemission may last anywhere from a few microseconds to hours depending on the ma-
terial.

As a first approximation, the time evolution of the reemission process may be
described as a simple exponential decay (Fig. 7.2)

=ﬂexp<‘f> , (71.1)
Td Td

where N is the number of photons emitted at time ¢, N, the total number of photons
emitted, and 7,4 the decay constant. The finite rise time from zero to the maximum in
most materials is usually much shorter than the decay time and has been taken as zero
here for simplicity.

While this simple representation is adequate for most purposes, some, in fact, ex-
hibit a more complex decay. A more accurate description, in these cases, may be given
by a two-component exponential

N=Aexp<__i>+3exp<_’> , (71.2)
Tr Ts
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Fig. 7.2. Simple exponential decay of fluorescent radiation. The rise Fig. 7.3. Resolving scintillation light into fast (prompt) and slow
time is usually much faster than the decay time (delayed) components. The solid line represents the total light decay
curve

where 7, and 77 are the decay constants. For most scintillators, one component is gener-
ally much faster than the other so that it has become customary to refer to them as the
fast and slow components (hence the subscripts f and s), or the prompt and delayed
components. Their relative magnitudes, A and B, vary from material to material, al-
though it is the fast component which generally dominates. Figure 7.3 shows the rela-
tion between these components. As will be seen in a later section, the existence of these
two components forms the basis for the technique of pulse shape discrimination.

While many scintillating materials exist, not all are suitable as detectors. In general,
a good detector scintillator should satisfy the following requirements:

1) high efficiency for conversion of exciting energy to fluorescent radiation

2) transparency to its fluorescent radiation so as to allow transmission of the light

3) emission in a spectral range consistent with the spectral response of existing photo-
multipliers

4) a short decay constant, .

At present, six types of scintillator materials are in use: organic crystals, organic lig-
uids, plastics, inorganic crystals, gases and glasses. In the following sections we will
briefly describe each category. Their basic properties are summarized in Table 7.1.

7.2 Organic Scintillators

The organic scintillators are aromatic hydrocarbon compounds containing linked or
condensed benzene-ring structures. Their most distinguishing feature is a very rapid de-
cay time on the order of a few nanoseconds or less.

Scintillation light in these compounds arises from transitions made by the free va-
lence electrons of the molecules. These delocalized electrons are not associated with any
particular atom in the molecule and occupy what are known as the n-molecular orbit-
als. A typical energy diagram for these orbitals is shown in Fig. 7.4, where we have dis-
tinguished the spin singlet states from the spin triplet states. The ground state is a sin-
glet state which we denote by S,. Above this level are the excited singlet states (S*, S**,
...) and the lowest triplet state (7) and its excited levels (7*, T**, ...). Also associat-
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. Fig. 7.4. Energy level diagram of an
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ed with each electron level is a fine structure which corresponds to excited vibrational
modes of the molecule. The energy spacing between electron levels is on the order of a
few eV whereas that between vibrational levels is of the order of a few tenths of eV.

Tonization energy from penetrating radiation excites both the electron and vibra-
tional levels as shown by the solid arrows. The singlet excitations generally decay imme-
diately (=< 10 ps) to the S* state without the emission of radiation, a process which is
known as internal degradation. From S*, there is generally a high probability of mak-
ing a radiative decay to one of the vibrational states of the ground state Sy (wavy lines)
within a few nanoseconds time. This is the normal process of fluorescence which is de-
scribed by the prompt exponential component in (7.2). The fact that S$* decays to excit-
ed vibrational states of S, with emission of radiation energy less than that required for
the transition Sy— S* also explains the transparency of the scintillators to their own
radiation.

For the triplet excited states, a similar internal degradation process occurs which
brings the system to the lowest triplet state. While transitions from T, to S, are possi-
ble, they are, however, highly forbidden by multipole selection rules. The T state,
instead, decays mainly by interacting with another excited Ty molecule,

To+ Ty— S*+ Sp + phonons (7.3)

to leave one of the molecules in the S* state. Radiation is then emitted by the S* as de-
scribed above. This light comes after a delay time characteristic of the interaction be-
tween the excited molecule and is the delayed or slow component of scintillator light.
The contribution of this slow component to the total light output is only significant in
certain organic materials, however.

Because of the molecular nature of luminescence in these materials, organics can be
used in many physical forms without the loss of their scintillating properties. As detec-
tors, they have been used in the form of pure crystals and as mixtures of one or more
compounds in liquid and solid solutions. A brief description of these types is given
below.

7.2.1 Organic Crystals

The most common crystals are anthracene (Cy4H;y), trans-stilbene (Cy4,H;;) and naph-
thalene (CyoHg). With the exception of anthracene which has a decay time of =30 ns,
these crystals have a fast time response on the order of a few nanoseconds. However,
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due to channeling effects their amplitude response is anisotropic, that is, for a constant
source of radiation the response varies with the orientation of the crystal. Obtaining a
good energy resolution with a noncollimated source, then, can become a difficult prob-
lem.

They are hard crystals and thus very durable, although stilbene tends to be brittle
and more sensitive to thermal shock than anthracene. For this reason also, the cutting
of such crystals to desired forms and shapes is often a difficult task. This and other dis-
advantages, unfortunately, have caused anthracene and stilbene to fall into disuse in
the past years.

Anthracene, nevertheless, has the distinction of having the highest light output of
all the organic scintillators. For this reason, it is chosen as the reference to which the
light outputs of other scintillators are compared. These outputs are thus usually ex-
pressed as percent of anthracene light.

7.2.2 Organic Liquids

These materials are liquid solutions of one or more organic scintillators in an organic
solvent. While the scintillation process here is still the same as that described above, the
mechanism of energy absorption is different. In solutions, the ionization energy seems
to be absorbed mainly by the solvent and then passed on to the scintillation solute. This
transfer usually occurs very quickly and efficiently, although the precise details of the
mechanism are still not clear.

Some of the organic scintillators most commonly used as solutes are p-Terphenyl !,
PBD 2, PPO? and POPOP*. Among the solvents, the most successful seem to be
xylene, toluene, benzene, phenylcyclohexane, triethylbenzene and decaline. Measure-
ments have shown that the efficiency of liquid scintillators increases with solute
concentration although a broad maximum is reached just before saturation of the solu-
tion. Typical concentrations are on the order of 3 g of solute per liter of solvent.

The response of liquid scintillators is generally quite fast with decay times on the or-
der of 3 to 4 ns. They have a particular advantage in that they can be easily loaded with
other materials so as to increase efficiency for a particular application. For example,
Boron-11, which has a high neutron cross-section, can be added to increase efficiency
for neutron detection. Similarly, wavelength shifters, i.e. materials which absorb light
of one frequency and reemit it at another, can also be added to make the spectrum of
emitted light more compatible with a photomultiplier cathode. Loading, however, usu-
ally causes a lengthening of the decay time and a drop in light output because of a
quenching effect which is produced by these additives. It has been found, though, that
by adding naphthalene, biphenyl and other compounds to the solvent, much of the
quenching effect can be removed.

As a general rule, liquid scintillators are extremely sensitive to impurities in the sol-
vent. It is not uncommon, in fact, to find two different samples of the same liquid scin-
tillator with pulse heights differing by as much as a factor of 2 because of contaminat-
ing impurities. Dissolved oxygen, in particular, seems to have a large effect, although

' CigHyy

2 2-phenyl,5-(4-biphenylyl)-1,3,4-oxadiazole (CyoH 14N, 0)
3 2,5-diphenyloxazole (Cs Hy; NO)

4 1,4-Bis-[2-(5-phenyloxazolyl)]-benzene (C,4 H;sN,O,)
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this problem can be remedied to some extent by bubbling oxygen-free nitrogen through
the liquid scintillator.

7.2.3 Plastics

In nuclear and particle physics, plastic scintillators are probably the most widely used
of the organic detectors today. Like the organic liquids, plastic scintillators are also so-
lutions of organic scintillators but in a solid plastic solvent. The most common and
widely used plastics are polyvinyltoluene, polyphenylbenzene and polystyrene. Some
common primary solutes are PBD, p-Terphenyl and PBO, which are dissolved in con-
centrations typically on the order of 10g/l. Very often a secondary solute such as
POPORP is also added for its wavelength shifting properties, but in a very much smaller
proportion. The light emission spectra of several commercial plastics is shown in
Fig. 7.5.

Plastics offer an extremely fast signal with a decay constant of about 2—3 ns and a
high light output. Because of this fast decay, the finite rise time cannot be ignored in
the description of the light pulse as was done in (7.1). The best mathematical descrip-
tion, as shown by Bengston and Moszynski [7.2], appears to be the convolution of a
Gaussian with an exponential,

N(t) = Ny f(o, t) exp <“—’> , (7.4)

T

where f(o, ) is a Gaussian with a standard deviation a. Table 7.2 gives some fitted val-
ues of these parameters for a few common plastics.

Table 7.2. Gaussian and exponential
parameters for light pulse description
from several plastic scintillators
(from Bengston and Moszynski [7.2])

Scintillator o [ns] 7 [ns]
NE102A 0.7 2.4
NE111 0.2 1.7
Naton 136 0.5 1.87

One of the major advantages of plastics is their flexibility. They are easily machined
by normal means and shaped to desired forms. They are produced commercially in a
wide variety of sizes and forms, ranging from thin films, a few pg/cm? thick, to large
sheets, blocks and cylinders, and are relatively cheap. Moreover, various types of plas-
tics are made offering differences in light transmission, speed, etc.

While they are generally quite rugged, plastics are easily attacked by organic
solvents such as acetone and other aromatic compounds. They are, however, resistant
to water pure methylal (dimethoxymethane), silicone grease and lower alcohols. When
handling unprotected plastic, it is generally advisable to wear cotton or terylene gloves
as the body acids from one’s hands can cause a cracking of the plastic (often referred
to as craze) after a period of time.
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7.3 Inorganic Crystals

The inorganic scintillators are mainly crystals of alkali halides containing a small acti-
vator impurity. By far, the most commonly used material is NalI(Tl), where Thallium
(T)) is the impurity activator. Somewhat less common, but in active use is CsI(Tl), also
with Tl as an impurity activator. Others crystals include CsF,, CsI(Tl), CsI(Na),
KI(T]) and LiI(Eu). Among the non-alkali materials are BisGe;O;, (bismuth ger-
manate or BGO), BaF,, ZnS(Ag), ZnO(Ga), CaWO, and CdWO, among others (see
Table 7.1).

The spectrum of emitted light from some of the more commonly used crystals is
shown in Fig. 7.6. In general, inorganic scintillators are 2 — 3 orders of magnitude slow-
er (~500ns) in response than organic scintillators due to phosphorescence. (The one
exception is CsF which has a decay time of 5 ns!) However, the time evolution of emis-
sion is, in most cases, well described by the simple one or two exponential decay forms.

A major disadvantage of certain inorganic crystals is hygroscopicity. Nal, in partic-
ular, is a prime example. To protect it from moisture in the air, it must be housed in an
air tight protective enclosure. Other hygroscopic crystals are CsF, Lil (Eu) and KI(TI).
BGO and BaF,, on the other hand, are non-hygroscopic and can be handled without
protection, while CsI(TI) is only slightly hygroscopic but can generally be handled
without protection.
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The advantage of inorganic crystals lies in their greater stopping power due to their
higher density and higher atomic number. Among all the scintillators, they also have
some of the highest light outputs, which results in better energy resolution. This makes
them extremely suitable for the detection of gamma-rays and high-energy electrons and
positrons.

While Nal has generally been the standard for these purposes, two new materials
have recently drawn much attention from high-energy and nuclear physicists. These are
BiyGe; Oy, (Bismuth Germanate or BGO) and BaF, (Barium Fluoride).

BGO is particularly interesting because of its very high-Z and greater efficiency for
the photoelectric conversion of y-rays. Relative to Nal, for example, it is 3 to 5 times
more efficient and nonhygroscopic, as well. Its light output is lower than Nal, how-
ever, so that its resolution is about a factor two worse. Moreover, it is still relatively ex-
pensive and difficult to obtain in large quantities. Nevertheless, at very high energies it
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presents an enormous advantage over Nal. BaF,, on the other hand, has been discov-
ered to have a very fast light component in the ultra-violet region. Decay times on the
order of 500 ps have been measured in preliminary tests. This would make it twice as
fast as the fastest plastics. The total light output of this component is low, however,
and further development is necessary before its real usefulness can be determined.
Whereas the scintillation mechanism in organic materials is molecular in nature,
that in inorganic scintillators is clearly characteristic of the electronic band structure
found in crystals (see Fig. 7.7). When a nuclear particle enters the crystal, two principal
processes can occur. It can ionize the crystal by exciting an electron from the valence
band to the conduction band, creating a free electron and a free hole. Or it can create
an exciton by exciting an electron to a band (the exciton band) located just below the
conduction band. In this state the electron and hole remain bound together as a pair.
However, the pair can move freely through the crystal. If the crystal now contains im-
purity atoms, electronic levels in the forbidden energy gap can be locally created. A mi-
grating free hole or a hole from an exciton pair which encounters an impurity center,
can then ionize the impurity atom. If now a subsequent electron arrives, it can fall into
the opening left by the hole and make a transition from an excited state to the ground
state, emitting radiation if such a deexcitation mode is allowed. If the transition is ra-
diationless the impurity center becomes a trap and the energy is lost to other processes.

7.4 Gaseous Scintillators

These consist mainly of the noble gases: xenon, krypton, argon and helium, along with
nitrogen. In these scintillators the atoms are individually excited and returned to their
ground states within about 1 ns, so that their response is extremely rapid. However, the
emitted light is generally in the ultraviolet, a wavelength region at which most photo-
multipliers are inefficient. One method of overcoming this difficulty has been to coat
the walls of the container with a wavelength shifter such as diphenylstilbene (DPS).
These materials strongly absorb light in the ultraviolet and emit in the blue-green region
where photomultiplier cathodes are more efficient. In some cases, the PM windows are
also coated with a thin layer of wavelength shifter as well.

Gas scintillators have generally been used in experiments with heavy charged parti-
cles or fission fragments. Here, mixtures of several gases (for example, 90% 3He, 10%
Xe) under pressures as high as 200 atm have been used to increase detection efficiency.
In recent years, gas scintillators have been proposed as detectors in space physics as
well.

Experiments have also been performed with solid and liquid xenon and liquid heli-
um which have been found to scintillate.
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7.5 Glasses

Glass scintillators are cerium activated lithium or boron silicates. However, boron
glasses have light outputs some ten times lower than lithium so they are not very often
employed today. Glass detectors are used primarily for neutron detection although they
are also sensitive to # and y radiation. They are most noteworthy for their resistance to
all organic and inorganic reagents except for hydrofluoric acid. In addition, they have
high melting points and are extremely resistant. These physical and chemical character-
istics make them especially useful in extreme environmental conditions.

Their speed of response is between that of plastics and inorganic crystals, typically
on the order of a few tens of nanoseconds. Light output, however, is low, never reach-
ing more than 25— 30% of that for anthracene.

For low-energy neutron detection, it is also possible to increase sensitivity by enrich-
ing the lithium component with °Li. Separation of neutron events from y radiation
events can then be made by using pulse height discrimination techniques.

7.6 Light Output Response

The light output of a scintillator refers more specifically to its efficiency for converting
ionization energy to photons. This is an extremely important quantity, as it determines
the efficiency and resolution of the scintillator. In general the light output is different
for different types of particles at the same energy. Moreover, for a given particle type,
it does not always vary linearly with energy.

As with ionization of gases, we can define an average energy loss required for the
creation of a photon. Table 7.3 gives a brief list of this efficiency for several materials
when electrons are the exciting particles. In general, this efficiency decreases for
heavier particles. This behavior is seem in Fig. 7.8 for the case of plastic. Traditionally
the light output of scintillators is referred to anthracene and is given as percent of
anthracene light output. A more complete list of scintillator light outputs is given in
Table 7.1.

It should be kept in mind that when considering the efficiency of a scintillation de-
tector, the efficiency of the photomultiplier must also be taken into account, since they
are inseparably coupled. A typical efficiency for the latter, as will be seen in the next
chapter, is about 30%. Thus, assuming that all the emitted photons are collected, only
30% of these photons will ever be detected.

Table 7.3. Average energy loss per
scintillator photon for electrons

Material ¢ [eV/photon]
Anthracene 60
Nal 25
Plastic 100

BGO 300
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Fig. 7.8a,b. Response of NE 102 plastic scintillator to different particles ((a) from Gooding and Pugh [7.6];
(b) from Craun and Smith [7.7])

7.6.1 Linearity

Up until now, we have assumed that scintillators respond in a linear fashion with re-
spect to the exciting energy, that is the fluorescent light emitted, L, is directly propor-
tional to the energy, AE, deposited by the ionizing particle,

L AE . (7.5)

Strictly speaking, this linear relation is not true, although for many applications it
can be considered as a good approximation. In reality, the response of scintillators is a
complex function of not only energy but the type of particle and its specific ionization.

In organic materials, non-linearities are readily observed for electrons at energies
below 125 keV, although they are small [7.4]. For heavier particles, however, the devia-
tions are more pronounced and become very noticeable at lower energies, with the
higher ionizing particles showing the larger deviations. For comparison, Fig. 7.8 shows
the response of NE102A plastic scintillator to a number of different particles.

The first successful semi-empirical model for this behavior was put forward by
Birks [7.5] in 1951. Assuming the response of organic scintillators to be ideally linear,
Birks explained the deviations as being due to quenching interactions between the excit-
ed molecules created along the path of incident particle, i.e., interactions which drain
energy which would otherwise go into luminescence. Since a higher ionizing power pro-
duces a higher density of excited molecules, more quenching interactions will take place
for these particles. In this model, the light output per unit length, dL/dx, is related to
the specific ionization®> by

dL A C(liE
F —T -0
Y 1+

dx

3 The specific ionization is defined as the average number of ion pairs created by the passing particle per unit
length. If ¢ is the mean energy lost for each ion pair created, then the specific ionization is (dE/dx)/e.
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Table 7.4. Measured values of kB for NE102 plastic scintillator (from Badhwar et al. [7.8])

Particle Energy dE/dx kB
[MeV/nucl.] [MeV/g cm?] [mg/(cm? MeV)]
Compton electrons and recoil protons <4 >97 9.1+0.6
Compton electrons and alpha particles <1.3 >272 9.8+0.8
Compton electrons and protons 1.2-14 >34 10+1
Recoil protons <23 >150 10
Recoil protons <8.4 >50 2
3+1
Protons <100 >7 3.7-7.5
Protons 28— 148 5.5-20 13.2+2.5
Deuterons 23-60 10-23
Nitrogen ions 3-9.5 (1-2)x10° <10
Protons to oxygen ions Rigidity 2.0-120 10
1.5-1.6GV
Oxygen-iron nuclei Rigidity 1201300 10
1.5-1.6GV C=-5x10"°
Protons 36220 42-12.3 12.6+2.0
“He 38220 17-49 7.2+1.0
Carbon nuclei 95 265 7.8
Oxygen nuclei 105 550 C=-7x10"%

with A4: absolute scintillation efficiency; kB: parameter relating the density of ioniza-
tion centers to dE/dx.

In practice, kB is obtained by fitting Birk’s formula to experimental data. Some val-
ues of kB for different particles in NE102A plastic are given in Table 7.4.

While Birk’s formula has been relatively successful, deviations have made it neces-
sary to turn to “higher order” formulae in order to better fit the data. Thus, expres-
sions [7.9] such as

. Y . (7.7)
1+Bd—E+C d—E
dx dx
or [7.10]
d_L:iln 1+2Bd£ (7.8)
dx 2B dx

have been suggested. In all these cases the formulae reduce to a linear relationship for
small dE/dx,

4L _ dE (7.9
dx dx

as is observed experimentally. However, for large dE/dx, the formulae differ in their
predictions. Birk’s formula, for example, implies saturation, i.e.,
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~

dx kB

a. _ 4 (1.10)

which, if integrated, yields a fluorescent output proportional to the range, R(E) of the
particle in the scintillator,

A
=__R(E) . 7.11
B (E) (7.11)

The higher order formulae predict either a continuing increase of dL/dx with dE/dx
(7.8) or a passage through a maximum [(7.7), assuming C is positive]. Experimentally,
however, all these formulae have been shown to be incomplete as some further depen-
dence of dL/dx on the specific particle type in addition to dE/dx is observed.

In the most detailed analysis so far, Volz et al. [7.11 — 13] have considered this de-
pendence and have taken into account the Kinetics of the fast and slow scintillation
components. They obtain some relatively complicated expressions for these compo-
nents, which seem to be in agreement with the measured data. However, the situation
still remains inconclusive because of large variations in the experimental results. More
information, of course, would be desirable.

In inorganics, the differential light output, dL/dx, also varies with energy, however
the dependence is generally weaker so that deviations are small. In Nal, linearity is
maintained down to an energy of about 400 keV where a distinct deviation occurs. Fig-
ure 7.9 illustrates this nonlinearity. For accurate work in this energy region, therefore,
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this behavior should be taken into account. A similar behavior is also observed in Csl.
While Birk’s formula is only applicable to organic scintillators, some portions of the
Nal response seem also to be well described by this expression.

7.6.2 Temperature Dependence

The light output of most scintillators is also a function of the temperature. This depen-
dence is generally weak at room temperatures, but should be considered if operation at
temperatures very different from normal is desired.

In organic scintillators, the light output is practically independent of temperature
between — 60°C and +20°C and only drops to 95% of this value at +60°C. Inorganic
crystals, on the hand, are more sensitive as shown in Fig. 7.10. Both CsI(TIl) and
CsI(Na), for example, show relatively strong variations in the normal range of temper-
atures, while Nal appears much less sensitive. BGO light output has also been found to
exhibit a strong temperature dependence, increasing by about 1% per degree Celsius as
the temperature is decreased. As the temperature decreases, the decay time for BGO
also increases however.

Nal(Ty)

100

601

40F csuTh) BGO
Fig. 7.10. Temperature dependence

of light output from inorganic crys-
tals (from Harshaw Catalog [7.3])
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7.6.3 Pulse Shape Discrimination (PSD)

While the light emission of most scintillators is dominated by a single fast decay com-
ponent, some materials, as we have mentioned, exhibit a substantial slow component.
In general, both of these components depend on dE/dx to some degree or another. In
scintillators where this dependence is strong, the overall decay time of the emitted light
pulse will, therefore, vary with the type of exciting radiation. Such scintillators are thus
capable of pulse shape discrimination, i.e., they are capable of distinguishing between
different types of incident particles by the shape of the emitted light pulse. Figure 7.11
illustrates the different decay times, and hence different pulse shapes, exhibited by stil-
bene when excited by different particles. Similar differences are also observed in other
organics, particularly liquid scintillators, and inorganic crystals. In CsI(T1), for exam-
ple, overall decay times of 0.425 us for ¢-particles, 0.519 ps for protons and 0.695 us
for electrons are found [7.15].

The explanation for this effect lies in the fact that the fast and slow components
arise from the deexcitation of different states of the scintillator. Depending on the spe-



172 7. Scintillation Detectors
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cific energy loss of the particle (dE/dx), these states are populated in different propor-
tions, so that the relative intensities of the two components are different for different
dE/dx. In alkali halides such as CsI, for example, a high ionization loss produces a
higher density of free electrons and holes which favors their recombination into loosely
bound systems known as excitons. These excitons then wander through the crystal lat-
tice until they are captured as a whole by impurity centers, exciting the latter to certain
radiative states (fast component). The singly free electrons and holes, on the other
hand, are captured successively resulting in the excitation of certain metastable states
(slow component) not accessible to excitons. At low ionization density, exciton forma-
tion is less likely so that the proportion of excitons relative to free electrons and holes is
lower. The proportion of radiative to metastable excited states will be different, there-
fore, and hence the pulse shape.

In organic scintillators, a high dE/dx produces a high density of excited molecules
which results in increased intermolecular interactions. These reactions hinder the nor-
mal singlet internal degradation process leading to the radiative S* state by draining
their energy through other channels. The proportion of the fast component emitted rel-
ative to the slow component is thus reduced. In stilbene, for example, the slow compo-
nent was found to account for =35%, 54% and 66% of the total light output for elec-
trons, protons and a-particles respectively [7.17]. A strong difference is also observed
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Fig. 7.12. Pulse shape differences of NE213 liquid scintillator light for neutrons and gamma rays. The time
integral of the light pulses is also shown. A discrimination between these radiations may be obtained by
measuring the time it takes for the integrated pulse to reach a certain fixed level (from Lynch [7.17]; picture
© 1975 1EEE)
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in liquid scintillators. Figure 7.12 shows the pulse shape difference between neutrons
and y-rays in NE213 liquid scintillator and the integrals of these curves. This latter
graph illustrates a widely used method for picking out the different pulse shapes. Here
the time difference between the start of the pulse and the point at which the integral of
the pulse reaches a certain fixed value is measured. From the graph, it is clear that the
different shapes will give different time measurements.

It should be noted that the differences in decay time are also sensitive to external
factors such as impurities in the scintillator, temperature, etc. — so that variations in
the two components can be expected from counter to counter. Nevertheless, pulse
shape discrimination is used extensively today, particularly in neutron counting with
liquid scintillators. (Here the neutron is detected by scattering from protons while the
y-ray interacts through the usual photoelectric, Compton and pair production pro-
cesses — thereby accounting for the difference.) This technique allows a discrimination
of y-rays and thus an effective means for suppressing background from these sources.

7.7 Intrinsic Detection Efficiency for Various Radiations

In principle, scintillation phosphors will respond to any radiation which can directly or
indirectly excite the molecules or atoms of the phosphor. However, for a given type of
radiation with a given scintillator, one will not always find that a usable signal is effi-
ciently produced. Indeed, one must consider the mechanisms by which the radiation in-
teracts with the molecules of that particular scintillator material, the probability of
these interactions occurring in the scintillator volume and the response in light output.
The latter quantity is governed by the luminescence mechanisms in the scintillator and
is discussed in the preceding sections. The second quantity is given by the mean free
path of the radiation in the scintillator material. For a not too high energy charged par-
ticle in normal matter, this distance is generally on the microscopic level, so that the
probability of it losing some energy in any scintillator of normal dimensions is almost
100%. For neutral particles, however, the mean free path in some materials can be
quite large, so that a prohibitively large detector might be required in order to assure a
reasonable efficiency. In addition, one must also consider if energy information is de-
sired. In such a case, the requirements become even stronger since the particle must
now deposit all of its energy rather than just part of it. In this section, we consider the
several types of radiation most commonly encountered in nuclear physics, discuss the
problems involved and the most suitable types of scintillator detector for each radia-
tion.

7.7.1 Heavy Ions

While the heavy ions are capable of ionizing any of the phosphors discussed above,
scintillators are generally not very suitable for these particles due to a reduced light out-
put. This is due to the very high ionizing power of these particles which, as we have
seen, induces quenching effects. For «’s in organic scintillators, for example, the light
output is only about 1/10 of that for electrons of the same energy. Strong non-lineari-
ties in the pulse response are also found. In the inorganic materials, the output intensity
is also reduced, but remains higher than the organics, varying from 50 to 70% of that
for electrons. Better linearity is found as well.
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Consequently, where scintillators are desired, the inorganic crystals such as Nal
have been traditionally used for the detection of these particles, their higher light out-
put and high stopping power providing better energy resolution. For o’s, ZnS is still
employed also, although it has a poorer energy resolution and is only suitable for low
count rates because of a long decay time.

7.7.2 Electrons

The efficiency of most scintillators for electrons is almost 100% in the sense that very
few entering electrons will fail to produce a detectable signal. However, because of its
small mass, the electron is susceptible to large angle scatterings in matter. This can
cause an incident electron to be backscattered (or sidescattered) out of the detector be-
fore its full energy has been deposited. Obtaining a satisfactory energy measurement
under these conditions, then, can be quite difficult.

The backscattering effect depends strongly on the atomic number of the material,
however, and increases rapidly with increasing Z. Since the organic scintillators have
the lowest effective Z, they in fact have proved to be the more advantageous. Indeed, in
a set-up with a f-source held at a small distance from a flat Nal (high Z!) crystal, for
example, between 80 to 90% of the incident electrons will be backscattered, whereas
only about 8% are reflected with a plastic scintillator [7.18]. These percentages can be
reduced somewhat by collimating the source so that the electrons are incident at angles
closer to the perpendicular, for example, or eliminated altogether by completely en-
veloping the source with the detector in a 4 7 geometry. With the source external to the
detector, however, the organic scintillators are clearly superior.

At very high electron energies the use of inorganics no longer becomes disadvan-
tageous. Here electron energy loss is mainly through the production of bremsstrahlung
and the subsequent electron showers which it produces, so that, a high-Z material is
needed in order to facilitate shower production (see Sect. 2.4.2). Having the highest
density and atomic number, the inorganics in fact become the more preferable.

7.7.3 Gamma Rays

In contrast to electrons, y-rays are more efficiently detected by high Z materials. This
difference can be understood by recalling the three basic interactions by which photons
react with matter: the photoelectric effect, Compton scattering and pair production. In
the photoelectric effect and pair production processes, the y-ray is completely ab-
sorbed, being transformed into a charged particle or particles. In the Compton process,
however, the y retains its identity transferring only a part of its energy to a recoil elec-
tron. If the scattered y-ray does not suffer another interaction in the scintillator materi-
al, it is possible for it to escape so that only a part of its energy is deposited. To make an
efficient y-ray detector, therefore, one must use a material in which the photoelectric
and pair production cross sections are large compared to the Compton scattering cross
section.

Fortunately, the former two cross sections are much more strongly dependent on Z,
going roughly as Z°> and Z? respectively, while the Compton process only varies linearly
with Z. The high Z inorganic phosphors are thus the more favored for y detection. Fig-
ure 7.13 illustrates the difference in the three cross sections for y-rays in Nal and
NE102A plastic. While the Compton cross sections in both materials are comparable,
the photoelectric and pair cross sections are several orders of magnitude higher in the
Nal. The probability of absorption versus scattering is thus much greater.
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1000 E Fig. 7.13. Gamma-ray absorption coefficients for Nal
K and NE102A plastic scintillator. Note the difference in
the relative magnitudes of the photoelectric and
Compton cross sections
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7.7.4 Neutrons

Like y-rays, the detection of neutrons requires a transfer of all or part of its energy to a
particle capable of ionizing and exciting the scintillator material.

For fast and higher energy neutrons, detection relies mainly on detecting the recoil
proton in (n, p) scattering processes. Plastic and other organics are particularly conve-
nient here, since they contain large amounts of hydrogenous material. The standard
scintillator in neutron spectroscopy is liquid organic scintillator (e.g. NE213). This ma-
terial offers excellent pulse shape discrimination properties and allows a rejection of
the y-ray background which usually accompanies neutron reactions. As well it is easily
handled and can be adapted to a wide variety of geometries.

For thermal neutrons, detection is most efficiently done using the (n, ) or (n, @)
nuclear reactions. Scintillators which contain elements with high cross sections for
these reactions, e.g. °Li or !°B, or are capable of being loaded with these elements are
therefore the most convenient. Lil (Eu), for example, is a particularly good thermal
neutron detector. Indeed, a 2 cm thick crystal is almost 90% efficient for thermal neu-
trons. It, unfortunately, is also sensitive to y radiation, which is a major source of
background. The advantages of Lil(Eu) are therefore somewhat diminished. More ef-
fective are the glass scintillators which are particularly well suited since they can be
made with either enriched Li or !°B. They are also sensitive to 8 and y radiation, al-
though some glasses offer the possibility of pulse shape discrimination. Liquid scintilla-
tor is again, however, the most effective here since it can also be loaded with elements
such as ®Li or '°B, in addition to offering pulse shape discrimination.
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Photomultipliers (PM’s) are electron tube devices which convert light into a measur-
able electric current. They are extremely sensitive and, in nuclear and high-energy
physics, are most often associated with scintillation detectors, although their uses are
quite varied. It is nevertheless in this context that we will discuss the basic design and
properties of photomultipliers, their characteristics under operation and some special
techniques.

8.1 Basic Construction and Operation

Figure 8.1 shows a schematic diagram of a typical photomultiplier. It consists of a cath-
ode made of photosensitive material followed by an electron collection system, an elec-
tron multiplier section (or dynode string as it is usually called) and finally an anode
from which the final signal can be taken. ' All parts are usually housed in an evacuated
glass tube so that the whole photomultiplier has the appearance of an old-fashion elec-
tron tube.

During operation a high voltage is applied to the cathode, dynodes and anode such
that a potential “ladder” is set up along the length of the cathode — dynode — anode
structure. When an incident photon (from a scintillator for example) impinges upon the
photocathode, an electron is emitted via the photoelectric effect. Because of the applied
voltage, the electron is then directed and accelerated toward the first dynode, where
upon striking, it transfers some of its energy to the electrons in the dynode. This causes
secondary electrons to be emitted, which in turn, are accelerated towards the next
dynode where more electrons are released and further accelerated. An electron cascade
down the dynode string is thus created. At the anode, this cascade is collected to give a
current which can be amplified and analyzed.

Photomultipliers may be operated in continuous mode, i.e., under a constant il-
lumination, or in pulsed mode as is the case in scintillation counting. In either mode, if
the cathode and dynode systems are assumed to be linear, the current at the output of
the PM will be directly proportional to the number of incident photons. A radiation de-
tector produced by coupling a scintillator to a PM (the scintillator produces photons in
proportion to the energy deposited in the scintillator) would thus be capable of provid-
ing not only information on the particle’s presence but also the energy it has left in the
scintillator.

Let us now turn to a more detailed look at the various parts of the photomultiplier.

! An alternative structure rarely used with scintillation counters is the side-on PM. Here the photocathode is
oriented so as to face the side of the tube rather than the end window. The dynode chain is then usually ar-
ranged in a circular fashion around the axis of the tube rather than linearly along it. The basic operating prin-
ciple remains exactly the same, however.
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Fig. 8.1. Schematic diagram of a
photomultiplier tube (from
Schonkeren [9.1])
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8.2 The Photocathode

As we have seen, the photocathode converts incident light into a current of electrons by
the photoelectric effect. To facilitate the passage of this light, the photosensitive mate-
rial is deposited in a thin layer on the inside of the PM window which is usually made of
glass or quartz. From Einstein’s well-known formula,

E=hv-¢ , (8.1)

where E is the kinetic energy of emitted electron, v the frequency of incident light and
¢ the work function, it is clear that a certain minimum frequency is required before
the photoelectric effect may take place. Above this threshold, however, the probability
for this effect is far from being unity. Indeed, the efficiency for photoelectric conver-
sion varies strongly with the frequency of the incident light and the structure of the ma-
terial. This overall spectral response is expressed by the quantum efficiency, n(1),

number of photoelectrons released

n(d) = (8.2)

number of incident photons on cathode (1) ’

where 4 is the wavelength of the incident light. An equivalent quantity is the radiant
cathode sensitivity which is defined as

I

S(A) = ,
1) PO

8.3)

where [ is the photoelectric emission current from the cathode and P(A) is the incident
radiant power. The radiant cathode sensitivity is usually given in units of ampere/watts
and is related to the quantum efficiency by

S() = An) -2 . (8.4)
he

For S in [A/W] and A in nanometers

An(d)

S(A) = [A/W] . (8.5)

A third unit is the luminous cathode sensitivity which is defined as the current per
lumen of incident light flux. Since the lumen is essentially a physiological unit defined
relative to the response of the human eye, the luminous sensitivity is not a unit to be
recommended.

Figure 8.2 shows a graph of quantum efficiency vs A for some of the more common
photoelectric materials used in photomultipliers today. In general, the spectral re-
sponse of these materials is such that only a certain band of wavelengths is efficiently
converted. When choosing a PM, therefore, the primary consideration should be its
sensitivity to the wavelength of the incident light. For the photocathodes shown in Fig.
8.2, the efficiency peaks near =400 nm, thereby making them quite suitable for use
with scintillators. More than 50 other types of materials are in use, however, with spec-
tral sensitivities varying from the infra-red to the ultraviolet. A brief list of the most



8.2 The Photocathode 179

Quantum Efficiency % Q.E. % Fig. 8.2. Quantum efficiency of
} IO'O; T S-20) various photocathode materials
[} ifi |
28 T 5 0 rgdte (from EMI Catalog [8.2])
Ll et B VEDS. S X = KA Extended
1 )’ \ AN \‘ AY $-20
24 / S—1
A NA N
7o P SON MR
Ay ﬁ( 0.5 e
20 H Yoaf ’/' \\ X s-1
|\ LA \‘ \
y - W ! o LT
N / \ 600 700 800 900
|
I I
Bialkali (K-CS)J ~S-11
12 i
Ll \ ]
InEass N
e . \
"fﬁ I ,:\A \\ \> S-20 1
‘ il \\ \\ N S+ Extended S—20
4 | Q NN
—— All window materials \ \\ \
=+===1Fused silica windows AN <]
0 L | 1] L
100 200 300 400 500 600 700 800

Wavelength nm

Table 8.1. Photocathode characteristics (from RTC catalog [8.3])

Cathode type Composition A at peak Quantum efficiency
response [nm] at peak

S1 (O) Ag—-0-Cs 800 0.36
S4 SbCs 400 16

S11 (A) SbCs 440 17
Super A SbCs 440 22

S13 (U) SbCs 440 17

S20 (T) SbNa—KCs 420 20
S20R SbNa—KCs 550 8

TU SbNa—KCs 420 20
Bialkali SbRb—Cs 420 26
Bialkali D Sb—K-Cs 400 26
Bialkali DU Sb—-K-Cs 400 26

SB Cs—Te 235 10

common types of photocathode is given in Table 8.1 along with their characteristics.
Note that the different materials have been given standard type and code designations,
an indication of their high frequency of use today.

Most of the photocathodes employed today are made of semiconductor materials
formed from antimony plus one or more alkali metals. The choice of semiconductors
rather than metals or other photoelectric substances lies in their much greater quantum
efficiency for converting a photon to a usable electron. Indeed, in most metals, the
quantum efficiency is not greater than 0.1% which means that an average of 1000 pho-
tons is needed to release one photoelectron. In contrast semiconductors have quantum
efficiencies of the order of 10 to 30%), some two orders of magnitude higher! This dif-
ference is explained by their different intrinsic structures. Suppose, for example, an
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electron absorbs a photon at some depth x in the material. In traveling to the surface,
this electron will suffer an energy loss, AE = x(dE/dx), due to collisions with the
atomic electrons along its path. In metals, these atomic electrons are essentially free so
that large energy transfers result, i.e., the dE/dx is high. The probability of it reaching
the surface with enough energy to overcome the potential barrier is therefore greatly re-
duced. This essentially restricts the usuable volume of the material to a very thin layer
near the surface. The thickness of this layer is known as the escape depth. In contrast,
semiconductors have an energy band structure with only a few electrons, those in the
conduction and valence bands, being approximately free. The rest are tightly bound to
the atoms. A photoelectron ejected from the conduction or valence band thus encoun-
ters less free electrons before reaching the surface. The only other possible collisions
are with electrons bound to the lattice atoms. But due to the larger mass of the latter,
little energy is transferred in these collisions. The photoelectron, therefore, is much
more likely to reach the surface with a sufficient amount of energy to escape. The
escape depth is thus much greater and the conversion efficiency higher.

A recent development in the construction of photocathodes has been the use of
negative electron affinity materials such as gallium phosphide (GaP) heavily doped with
zinc and a small quantity of cesium. In these materials the band structure near the sur-
face is bent so that the bottom energy level of the conduction band is actually above the
potential of the vacuum. The work function is thus negative. Without a potential bar-
rier, then, an electron need only have enough energy to reach the surface in order to es-
cape. Such materials, therefore, have greatly improved quantum efficiencies reaching
as high as 80%! Unfortunately a number of problems still remain in constructing them
as photocathodes so that only limited use has been made of them so far.

8.3 The Electron-Optical Input System

After emission from the photocathode, the electrons in the PM must be collected and
focused onto the first stage of the electron multiplier section. This task is performed by
the electron-optical input system. In most PM’s, collection and focusing is accom-
plished through the application of an electric field in a suitable configuration. Magnetic
fields or a combination of electric and magnetic fields may also be employed in princi-
ple, but their use is extremely rare. Figure 8.3 gives a schematic diagram of a typical
electron-optical input system. Here an accelerating electrode at the same potential as
the first dynode of the electron multiplier is used in conjunction with a focusing elec-
trode placed on the side of the glass housing. Some lines of equipotential are shown
along with some possible electron paths.
Regardless of the design, two important requirements must be met:

1) Collection must be as efficient as possible, i.e. as many emitted electrons as possible
must reach the electron-multiplier section regardless of their point of origin on the
cathode.

2) The time it takes for an emitted electron to travel from the cathode to the first dy-
node must be as independent as possible of the point of emission.

The second requirement is particularly important for fast photomultipliers which
are used in timing experiments since it determines the time resolution of the detector.
This is discussed further in Sect. 8.6.
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equipotential lines Fig. 8.3. Electron-optical input system of a
typical PM (from Schonkeren [8.1])
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8.4 The Electron-Multiplier Section

The electron-multiplier system amplifies the weak primary photocurrent by using a se-
ries of secondary emission electrodes or dynodes to produce a measurable current at the
anode of the photomultiplier. The gain of each electrode is known as the secondary
emission factor, é. The theory of secondary electron emission is very similar to that de-
scribed for photoelectric emission except that the photon is now replaced by an elec-
tron. On impact, energy is transferred directly to the electrons in the dynode material
allowing a number of secondary electrons to escape. Since the conducting electrons in
metals hinder this escape, as we have seen, it is not surprising that insulators and semi-
conductors are also used here as well.

One difference exists, however, in that a constant electric field must be maintained
between the dynodes to accelerate and guide the electrons along the multiplier. Thus
the secondary emission material must be deposited on a conducting material. A com-
mon procedure used today is to form an alloy of an alkali or alkaline earth metal with
a more noble metal. During the mixing process, only the alkaline metal oxidizes, so
that a thin insulating coating is formed on a conducting support. Materials in common
use today are Ag— Mg, Cu—Be and Cs— Sb. These have varying advantages but all
meet the requirements of a good dynode material:

1) high secondary emission factor, J, i.e., the average number of secondary electrons
emitted per primary electron;

2) stability of secondary emission effect under high currents;

3) low thermionic emission, i.e., low noise.

Most conventional PM’s contain 10 to 14 stages, with total overall gains of up to 10’
being obtained.

Like the photocathode, use has also been made of negative affinity materials as dy-
nodes, in particular GaP. With this material the individual gain of each dynode is
greatly increased so that the number of stages in a PM can be reduced. A 5-stage PM
made of GaP dynodes, for example, would provide the same overall gain as a 14-stage
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conventional PM. This reduction, as well, would diminish fluctuations in time as the
path through which the cascade electrons must travel would also be much shorter.

8.4.1 Dynode Configurations

Dynode strings can be constructed in many ways and depending on the configuration,
affect the response time and range of linearity of a photomultiplier. At present, five
types of configurations are in use:

1) Venetian blind

2) Box and Grid

3) Linear focused

4) Circular focused (used in side-on PM’s)
5) Microchannel plate.

The first four types are the more conventional structures and are illustrated in Fig.
8.4. In the Venetian blind configuration, the dynodes are wide strips of material placed
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Fig. 8.5. Linearity of different dynode configurations: (a) box and
grid, (b) venetian blind with standard voltage divider, (c) venetian
blind with high current voltage divider, (d) linear focused with very
high current divider (from EMI Catalog [8.2])
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Photocathode - Fig. 8.4a—d. Various dynode configurations for PM’s (from EMI Catalog [8.2]):

(a) venetian blind, (b) box and grid, (c) linear focused, (d) side-on configuration
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at an angle of 45 degrees with respect to the electron cascade axis. This is a simple sys-
tem which offers a large input area to the incident primary electrons. The dynodes are
easily placed in line and the dimensions are not critical. The disadvantage, however, is
that it is impossible to prevent a fraction of the primary electrons from passing straight
through. This results in a low gain and large variations in transit time. This is avoided
in the box and grid, linear focused and circular types which reflect the electrons from
one dynode to the next. Other inherent advantages of these latter types are that: (1)
space is efficiently used, so that many dynodes can be used, and (2) the cathode and an-
ode are well isolated, so that there is no risk of feedback.

The response linearity of the various types are compared in Fig. 8.5. From the point
of view of overall performance, it is clear that the linear focused type is the more favor-
able of the four. However, the specific application must be considered. If linearity over
a modest current range is desired, for example, a Venetian blind configuration would
do just as well as a linear focused type and for a lower cost.

In recent years a new design has appeared which uses microchannel plate multipli-
ers. This device, originally invented for use in image intensifiers, consists of a lead glass
plate perforated by an array of microscopic channels (typically 10 — 100 ym in diame-
ter) oriented parallel to each other (see Fig. 8.6). The inner surfaces of the channels are
treated with a semiconductor material so as to act as secondary electron emitters while
the flat end surfaces of the plate are coated with a metallic alloy so as to allow a poten-
tial difference to be applied along the length of the holes. Electrons entering a channel
are thus accelerated along the hole until they eventually strike the wall to release further
electrons which, in turn, are accelerated and so on. Each channel thus acts as a continu-
ous dynode.

Typical microchannel plates have from 10— 107 holes and can provide multiplica-
tion factors of 10°—10*. Two or three plates may also be cascaded to provide a higher
overall gain. A common geometry is the chevron configuration shown in Fig. 8.7. Here
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Fig. 8.6. Schematic diagram of a microchannel plate. The many chan-
nels act as continuous dynodes (from Dhawan [8.4]; picture © 1975
IEEE)

Fig. 8.7. Chevron configuration in a microchannel plate photomulti-
plier (after Dhawan [8.4]). A further increase in gain may be obtained
by adding a third plate to form a “Z” configuration (picture © 1975
IEEE)
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the channels are oriented at an angle with respect to the plate surfaces and to each other
so as to avoid troublesome feedback from positive ions which occasionally form in the
channels and drift backwards along the hole. The gain of the chevron configuration
ranges from 10° to 107, which is comparable to the more conventional dynode struc-
tures. The advantage, however, is in the much improved timing properties due to the
smaller dimensions of the microchannel plates. Transit times are only a few nanosec-
onds compared to a few tens of nanoseconds for the conventional types. This results in
timing resolutions of <100 ps [8.4]. As well this smaller size makes microchannel plate
PM’s much less sensitive to magnetic fields. Tests, in fact, have shown, the immunity
of these PM’s to fields as high as 2 kG [8.4]. The disadvantages are high cost and their
yet to be proven reliability. One particular problem which arises is that a cascade in one
channel drains the neighboring channels for several puseconds [8.5] leading to non-
linearities for count rates above a few thousand per second.

8.4.2 Multiplier Response: The Single-Electron Spectrum

Ideally, the electron-multiplier system should provide a constant gain for all fixed ener-
gy electrons which enter the dynode system. In practice, this is not possible because of
the statistical nature of the secondary emission process. Single electrons of the same en-
ergy entering the system will thus produce different numbers of secondary electrons, re-
sulting in fluctuations in gain. This may be further amplified by variations in the sec-
ondary emission factor over the surface of the dynodes, differences in transit time, etc.
A good measure of the extent of the fluctuations in a given multiplier chain is the single
electron spectrum. This is the spectrum of PM output pulses resulting from the entry of
single electrons only into the multiplier system. This distribution essentially gives the
response of the electron-multiplier and can be measured by illuminating the PM with a
very weak light source such that the probability of more than one single electron enter-
ing the multiplier at the same time is small. A more detailed description of the tech-
nique is given in the paper by Hyman et al. [8.6]. Because of the previously mentioned
effects, the output pulse shapes will generally be different for each single-electron
event. By integrating each current pulse, however, a new pulse whose amplitude is pro-
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Fig. 8.8. Single-electron spectra for (a) linear-focused PM, (b) venetian blind PM (from Schonkeren [8.1])
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portional to the total charge is obtained and thereby the gain for each event. Plotting
each event versus gain then gives the response to the multiplier and thus the inherent
gain fluctuations.

Figure 8.8 illustrates some measured single-electron distributions for a linear-fo-
cused PM and a Venetian blind PM. Analytically, these spectra are best described by a
Polya distribution (also called a negative-binomial distribution or compound-Poisson
distribution). These are also shown in Fig. 8.8. The parameter b shown in Fig. 8.8 is the
RMS deviation from perfect uniformity of the secondary emission factor over the sur-
face of the dynode. As can be seen, the Venetian blind configuration is generally sub-
ject to more gain fluctuations than is the linear-focused type. This is due to better
focused electrons in the latter which minimizes the effect of dynode nonuniformities.

8.5 Operating Parameters

8.5.1 Gain and Voltage Supply

The overall amplication factor or gain of a PM depends on the number of dynodes in
the multiplier section and the secondary emission factor 4, which is a function of the
energy of the primary electron. Figure 8.9 shows this dependence for several materials.
In the multiplier chain, the energy of the electrons incident on each dynode is clearly
a function of the potential difference, V,, between the dynodes so that we can write

5=KV,, (8.6)

where K is a proportionality constant. Assuming the applied voltage is equally divided
among the dynodes, the overall gain of the PM is then

G=6"=KVy)" . 8.7)

From (8.7) it is interesting to calculate the number of stages n, required for a fixed
gain G with a minimum supply voltage V. Thus
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Minimizing, we find,

Ve _ 1 qim_n G

7 X X 5 InG=0, n=InG (8.8)
n n

for operation at a minimum V;,. Apart from practical reasons, operating at the mini-
mum voltage is desirable from the point of view of noise, etc. However, this comes into
conflict with transit time spread and other factors (the number of pins, for example)
which often results in the use of higher voltages.

An important relation which should be noted is the variation in gain with respect to
supply voltage. From (8.7), we calculate

ac avy avy
—_ =N =N

8.9

which for n = 10 implies a 10% variation in gain for a 1% change in V3! Thus, to main-
tain a gain stability of 1%, the voltage supply must be regulated to within 0.1%! Mod-
ern supply voltages are regulated to better than 0.05%.

8.5.2 Voltage Dividers

In the previous section we saw how crucial it is to have a well regulated voltage applied
to the dynodes. Ideally, batteries would be the best stabilized voltage source, however
the required number makes such a scheme impractical. The most common method is to
use a stabilized high voltage supply in conjunction with a voltage divider (see Fig. 8.10).
This system consists of a chain of resistances chosen such as to provide the desired volt-
age to each of the dynodes. Variable resistances can also be placed, for example, be-
tween the cathode and accelerating electrode, so as to allow a fine adjustment.

In designing such a divider, however, it is important to prevent the occurrence of
large potential variations between the dynodes due to the changing currents in the tube.
Such variations would cause changes in the overall gain and linearity of the PM. For
this reason, it is important that the current in the resistance chain, known as the bleeder
current, be large compared to the tube current. A calculation shows, in fact, that the
variation in gain with anode current is

AG Iy n(1-6)+1

—_— (8.10)

G Ib] (n+1)(1—5)
with 7,,: average anode current; I, : bleeder current; #: number of stages; d: secondary
emission factor.

To maintain a 1% linearity then, a bleeder current of about 100 times the average
anode current would be necessary. In pulse mode operation, however, peak currents
much larger than this current can still occur, particularly in the last few stages. To
avoid momentary potential drops due to these peaks, the last stages can be maintained
at a fixed potential by the addition of decoupling capacitors which provide the neces-
sary charge during the peak period (see Fig. 8.10). These capacitors are then recharged
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Fig. 8.10a—c. Examples of PM voltage divider networks (after examples from Philips Catalog [8.7]: (a)
divider network using positive high voltage; note the AC coupling capacitor at the anode, (b) a network using
negative high voltage and decoupling capacitors for maintaining the voltages between the last few dynodes,
(c) example of the use of zener diodes to maintain voltages on the last few dynodes

during the non-peak periods. An alternate solution is to use Zener diodes in place of the
resistances. These elements maintain a constant voltage for currents above a minimum
threshold. In very high current applications, it may even be necessary to use a second
external voltage supply to maintain the voltages on these last stages. Examples of the
use of decoupling capacitors are shown in Fig. 8.10 (b) and (¢).

The photomultiplier may be operated with either a positive or negative high voltage,
as long as the potential of the dynodes is negative relative to the photocathode. If a pos-
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itive high voltage is used, the photocathode should be kept at ground potential in order
to avoid spurious discharges which might occur between the photocathode and the scin-
tillator or outer envelope of the detector. Grounding the photocathode will also mini-
mize noise from this component as well, an asset when doing pulse height spectroscopy.
This advantage is somewhat offset, however, by the fact that the anode will be at con-
stant positive potential. This requires that it be ac coupled through a capacitor in order
to allow the pulse signal to pass at 0 dc level [see Fig. 8.10 (a)]. This is avoided if nega-
tive high voltage is used. The anode can then be kept at ground which allows it to be di-
rectly coupled to the detector electronics. For timing applications, this is particularly
advantageous as the signal can be taken directly from the PM without suffering a re-
shaping (and thus loss of timing information) due to a coupling capacitor. The disad-
vantage, however, is that the cathode is now at a high negative potential. It thus be-
comes important to keep the glass well insulated so as to avoid leakage currents from
the PM to the grounded material surrounding it.

8.5.3 Electrode Current. Linearity

The linearity of a PM depends strongly on the type of dynode configuration and the
current in the tube. In general, photomultiplier linearity requires that the current at
each stage be entirely collected by the following stage, so that a strict proportionality
with the initial cathode current is maintained. Current collection, of course, depends
on the voltage difference applied between stages. Figure 8.11, for example, shows the
functional dependence of the cathode and anode currents on the applied voltages for
various illuminations at the photocathode. These might be recognized as the Child-
Langmuir characteristics for thermionic valves. At a given initial current, the current
increases with applied voltage until a saturation level is reached where all the current is
collected. The initial dependence on voltage is due to the formation of a space charge
around the emitting electrode. This cloud of electrons tends to nullify the electric field
in this region and prevents the acceleration of subsequently emitted electrons towards
the receiving electrode. 2 As the voltage is increased, however, this space charge is swept

2 This phenomena is referred to by some authors as space charge saturation which is often abbreviated to
plain saturation. This should not be confused with the saturation of the Child-Langmuir characteristics!

I, L $=5mlm

(nA)L

400f 4
3 3

200} 2
i 1
I 50

0 . 1 L i . - 0 L 1 N 1 .
0 100 200 0 100 200
Vk-s1)(V) Va -sn)(V)

Fig. 8.11. Current-voltage characteristics of the PM cathode and anode under different illuminating light
intensities (from Schonkeren [8.1])
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away and all of the emitted current is collected. As a general rule, therefore, the cath-
ode, dynode and anode currents should always be in the flat, saturated portion of the
characteristic curve.

Maintaining these voltages during operation, however, requires more attention be-
cause of their dependence on the tube current. The resistivity of the photocathode, for
example, is an important factor. This resistance is normally quite high, on the order of
a few tenths of a MQ or so. The emission of relatively small currents of photoelectrons
can thus cause large changes in the potential of the photoemissive layer and a drop in its
potential relative to the first dynode. This will, in turn, alter the collection efficiency. It
is important, therefore, to work at a sufficiently high voltage so as to ensure staying on
the flat part of the characteristic. This is also true for the dynodes, particularly the later
stages where the current is high and the probability of space charge build-up is greater.
To ensure linear operation, the distribution of voltage to these latter stages is generally
increased over that of the earlier stages in most voltage dividers.

In the case of the anode, a similar effect occurs. Because it is connected in series to a
load resistance (see Fig. 8.10), the anode voltage will fall as the anode current increases.
Thus a change in the potential difference between the anode and the last dynode will
occur. Since, the entire chain is kept at a constant voltage V,, the potential differences
between the earlier dynode stages will increase causing a change in gain and a loss of
linearity. In order to stay on the saturated part of the characteristic, therefore, the cur-
rent must be kept to within certain limiting values.

8.5.4 Pulse Shape

As we have seen, the output signal at the anode is a current or charge pulse whose total
charge is proportional to the initial number of electrons emitted by the photocathode.
In fact, more than any other device, the photomultiplier satisfies the requirements of
an ideal current generator. As a circuit element, therefore, the PM may be equivalently
represented [8.8] as a current generator in parallel with a resistance and capacitance
(see Fig. 8.12). The resistance, R and the capacitance, C, here, represent the intrinsic
resistance and capacitance of the anode plus those of any other elements which may be
in the output circuit, e.g., the anode load resistor, cables, etc.

Let us examine the behavior of the signal at the circuit output. Assuming that the
input is scintillator light described by an exponential decay, the current at the anode
will be given by

10 = 9Ne eXp<”> , (8.11)

Ts Ts

with G: gain of PM; N: the number of photoelectrons emitted by the cathode; e:
charge of the electron; 7,: decay constant of scintillator.
We then have an equation of the form,

1) =—+Cc=2— 12
@) R+ (8.12)

which has the solution
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Fig. 8.12. Equivalent circuit for a
photomultiplier. The PMT may
be considered as an ideal current
generator in parallel with a cer-
tain resistance and capacitance
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where 7= RC. Taking some typical values: G = 10%, N = 100, C = 10 pF and 7, = S ns,
Fig. 8.13 shows this expression evaluated for different values of 7.

For 7 < 1,, the signal is small but faithfully reproduces the decay time of the initial
signal. The rise time is rapid and is essentially given by the 7 of the output circuit. This
is known as the current mode of operation, since V(¢) is essentially given by the current
through the resistance R. For 7> 1, the signal amplitude becomes larger but so does
the decay time which is now essentially determined by the 7 of the output circuit. In
return, however, the rise time is approximately given by 7. This is known as the voltage
mode of operation as V(¢) is now given by the voltage across the capacitance C. In this
mode the current is essentially integrated by C.

As a general rule, the voltage mode is preferred since it gives a large signal which is
free from fluctuations due to the integration by C. However, the longer decay time of
the signal limits counting rates to =1/1, after which signal pile-up occurs. Operating in
current mode would allow higher counting rates but the output signal would be small
and much more sensitive to small fluctuations which occur at the photocathode. For
optimum performance, PM output circuits must be tailored to the scintillator which is
to be used. This usually involves altering the anode resistance so as to obtain a suitable
7. The capacitance C is usually kept as small as possible in order to maximize the ampli-
tude.

8.6 Time Response and Resolution

Two principal factors affect the time resolution of photomultipliers:

1) Variations in the transit time of the electrons through the PM,
2) Fluctuations due to statistical noise.
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Transit time variations may arise because of differences in the path length traveled
by the electrons and in the energy with which they are emitted by the photocathode.
Figure 8.14 illustrates the first effect for a conventional PM by showing the differences
in distance traveled in a given period-of time for electrons emitted from various points
of the cathode. During the time it takes for the electrons on axis to travel to the first dy-
node, electrons emitted near the edge have only travelled =1/3 of the way. This differ-
ence is even further increased by the asymmetry of the dynode. Clearly the electrons
emitted at the lower edge have a longer distance to travel than those from the upper
edge of the figure. This effect is known as transit time difference and is associated with
the geometry of the system. An obvious change is to use a spherical cathode, so as to
better equalize the distances. A more effective way, however, is to grade the electric
field in such a way that the electrons at the edge are accelerated more than those on the
axis.

Apart from geometrical effects, there will also be variations which depend on the
energy and direction of the emitted electrons. Clearly electrons emitted with a high en-
ergy will reach the dynode faster than those at lower energies. Similarly, electrons emit-
ted in a direction closer to the normal of the cathode will arrive before those emitted in
a direction more parallel to the surface. This effect is called transit time spread and
is independent of the point at which the electron leaves the cathode. If we express the
initial velocity of a photoelectron as a sum of its components in the direction
perpendicular and parallel to the photocathode, i.e.,

U:UJ_+UH

the transit time spread can be approximated by the formula

Ar= - |] 2meW (8.14)

e’E?

with m.: electron mass, 9.1 x10~ 2 g; e: charge of electron, 1.6 x10~°C; E: electric
field strength [V/m]; W: energy component normal to cathode, i.e., vi /2 m..

For some typical values, E=4kV/m, W=0.4¢eV, At is about 0.5 ns. In modern
fast PM’s, the transit time is on the order of 0.2 to 0.5 ns which underlines the impor-
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Fig. 8.15. Equipotential lines in the elec-
tron-optical input system of a fast photo-
multiplier (from Hull [8.9])

tance of this effect. To reduce the spread, the electric field must be increased as seen in
(8.14).

The input system of a fast PM is shown in Fig. 8.15 and should be compared to the
classic configuration in Fig. 8.3. In most modern fast PM’s, the voltages on the
focusing and accelerating electrodes are adjustable. Usually, the best values are found
by trial and error.

The second source of timing jitter in PM’s is due to natural fluctuations in the PM
current because of the statistical nature of the photoelectric effect and secondary emis-
sion processes. This is known as statistical noise and constitutes a fundamental limitation
to the time resolution of the PM. This phenomenon is discussed in more detail below.

8.7 Noise

8.7.1 Dark Current and Afterpulsing

Even when a photomultiplier is not illuminated, a small current still flows. This current
is called the dark current and arises from several sources:

1) thermionic emission from the cathode and dynodes
2) leakage currents

3) radioactive contamination

4) ionization phenomena

5) light phenomena

with thermal noise being the principal component. This contribution is described by
Richardson’s equation
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T=AT?exp(—%2) | 8.15
exp< kT> (8.15)

where A is a constant, ¢ the work function, 7 the temperature [K] and £ Boltzmann’s
constant. Clearly, a lowering of temperature reduces this component of noise.

Leakage currents going through the electrode supports and the pins at the base also
contribute a large component to the dark current. Reduction of this noise by insulation
of the supports is difficult because of the small magnitude of the currents involved. Op-
eration of the PM in a reduced atmosphere will, however, reduce leakage through the
pins by lowering the breakdown voltage.

Radioactive materials in the glass housing or support materials can also cause elec-
tron emission from the photocathode or dynodes. The radiation from these contami-
nants can either directly strike the electrodes or cause fluorescence in the glass housing
itself. In each case, a small current results.

In a similar manner, residual gases left or formed in the PM can also cause a detect-
able current. These gas atoms can be ionized by the electrons and since they are of the
opposite charge, will accelerate back towards the cathode or dynodes where they can
release further electrons. This often results in afterpulses occurring in a time equal to
the time needed for the ions to transit the tube. This may be from a few hundred nano-
seconds to microseconds. Under high current, afterpulses may also be caused by elec-
trode glow, i.e., light emitted by the last few dynodes which travels to the photocath-
ode. In such cases, afterpulses occurring between 30 to 60 ns after the true pulse are
often seen. Since these are usually one-electron events, their amplitudes are generally
small. A good discussion of afterpulsing is given by Candy [8.11].

In general, dark currents should be very small and in most PM’s not more than a
few nanoamperes.

8.7.2 Statistical Noise

Statistical noise is a direct result of the statistical nature of the photoemission and sec-
ondary emission processes. For a constant intensity of light, the number of photoelec-
trons emitted as well as the number of secondary electrons emitted will fluctuate with
time. The current at the anode will thus fluctuate about some mean in the manner
shown in Fig. 8.16. This noise is usually referred to as shot noise or the Schottky Effect
and is measured by the variance of the fluctuations about the mean anode current.
Statistical fluctuations in a PM have two origins: (1) the photocathode, and (2) elec-
tron multiplier system. The first source arises from the statistical nature of the photo-
electric effect and is the result of a fundamental physical limit. For a PM under con-
stant illumination, these fluctuations can be calculated by assuming a Poisson distribu-
tion for the number of photons incident on the photocathode in a time period 7 and a

Ix

Fig. 8.16. Statistical noise from a PM (from
Philips Catalog [8.7])

time
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binomial distributed probability for the number of photoelectrons released. One then
finds the rms deviation given by

AI?Y = Ie/T (8.16)

with I: cathode current; e: electric charge of electron.

Added to this noise are fluctuations from the electron-multiplier system. These arise
not only from the statistical nature of secondary emission, but from differences in elec-
tron transit times, nonuniformities in the secondary emission factor over the dynodes,
and other factors. The extent of these fluctuations are probably best judged from the
single-electron spectrum, discussed in the previous section. In general, however, mul-
tiplier noise accounts for not more than about 10% of the total statistical noise.

8.8 Environmental Factors

8.8.1 Exposure to Ambient Light

Since photomultipliers are extremely photosensitive, it is clear that care must be taken
not to expose the PM to ambient light while it is under voltage. In such a case, the re-
sulting high currents in the tube can give rise to instability (fatigue) effects or even de-
stroy the PM entirely. In some cases, a tube can be recovered after a long period in
darkness; however, there will most likely be a marked increase in the dark current.
Even when not under voltage, it is best not to expose the photomultiplier to excessive il-
lumination. The result is a higher dark current which, however, decays after a certain
time. This recovery time depends on the intensity of illumination.

8=|8|x B=|Bl2
08 08k 08
S 2 3
= = =
0.4 04} 04
3
0 f | . 0 A Ly 0
-40 0 40 -40 0 40 -40 0 40
B(10"“Wb/m?2) B (1074 Wb/m?) B (10”4 Wb/m?)

Fig. 8.17. Effect of magnetic fields on the anode current of an unscreened PM for different field orientations
(from Schonkeren [8.1])
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8.8.2 Magnetic Fields

Magnetic fields are one of the more important influences on the operation of PM’s. It
is easy to see, in fact, that a small magnetic field is enough to deviate the electron
cascade from its optimum trajectory in a PM and thereby affect its efficiency. By far
the most sensitive part of the PM to magnetic fields is the electron collection system.
Here electrons may be so deviated that they may never reach the first dynode at all. As
well, the orientation of the tube with respect to the field is clearly a determining factor
as well as its symmetry with respect to its axis. Figure 8.17 illustrates the effect of a
magnetic field on a PM oriented along three orthogonal axes. In general, the following
conclusions can be made:

1) the anode current decreases as magnetic flux increases,
2) the influence of the field is least when oriented along the axis of the PM.

It is common practice to shield PM’s with a mu-metal screen which fits around the
PM tube. These are available commercially or can be made easily. Generally it is suffi-
cient to shield only the area around the tube; however tests have shown that better re-
sults are obtained if the screen is extended pass the tube somewhat. Figure 8.18 shows
this difference by comparing the effects of a magnetic field versus the positions and
lengths of the mu-metal screen. For strong magnetic fields, it may also be necessary to
use a further soft iron shield about the mu-metal. In such cases, care should be taken
that parts of the PM do not become magnetized as well. More recently, new designs us-
ing a close proximity focusing scheme [8.12] have made their appearance on the com-
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Fig. 8.18. Shielding effect of different mu-metal configurations (from Schonkeren [8.1])
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mercial market. The distance between the photocathode and the first dynode is greatly
reduced in these PM’s making them much less sensitive to magnetic fields. Other types
of phototubes resistant to magnetic fields are discussed in [8.13].

8.8.3 Temperature Effects

For most normal PM’s, temperature effects are generally small compared to other fac-
tors. They can play a role, however, depending on the application. The dark noise, as
given by Richardson’s equation, for example, is obviously a function of 7 and should
therefore be expected to vary. Figure 8.19 gives the variation measured for several
photocathode materials.

The spectral sensitivity of the cathode also displays a dependence on temperature,
although this effect varies with the type of cathode. Physically, it can be easily seen that
the band structure and thus the Fermi level and resistance of the cathode will change;
however, the exact effect of these changes is difficult to predict. Generally speaking, in
the range between 25° to 50°C, a variation of = —0.5%/°C with rising temperature is
noted.

The variation of the gain of the PM with temperature has also been studied al-
though the results are less conclusive due to large variations from one experiment to the
other. In principle, the secondary emission factor does not depend directly on the tem-
perature, however, it may be indirectly affected by temperature-related changes in the
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surface properties of the dynodes, etc. Figure 8.20 shows plots of the measured gain
variation with respect to temperature for a typical photomultiplier. Here, the variation
is on the order of a few tenths of a percent per deg-K, however, it should be pointed out
that this ratio not only seems to vary from one PM type to the other, but also among
tubes of the same type, as well. Thus, the values shown should only be taken as order of
magnitude estimates.

8.9 Gain Stability, Count Rate Shift

As we have seen, the gain stability of a PM is one of its most crucial characteristics and
can be influenced by different factors. In general, variations in gain (fatigue effects) are
most likely due to changes somewhere in the multiplier system. Two types of change
can be distinguished:

1) drift — which is a variation in time under a constant level of illumination,

2) shift — a sudden change in the gain after the current has changed. In nuclear count-
ing applications, this is sometimes known as count-rate shift, i.e., a shift in gain af-
ter the average counting rate is suddenly changed.

Figure 8.21 illustrates these two effects. While the causes are varied, their effects can be
extremely important. A further discussion of these effects is given by Yamashita [8.15].
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- Fig. 8.21. PM gain drift and shift
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To test a PM for stability, the following procedure can be used. Mount the PM in a
scintillation counter and using a multichannel analyzer, observe the pulse height distri-
bution from a '¥’Cs source. In particular, note the position of the 662 keV peak.

Drift. To measure drift:

1) Adjust the source distance so that the count rate is =1000s~!;
2) let the PM operate for 3 hours at this count rate;
3) then once every hour for about 20 hours, determine the position of the peak.

The drift is then given by
Y |P-P|

DRIFT=—' (8.17)
npP
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with P;: ith measurement of the peak; n: number of measurements; P: average of P;
over all » measurements. For an acceptable PM, the drift should not be more than 1%.

Shift. To measure shift:

1) Immediately after the measurement of drift, reduce the distance between PM and
source so as to obtain a count rate of =10000s~%;

2) record the peak position every 10 minutes for 4 or 5 measurements.
The shift is then

lPi—Pn|

(8.18)
mpP,

SHIFT = ¥
i

with P,: the last measurement made for drift at 1000 counts/s; P;: ith measurement
made for shift; m: number of measurements. The value should not exceed 1% for an
acceptable tube.

After long periods of inactivity PM’s also show gain changes when anode currents
of a few tens nA or more are induced. However, after a settling down period of a few
hours, this drift stabilizes [8.16]. A long term gradual drop in gain is also noticed [8.17]
— which appears related to the total charge collected by the anode.



9. Scintillation Detector Mounting and Operation

In the previous chapters, we considered the two basic components of the scintillation
detector: the scintillator material and the photomultiplier, describing their intrinsic
capabilities and limitations. In this present chapter, we will discuss the problem of cou-
pling these two components to make an efficient detector and of putting it into opera-
tion.

The two most crucial points to consider when mounting a detector are those of light
collection and transport. Indeed even with the highest quality scintillators and PM’s, a
detector is of no use, if none or only a small fraction of the scintillation photons emit-
ted are transmitted to the PM. It is very important therefore to collect as many of the
emitted photons as possible and to efficiently transport them to the PM photocathode.

9.1 Light Collection

The loss of light from a scintillator can occur in two basic ways: one is escape through
the scintillator boundaries and the other is through absorption by the scintillator mate-
rial. For small detectors, the latter effect is negligible. Only when the dimensions of the
counter are such that the total path lengths traveled by the photons are comparable to
the attenuation length will absorption begin to play a role. This parameter is defined as
that length after which the light intensity is reduced by a factor e~ '. The light intensity
as a function of length is then

L(x) = Lo exp <:11> , ©.1)

where / is the attenuation length, x the path length travelled by the light and L, the ini-
tial light intensity. Since a typical attenuation length is on the order of =1 m or more, it
is clear that only very large detectors are affected.

By far, the most important loss is by transmission through the scintillator bound-
aries. This effect is perhaps best illustrated by referring to Fig. 9.1 which shows a sim-
ple detector arrangement. Light emitted at any given point in the scintillator travels in
all directions and only a fraction of it directly reaches the PM, the remainder travels to-
ward the scintillator boundaries where, depending on the angle of incidence, two things
can happen. For light impinging at an angle greater than the Brewster angle, 8 where

0 = sin ! <L> ©.2)
Rgcint

with ny being the index of refraction of the scintillator and #,,, that of the surround-
ing medium, total internal reflection occurs so that this light is turned back into the
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\ Transmitted Light Fig. 9.1. Light collection in a typical scintillator
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scintillator. At angles less than 6y, partial reflection occurs and the remainder trans-
mitted.

This loss, of course, reduces the efficiency and energy resolution of the detector.
However, a second problem also arises: a non-uniformity in pulse height response over
the volume of the detector — for depending on the point of emission, different frac-
tions of the total light output will reach the photocathode. In practice, this non-uni-
formity is usually negligible for the type of small counters used in the nuclear physics
lab. However, with larger detectors and with certain scintillator geometries, this non-
uniformity can pose some serious problems.

To increase the efficiency of light collection, several methods can be employed.

9.1.1 Reflection

The simplest and most common practice is to redirect escaping light by external and/or
internal reflection. This is illustrated in Fig. 9.2 which shows the counter from Fig. 9.1
now surrounded by an external reflector.

The light which was previously transmitted is now also directed back towards the
PM by making one or more reflections. Of course, with each reflection some degrada-
tion occurs so that this method would not be satisfactory where large numbers of re-
flections occur.

The reflecting surface here may be specular (as shown in Fig. 9.2) or diffuse. With a
specular surface, the reflections are mirror-like in the sense that the angle of reflection
equals the angle of incidence. With a diffuse reflector, on the other hand, the reflec-
tions are essentially independent of the angle of incidence and follow Lambert’s cosine
law instead,

dl/dfocos 6 (9.3)

with I: intensity of reflected light; 6: angle of reflection with respect to normal.

As a specular reflector simple aluminium foil has been found to be very satisfactory
and is the most widely used. Of the diffuse reflectors, the most common are MgO, TiO,
and aluminium oxide. These are usually found in the form of a powder or as a white
paint. An important point to note is the reflectivity of these materials versus wave-
length. This is shown in Fig. 9.3. While aluminium foil and MgO retain a relatively
high reflectivity down to low wavelengths, TiO, drops off sharply at =400 nm where it
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Fig. 9.3. Reflectivity of various materials (from Mott and
10 Mg 0 Sutton [9.1])
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becomes a poor reflector. Diffuse reflectors are generally considered to be slightly more
efficient; however, the difference is small and varies according to the geometry of the
detector.

While a good efficiency is generally obtained with the external reflector alone, stud-
ies have shown that the best results are obtained by also maximizing internal reflection
at the same time. The medium surrounding the scintillator should therefore have an in-
dex of refraction which is as small as possible in order to minimize g (9.2). Air, obvi-
ously, is the best and most convenient medium. Assuming #g;,, is typically =1.5, this
implies a 85 = 42°. Therefore, a layer of air should be left between the reflector and the
scintillator.

With plastic scintillators, internal reflection is facilitated by polishing the surfaces
of the plastic. A common procedure for small detectors is to wrap the scintillator in
aluminium foil and to follow this with a light-tight layer of black tape. To maximize in-
ternal reflection, the foil should be loosely applied so as to ensure a layer of air in con-
tact with the scintillator. This type of mounting is illustrated in the next section.

With other scintillators different mountings are generally necessary because of their
particular physical characteristics. Nal, for example, is hygroscopic and therefore re-
quires special protection from air. Commercially, these crystals are usually found her-
metically sealed in a metallic container with a lining of dry MgO powder along the
walls. One end is sealed by a glass or quartz window to allow coupling to the PM and
the other by a thin metal window to allow passage of radiations. Similar complications
also arise for liquid and gas scintillators which must necessarily be sealed in containers.

9.2 Coupling to the PM

In contrast to the internal reflection requirement discussed above, the coupling between
the scintillator and the PM must be made so as to allow a maximum of light transmis-
sion. Leaving air here would result in the total trapping of portions of the light in the
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scintillator. Optical contact between the two media should therefore be made with a
material whose index of refraction is as close as possible to that of the scintillator and
the PM window. The most common agent is silicone grease or oil. For organic scintilla-
tors, the optical coupling with silicone is almost perfect since the refractive indices of
the scintillator, grease and PM window are almost identical. For inorganics, however,
the match is not as good so that some trapping does occur.

9.3 Multiple Photomultipliers

Instead of the reflecting method described above, light collection could also have been
increased by placing a second PM onto the other face of the scintillator (assuming our
application allows the placement of another PM at this point!). Light escaping from
this end would then be detected by this PM and its signal could be summed with the
other to give the total pulse height. Such an arrangement, of course, involves added
electronics and thus increased complexity and cost. For small detectors, such a solution
would be somewhat extravagant as the simpler reflection technique provides excellent
results. However, for large counters where many reflections would occur and/or where
the attenuation of light becomes a factor, the use of multiple PM’s may be the only way
to obtain efficient light recovery and uniform response (Fig. 9.4).

PM

PM Scintillator

ﬂ_g PM Fig. 9.4. A large scintillator viewed by multiple

PM’s for better light collection efficiency

Y

9.4 Light Guides

Often in many experiments, it is impossible or not desirable to couple the PM directly
to the scintillator. This may be because of a lack of space, the presence of magnetic
fields, an inconvenient scintillator shape or any number of other reasons. In such a sit-
uation, the scintillator light may be conducted to the PM via a light guide (or light pipe)
as illustrated in Fig. 9.5. Such guides are usually made of optical quality plexiglass,
lucite or perspex and work on the principle of internal reflection, that is, light entering
from one end is “guided” along the pipe by internally reflecting it back and forth be-
tween the interior walls. Like plastic scintillators, the walls are usually polished for this
purpose. Of course, only that fraction of the light incident at angles greater than the
Brewster angle can be transferred in this way.

The light guide may be made in any variety of shapes and lengths to conform to the
geometry desired. Thus, a counter which “turns arounds a corner” may be constructed,
for example, or one which bends at a certain angle relative to the PM, etc. It is also par-
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Fig. 9.6. Adapting a flat scintillator sheet to the circular face of a PM Fig. 9.7. The twisted light guide. Many strips of light guide material are
with a light guide glued on to the edge of the scintillator and then twisted 90° so as to fit
onto the PM face

Light guide

ticularly useful for adapting inconvenient scintillator shapes to the circular face of the
PM. A common example is the case of a flat scintillator plate or sheet which must be
viewed on edge. This situation is illustrated in Fig. 9.6.

One common solution is the “fish tail” light guide shown in Fig. 9.6, which slow<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>